
UTAP�WD Standard Interface Environment

Index

aborting� ��
abstracting� ��� ���� ���
action� ix
actuation� 		
Ad hoc� ��
ad hoc� ��
AI�
��

�
�
Albus J� i� vii
alternative� 	�� �	�
Amarel S� �	
ambiguity�
�� ��
analytical philosophy� ��
Anderson J� ��

Aporia� ��
architecture multiresolutional� �
Aristotle� ��
arithmetic applied� �

Arnauld A� ��
art� 	�
attention

focusing� 	�� ���� ���� ���
focusing� ��

Aurelius Augustine� ��
automata

hierarchies of�

Ayer A� ��

writing� i

i

UNIFIED
TELEROBOTIC
ARCHITEC�

TURE
PROJECT
�UTAP�

Standard
Interface

Environment
�SIE�

Ronald Lumia John Michaloski

Robert Russell Thomas Wheatley

Intelligent Systems Division
NIST

Gaithersburg� MD �����

Paul Backes Sukhan Lee Robert

Steele

Jet Propulsion Laboratory

NASA

Pasadena� CA �����

Contents

Index � � � � � � � � � � � � � � � � � � � i

Foreword � � � � � � � � � � � � � � � � � vi

� Scope � � � � � � � � � � � � � � � � � �

� References � � � � � � � � � � � � � � � �

� De�nitions � � � � � � � � � � � � � � � �
�� Standards Terminology � � � �

��� de�ned � � � � � � � � � �
��� may � � � � � � � � � � � �
��� shall � � � � � � � � � � � �
��	 should � � � � � � � � � � �
��� supported � � � � � � � � �
��� unde�ned � � � � � � � � �
��
 unspeci�ed � � � � � � � �

�� General Terms � � � � � � � � �
��� API � � � � � � � � � � � �
��� build � � � � � � � � � � � �
���� channel � � � � � � � � � �
���� connection � � � � � � � �
���� component � � � � � � � 	
���� data encapsulation � � � 	
���	 interface � � � � � � � � � 	
���� message � � � � � � � � � 	
���� module � � � � � � � � � �
���
 open system � � � � � � �
���� protocol � � � � � � � � � �
���� telerobotics � � � � � � � �

	 Abbreviations � � � � � � � � � � � � � �

� Conformance requirements � � � � � �

�� Implementation Conformance

�� Environment Conformance �

�� Documentation Conformance

� Application Architecture � � � � � � �

�� Hardware Architecture � � � � �
�� Software Architecture � � � � ��

��� Software Module Func�
tional Types � � � � � � ��

��� Application Program � � ��

UTAP�WD Standard Interface Environment

 Interface Environment � � � � � � � � �	

� Viewpoints � � � � � � � � � � ��

� UTAP Information Models � � � � � ��
�� Shape Geometries � � � � � � �

�� Patterns � � � � � � � � � � � � �

�� Features � � � � � � � � � � � � ��

� Integration and Con�guration Man�
agement � � � � � � � � � � � � � � � ��

�� Identi�cation � � � � � � � � � ��
�� Classi�cation � � � � � � � � � ��
�� Con�guration File Format � � ��
�	 Module Speci�cation � � � � � ��

�	� Scaling � � � � � � � � � ��
�	� Timing � � � � � � � � � ��

�� UTAP Interface Framework � � � � ��
��� Interface Types � � � � � � � � ��

���� Control Interface Type ��
���� Query�Response � � � � ��
���� Peer�to�Peer � � � � � � ��

��� Syntactics � � � � � � � � � � � ��
���� Variable Length Arrays

Resolution � � � � � � � ��
��� Semantic Meaning � � � � � � ��

���� Control Mode Sequenc�
ing � � � � � � � � � � � � �	

���� Keywords � � � � � � � � �	
���� Designating Subordinate

Selections � � � � � � � � ��
���	 Synchronization � � � � ��

��	 Extensibility � � � � � � � � � �

��	� State Context Naming � �

��	� Scaling Control Dimen�

sions � � � � � � � � � � � �

��	� Integration � � � � � � � ��
��		 New Messages � � � � � ��

Annexes

A Bibliography � � � � � � � � � � � � ��

B Component Analysis � � � � � � � � ��
B� Application Architecture � � ��
B� Hardware Architecture � � � � ��
B� Software Components � � � � �

B�� System Software Com�
ponents � � � � � � � � � �

C Environment Pro�le Suite � � � � � 		
C� Application Environment Pro�

�le � � � � � � � � � � � � � � � 		
C� Interface Environment Pro�le 		

D Examples � � � � � � � � � � � � � � ��
D� API Interface Example � � � ��

D�� Tool Manipulation � � � ��
D�� Sensor Programming Ex�

ample � � � � � � � � � � ��
D� Channel Interface Example � �	
D� Con�guration File Example � �	
D	 Example of Message Flow for

Sample UTAP Scenario � � � ��

E Related Standards � � � � � � � � � ��
E� RS�
	D � � � � � � � � � � � � ��
E� RS		� � � � � � � � � � � � � � ��
E� POSIX � � � � � � � � � � � � ��
E	 IEC ������ � � � � � � � � � � ��
E� ANSI�RIA R���������� � � � ��
E� EIA Standard RS���
�A � � � ��
E
 XDR � � � � � � � � � � � � � � ��

F Target Applications � � � � � � � � ��
F� Paint Stripping � � � � � � � � ��
F� Telerobotic Surface Finishing ��
F� Telerobotic Advanced Cut�

ting System � � � � � � � � � � ��

G API Issues � � � � � � � � � � � � � � �	
G� Messages� Macros and Naming �	
G� Integration � � � � � � � � � � �	
G� De�nition Style � � � � � � � � �	
G	 Variable Length Arrays � � � ��
G� Units and Representation � � ��
G� Selection � � � � � � � � � � � ��
G
 Parameterization � � � � � � � ��
G� Aggregation Model � � � � � � ��

H Interface Descriptions � � � � � � � ��
H� Interface List � � � � � � � � � ��
H� Sorted Interface List � � � � �
�
H� Interface Source Listings � � �
�

iv

UTAP�WD Standard Interface Environment

H�� Disclaimer � � � � � � �
�
H�� Generic De�nitions � � �
�
H�� Classi�cation � � � � � �
�
H�	 Protocol � � � � � � � � �
�
H�� Information Model � � � ��
H�� Interfaces � � � � � � � � ��

H	 Interface API Source � � � � � ��

Figures

� Commercial robotics components

hierarchy � � � � � � � � � � � � � � xiii

� Robot system hierarchy � � � � � � xiii

� Telerobot architecture for aircraft

maintenance and remanufacturing �

	 Hardware Architecture � � � � � � � �

� Software Architecture � � � � � � � ��

� Software Grouping � � � � � � � � � ��

 Software to Hardware Map Options ��

� Module Speci�cation Model � � � � ��

� Object Knowledge Parameter List ��

�� Heap Applied to Message Handling ��

C� Module Pro�le Speci�cation � � � � ��

D� Superior use of API Interface to

Command Subordinate � � � � � � � ��

D� Example OI Control Panel � � � � � ��

Tables

� Module Classi�cation � � � � � � � ��

� Message Type Identi�cation Ta�

ble of Contents � � � � � � � � � � � ��

C� System Pro�le � � � � � � � � � � � 		

C� System Environment Pro�le � � � � 		

C� Processor Board Pro�le � � � � � � 	�

C	 Generic Message Pro�le � � � � � � 	�

C� Data Knowledge � � � � � � � � � � 	�

C� Errors � � � � � � � � � � � � � � � � 	�

C
 Axis Servo Command Pro�le � � � 	�

C� Axis Servo Data Pro�le � � � � � � 	�

C� Tool Control Pro�le � Spindle � � � 	

C�� Tool Control Pro�le � Coolant � � � 	

C�� Generic Sensor � � � � � � � � � � � 	�

C�� Sensor � Image � � � � � � � � � � � 	�

C�� Subsystem Task Level Control � � 	�

C�	 Subsystem Task Level Control �

cont � � � � � � � � � � � � � � � � � 	�

C�� Subsystem Task Level Control � � ��

D� Example Remote System Con�g�

uration File � � � � � � � � � � � � � �	

D� Example Local System Con�gura�

tion File � � � � � � � � � � � � � � � ��

D� Sample Session � init � � � � � � � � ��

D	 Start Teleoperation � � � � � � � � � �

D� Start Automated Process � � � � � �

G� Parameter and Units � � � � � � � � ��

v

UTAP�WD Standard Interface Environment

Foreword

Under the sponsorship of the Air Force Ma�
terial Command �AFMC� Robotics and Au�
tomation Center of Excellence �RACE� at Kelly
Air Force Base� San Antonio� TX� the Uni�ed
Telerobotic Architecture Project was funded
to de�ne an open architecture to improve the
e�ciency and productivity of the maintenance
operations The UTAP speci�es an open ar�
chitecture for telerobotics along with speci�c
implementation options designed to assist the
work at Air Force maintenance facilities

The status of the UTAP Standard Interface
Environment � SIE � has progressed to the
point that the architecture remains stable and
the project has seen the interfaces evolve sig�
ni�cantly after several Design Reviews To
date� the emphasis of review e�ort has been
on the remote interfaces containing the real�
time control elements Additional work re�
mains to validate the functionality of the in�
terfaces� resolve con�guration and integration
issues� solidify the interface environment and
substantiate the validation and conformance
process

Disclaimer

No approval or endorsement of any commer�
cial product by the National Institute of Stan�
dards and Technology is intended or implied

Any software source code contained herein
was produced in part by the National Insti�
tute of Standards and Technology �NIST��
an agency of the US government� and by
statute is not subject to copyright in the United
States Recipients of this software assume all
responsibility associated with its operation�
modi�cation� maintenance� and subsequent
redistribution

Electronic Access to Document

A compressed copy of this document in Postscript
format and the related source code in shar
format is available electronically Access to
the UTAP report and UTAP source code is
available through the Internet standard File
Transfer Protocol �ftp� The ftp site name is
�giskardcmenistgov� Directions for an ftp
session to retrieve the report and source code
follow

First� change directory to your local destina�
tion directory Next use the command �ftp�
to remotely login using �anonymous� for the
name� and give your email address for the
password This will allow you reading and
copying privileges

you���� cd your�local�directory

you���� ftp giskard�cme�nist�gov

Connected to giskard�cme�nist�gov�

��	 giskard FTP server
Version wu����
� Wed Apr � �������� EDT ����

Name
giskard�cme�nist�gov�yourname� anonymous

��� Guest login ok� send your complete e�mail address as password�

Password� �your complete e�mail address�

��	� Welcome to the FTP server for the Intelligent Systems Divisi

��	� National Institute of Standards and Technology

��	� Gaithersburg� MD

��	�

��	�Please read the file README

��	� it was last modified on Mon Dec � �������� ���� � ��� days ago

��	 Guest login ok� access restrictions apply�

Once connected� change into the �utap� di�
rectory containing the desired �les

ftp� cd pub�utap

��	 CWD command successful�

To get everything at once� a compressed tar
version of the documentation and a shar bun�
dle of the source �les is in the main directory
ALWAYS USE BINARY�IMAGE MODE TO
TRANSFER THESE FILES� Text mode does
not work for tar �les or compressed �les

ftp� mget utap�doc�tar�Z utap�src�shar

Terminate the ftp session with the quit com�
mand

ftp� quit

Assuming a UNIX environment� one will be
required to unbundle the �les For the docu�
mentation� uncompress and extract the doc�

vi

UTAP�WD Standard Interface Environment

umentation �les with tar The source is in
shar format� so use unshar to unbundle �les

you����
mkdir doc� cp utap�doc�Z doc� cd doc� �

uncompress utap�doc�tar�Z� tar �xf utap�doc�tar�

you����
mkdir src� cp utap�src�shar src� cd src� �

unshar utap�src�shar�

The documentation is in Postscript format
��ps�

Introduction

This introduction is not considered part of
the proposed standard

The purpose of this Working Draft Standard
Document is to de�ne a common architecture
for telerobotics systems for use in Air Force
applications with great dual�use potential for
civilian applications There are various Air
Force applications� such as paint stripping
and painting� surface �nishing� and skin cut�
ting which can bene�t from the integration
of telerobotics systems tools

Telerobotics systems will enable human op�
erators� who now execute these tasks man�
ually� to operate telerobots to execute the
tasks faster� safer� and with higher quality
Telerobotics aims at the integration and fu�
sion of the strengths of machine and human
to extend the capabilities of either Teler�
obotics transcends the human barriers of space�
time� power� speed� accuracy� and safety as
well as the machine barriers of cognition� un�
derstanding� reasoning� and planning Be�
sides the conventional applications of teler�
obotics technology to space� underwater� nu�
clear� and mining operations� telerobotics tech�
nology may be applied to the semi�automation
of industrial processes where the full robotic
automation is di�cult to implement but the
manual operation is too costly to practice
The Air Force application domains of air�
craft maintenance and remanufacturing are
good candidates for successful telerobotics in�
sertion due to their small batch sizes� par�
tially modeled task environment� and phys�

ically challenging and hazardous work envi�
ronments In aircraft maintenance and re�
manufacturing applications the operator may
provide the high level cognitive planning and
sensory perception� which are currently di��
cult to provide in a robotic system� while the
robot provides precise control and works in
dangerous environments

It is intended that commercial telerobotics
applications will become feasible due to the
speci�cation of an architecture and standard�
izing the components of the systems This
will allow systems to be built from standard
hardware and software modules which� rather
than being custom developed� can be reused
from other applications or purchased The
architecture therefore provides a framework
for design and implementation of telerobotics
systems for di�erent telerobotics applications
while utilizing a common architecture and
hardware and software modules The cus�
tomization in developing a system will be in
the selection of which modules to use rather
than in development of all the modules This
will allow both minimal� ie� inexpensive� and
complex� ie� expensive systems to be built
using the same architecture

Maintenance of systems developed with stan�
dard modules will likely be less expensive and
cause less system down time than for custom
systems Service personnel will be easier to
�nd since their skills will have wider applica�
bility than those of people who are familiar
with a custom system

An important feature of the architecture from
the operator�s viewpoint is a common op�
erator interface across di�erent applications
The various application interfaces will be eas�
ier to learn� remember� and use This will re�
duce training time and costs� as well as pro�
vide more skillful and reliable operators

vii

UTAP�WD Standard Interface Environment

Audience

The intended audience that this Working Draft
Standard Document has been developed for�

a� Air Force Maintenance System De�
signers

b� Control System Designers�Engineers

c� Control System Integrators

d� Telerobotic Control Applications Pro�
grammers

e� Hardware and Software Purchases

f� End�users operating a SIE controller

Organization of the Working
Draft Document

The Working Draft Standard Document is di�
vided into � parts

� Scope

� References

� De�nitions and global concepts

� Conformance

� Architecture Reference Model

� Interface Environment

� Information Models

� Con�guration and Integration

� Interface Framework

A series of annexes follow the Working Draft
Standard Documentthat contain normative
and informative reference material

Background

The UTAP architecture de�nition utilized teler�
obotics research and development results from
universities and national laboratories� previ�
ous studies� and current robotics o��the�shelf
capabilities Most of the required capabil�
ities have been demonstrated in prototype
systems� but without a common architecture
approach The uni�ed architecture speci�es
the hardware and software modules so that
telerobotics systems can be built from stan�
dard commercial components

The architecture described in this report is
a re�nement of the architecture described in
an earlier study �JPL� That study provided
a high level description of the uni�ed archi�
tecture and its components The uni�ed ar�
chitecture is an integration of many open ar�
chitecture technologies

At NIST� the unifying architecture for system
development has been the Real�time Control
System �RCS� �RCS� that has evolved from
cerebral models of brain behavior into a gen�
eral theory of intelligence In addition to the
RCS architecture� a methodology accompa�
nies the architecture for the analysis� design
and implementation of control systems The
importance of the RCS lies in the abstrac�
tions and generalizations it forwards in pur�
suit of open solutions that apply beyond the
demands of any one application

Another related architecture is the architec�
ture associated with the Next Generation Con�
troller �NGC� project �SOSAS� It is intended
that this UTAP architecture be an Applica�
tion Architecture for an NGC system The
modules of the system are therefore described
as components of an NGC system with speci�
�ed responsibilities and interfaces A speci�c
NGC pro�le is not speci�ed since that would
be selected for a speci�c Application System

viii

UTAP�WD Standard Interface Environment

Purpose

Several principles guided the development of
this Working Draft Standard Document

Open Architecture Technology�

Openness provides bene�ts and savings
through �exibility and extensibility but
does not address portability Interfaces
under one vendor�s open architecture gen�
erally will not run under another vendor�s
system Openness is the �rst step towards
standardization Requirements for a stan�
dard �open solution� include the ability
to allow the development of controllers
by users or system integrators who want
to piece together their own systems com�
ponent by component� modify the way
their controller does certain things� ap�
ply their modi�cations to another con�
troller� or start small and upgrade as they
grow These basic open architecture re�
quirements include�

Modularity� Refers to the ability of
controls users and system integrators
to purchase and replace components of
the controller without unduly a�ect�
ing the rest of the controller

Extensibility� Refers to the ability
of intelligent users and third parties
to incrementally add functionality to
a module without replacing it com�
pletely

Portability� Refers to the ease with
which a module can run across plat�
forms Standards such as ANSI C and
POSIX are required to serve as a ref�
erence to which programmers adhere

Scalability� Like portability� refers to
the ease with which a module can be
made to run in a controller based on
another platform� but unlike portabil�
ity� scalability allows di�erent perfor�

mance based on the platform selection
Scalability means that a controller may
be implemented as easily by systems
integrators on a high�speed processor�
as a distributed multi�processor sys�
tem� or on a standalone PC

Applying Today�s Technology�
The UTAP is intended as a SIE for im�
mediate use One could overestimate the
real�potential of systems in developing the
scenarios� and become mired in the range
of possibilities and expectations of an ar�
chitecture For the UTAP architecture
and interfaces� it is assumed that a rea�
sonable level of e�ort and Commercial O�
The Shelf �COTS� equipment are imme�
diately available and can be used to solve
the applications tasks

Another assumption was that innovation
would be minimized Innovation a�ects
both the �how�to� and �what is in� when
de�ning interfaces For the how�to� should
the interfaces use established� but some�
times �awed� approaches� or should the
interface adapt newer but evolving and
unproven approaches� There are estab�
lished e�orts for interface de�nitions that
are very elegant �eg� �STEP�� �CORBA���
but are either not cost�e�ective or still
su�ering growing pains The UTAP will
start with a baseline of a simple strategy
and concentrate on the �what is in� the
interfaces instead of dwelling on the �how�
to� pass information within an interface
It will be assumed that at some point
an industry�standard for manufacturing�
based application interface communication
and infrastructure will have evolved

Another question is the amount of sci�
enti�c pioneering of new technology ex�
pected within the interfaces� eg� �What
are the functions that should be incorpo�
rated into the next generation of commer�

ix

UTAP�WD Standard Interface Environment

cially available sensors�� For instance�
should an array sensor � such as a range
sensor � return curvature identi�cation�
For the UTAP interfaces� we did not at�
tempt to innovate new de�nitions� but rather�
attempted to standardize on established
technology However� the level of inno�
vation within an interface is not compro�
mising since the UTAP modules and in�
terfaces are scalable

Focus on Interface Content� Not Interface Transport�

An interface has two critical issues One
issue is the method� or �How�to�pass��
which describes how one will represent the
language and the perform the communi�
cation The other issue is interface knowl�
edge or the �What�to�pass� within the in�
terface The interface knowledge is tied
to the application requirements and must
match the needs for the command� con�
trol� status and synchronization of the sys�
tem The �How�to�pass� issue is guaran�
teed to wrap one around the axle Obvi�
ously� one cannot be blind to the how�to�
pass elements of the interface � protocols�
con�guration and language style greatly
impact the Interface Framework

Test Validation

The �rst validating implementation of the ar�
chitecture will be done using a commercial
controller The hierarchy of components as�
sociated with major commercial robotics sys�
tems for robot control is shown in �gure �
Higher level components are supported by
lower level components The Servo Control
component provides servo control of the joint
angles It has joint angle commands for in�
puts The Inverse Kinematics component trans�
forms task level commands into joint com�
mands� eg� pose of the tool into joint an�
gles which result in that tool pose The Con�
troller provides the task level control includ�

ing merging Cartesian trajectories with task
level sensor based control The Trajectory
Planner generates the planned trajectory� eg�
using a trajectory generator to generate Carte�
sian setpoints for the tool to pass through
The Interpreter interprets and sequences the
task program commands The Translator trans�
lates language source commands into inter�
mediate p�code commands which are more
e�cient to execute than the language com�
mands The Language is a general purpose
robotics task description language which pro�
vides all capability needed to support the de�
sired applications The Tools are software
packages speci�c to application domains which
provide macro commands which can be used
to e�ciently develop application programs
The Tools may also provide an environment
for developing application programs The Ap�
plication is the application program for a spe�
ci�c application It will be developed with
commands from the Tools package�s� and the
supporting language Ideally� the applica�
tion program will be developed using only the
Tools packages and Tools supporting devel�
opment environment Another way to envi�
sion this hierarchy of components is by com�
bining components into components which are
commonly separate parts of a robotic system�
as shown in �gure � The controller is the
robot controller� eg� Fanuc� Adept� or Trel�
lis The language is the robot language� eg�
Karel� SIL or V� The Tools and Applica�
tions are the same as the Tools and Applica�
tions above

Conformance

In publishing this Working Draft Standard
Document� the Working Group intends to pro�
vide a yardstick against which various control
implementations can be measured for confor�
mance It is not the intent of the Working
Group to measure or rate any products� or re�
ward or sanction any vendors of products for
conformance or lack of conformance to this

x

UTAP�WD Standard Interface Environment

standard� nor will any attempt to enforce this
standard by these or any means

It will be assumed that individuals who are
evaluating the product will be able to at�
tach and run a test and veri�cation harness
for a particular module An entire controller
would be tested and veri�ed for conformance
through the process of harness rewiring to ac�
cept one� two� n modules

Extensions

Activities to extend this Working Draft Stan�
dard Documentfor additional requirements are
anticipated This is an overview of how ex�
tensions to the standard will be done and how
users of the standard can keep track of that
status

Extensions are provided as Supplements to
this document Supplements may contain ei�
ther required functions or optional facilities
Supplements may add additional conformance
requirements de�ning new classes of conform�
ing systems or applications

Supplements are not used to provide a gen�
eral update of the standard Standard revi�
sions are done through the review procedure
as speci�ed by the standard body Supple�
ments currently under consideration at this
time include�

� CORBA Interface

� IDL or ASN� Interface De�nitions

Typographic Conventions

This Working Draft Standard Document uses
the following typographic conventions�

a� The italic font is used for the initial
appearance of de�ned terms and cross
references to de�ned terms within the def�
initions terminology

b� The bold font is used for C and
C�� language types references to other
sections or chapters

c� The constant�width font is used
to illustrate examples of code

Related Standard Work

This Working Draft Standard Document was
prepared by a Working Group under the lead�
ership of the RACE with the intention to
standardize this e�ort within a Technical Stan�
dards Committee At the time this working
draft was distributed� the membership of the
Working Group was as follows�

Working Group

Paul G Backes John L Michaloski
Michael Leahy Scott Petrosky
Sukan Lee Francois Pin
Ronald Lumia

xi

UTAP�WD Standard Interface Environment

Tools

Language

Translator

Interpreter

Trajectory Planner

Controller

Inverse Kinematics

Servo Control

Application

Figure � � Commercial robotics components hierarchy

Language

Controller

Toolset
 A

A
pp

lic
at

io
n

A

A
pp

lic
at

io
n

B

Toolset
 B

A
pp

lic
at

io
n

D

A
pp

lic
at

io
n

C

Figure � � Robot system hierarchy

xiii

UTAP�WD Standard Interface Environment

Uni�ed Telerobotic Archi�
tecture Project �
Standard Interface Envi�
ronment �
Working Draft Document

� Scope

This Working Draft Standard Documentis in�
tended to serve as a guide in the system de�
sign and implementation of telerobotic sys�
tems� to minimize the variety of system in�
terfaces and to promote a uni�ed approach
to building telerobotic systems and to foster
the interchangeability of telebrobotic archi�
tecture components It is intended to provide
scalable complexity to accommodate simple
systems and at the same time be systemati�
cally extensible to accommodate more com�
plex systems

The standard presents a reference model ar�
chitecture and SIE for telerobotic applications
The standard contains general�purpose con�
cepts and presents terminology de�nitions for
the architecture and the interface between
components

� References

�JPL� NASA JPL� �A Generic Telerobotics
Architecture for C�� Industrial Processes��
Final Report Prepared for Air Force Material
Command �AFMC�� Robotics and Automa�
tion Center of Excellence �RACE�� San An�
tonio Air Logistics Center� Kelly AFT� TX

��	�

�ASN�a� Information Processing � Open Sys�
tems Interconnection � Abstract Syntax No�

tation One �ASN�� International Organi�
zation for Standardization and International
Electrotechnical Committee� ���
� Interna�
tional Standard ���	

�ASN�b� Information Processing � Open Sys�
tems Interconnection � Abstract Syntax No�
tation One �ASN�� � Draft Addendum ��
Extensions to ASN� International Organi�
zation for Standardization and International
Electrotechnical Committee� ���
� Interna�
tional Standard ���	�DAD �

�CORBA� Object Management Group Ob�
ject Management Architecture Guide� Docu�
ment ������ Framingham� MA� ����

�EIA�
	� �EIA Standard � EIA��
	�D� Inter�
changeable Variable� Block Data Format for
Positioning� Contouring� and Contouring�Positioning
Numerically Controlled Machines�� Engineer�
ing Industries Association� Washington� DC�
February ��
�

�EIA		�� �EIA Standard � EIA�		�� Oper�
ator Interface Functions of Numerical Con�
trols�� Engineering Industries Association� Wash�
ington� DC� January ��
�

�MMS�� ANSI�EIA���� part �� ���� � Manu�
facturing Message Speci�cation �MMS� � Ser�
vice De�nition

�MMS�� ANSI�EIA���� part �� ���� � Manu�
facturing Message Speci�cation �MMS� � Pro�
tocol De�nition

�MMS���	� ANSI�EIA Standard Proposal No
���	 � A Proposed New Companion Stan�
dard to EIA����� �Numerical Control Mes�
sage Speci�cation�� �if approved� to be pub�
lished as ANS��������	�EIA�����

�OSI� �Open Systems Interconnection� de��
nition of common application service elements��
International Standards Organization

�

UTAP�WD Standard Interface Environment

�POSIX� �POSIX �Portable Operating Sys�
tem Interface�� ANSI�IEEE Std �����������
or FIPS�PUB������

�RS		�� �EIA Standard 		�� Operator Inter�
face Functions of Numerical Controls�� Elec�
tronics Industries Association� Washington�
DC� January ��
� �Rea�rmedJuly �	� �����

�RS�
	D� �EIA Standard � EIA��
	�D� In�
terchangeable Variable� Block Data Format
for Positioning� Contouring� and Contouring�Positioning
Numerically Controlled Machines�� Engineer�
ing Industries Association� Washington� DC�
February� ��
�

�STEP	�� �ISO ������	� Industrial Automa�
tion Systems and Integration Product Data
Representation and Exchange � Part 	�� Inte�
grated Resources� Fundamentals of Product
Description and Support�

�STEP	�� �ISO ������	� Industrial Automa�
tion Systems and Integration Product Data
Representation and Exchange � Part 	�� In�
tegrated Resources� Geometric and Topolog�
ical Representation�

�SOSAS� National Center for Manufacturing
Sciences� �Next Generation �NGC� Speci�ca�
tion for an Open System Architecture Stan�
dard �SOSAS�� Revision ���� August ���	

� De�nitions

��� Standards Terminology

	
�
� de�ned� A value or behavior is de�

�ned if the implementation de�nes and doc�
uments the requirements for correct program
construct and correct data

	
�
� may� With respect to conformance� the
word may is to be interpreted as an optional

feature that is not required in this standard
but can be provided

	
�
	 shall� With respect to conformance� the
word shall is to interpreted as a requirement
on the implementation for strict conformance

	
�
� should� With respect to conformance�
the word should is to interpreted as not a
strict requirement� but interpreted as a nec�
essary courtesy for explaining non�standard
additions and extensions

	
�
 supported� Certain functionality in this
standard is optional� but the interfaces to
that functionality are always required If the
functionality is supported� the interfaces work
as speci�ed by this standard �except that they
do not return the error condition indicated
for not�supported case� If the functionality
is not supported� the interface shall always
return the indication speci�ed for this situa�
tion

	
�
� unde�ned� A value or behavior is un�
de�ned if the standard imposes no portabil�
ity and interoperability requirements on ap�
plications for erroneous program construct�
erroneous data� or use of an indeterminate
value Implementations �or other standards�
may specify the result of using that value or
causing that behavior

	
�
� unspeci�ed� A value or behavior is
unspeci�ed if the standard imposes no porta�
bility requirements on applications for cor�
rect program construct � correct program data�
or correct program interoperability

��� General Terms

	
�
� API� The term API refers to a type
of interface in which one has a data represen�
tation and set of functions associated with
the data representation By contrast for ex�

�

UTAP�WD Standard Interface Environment

ample� Postscript is an interface language for
printers For an API� the data and function
abstraction �in Smalltalk OO lingo� class and
methods� hides the underlying physical rep�
resentation or implementation from the pro�
grammer As an example� C is a general�
purpose language �CPU interface� which con�
tains many application�speci�c API libraries�
such as math� or a socket library as an API
abstraction for TCP�IP communication For
the math library� one has a representation of
the data �a double in IEEE �oating point�
a set of functions �eg� sin� cos� atan� etc�
which hide whether the computation is done
on FPU hardware or in software

The environment is important in specifying
options Through the use of compiler switches
one can specify an platform environment for
a FPU or not

	
�
� build� An open�architecture controller
is built from modules and component parts
The operation to build a controller from mod�
ule components is multi�faceted and includes
the following�

� User de�nes �initial conditions� such
as hardware� peripherals� �ie� computing
resources in general�

� Platform supplies system low�level ser�
vices �eg� �le�mgmt� etc�

� Integrator wires selected modules to�
gether

� Modules need to support user�speci�cation
of timing requirements

� Supply of �dummy� or minimal mod�
ules where user has not selected any

� Desirability to have convenient ways
to experiment� recon�gure modules quickly
and �not required� capture their results in
order to organize your experimentation

	
�
�� channel� A channel �or transport�
is the abstract connection between commu�
nicating modules along which the message
is transferred� eg network� shared mem�
ory� local procedure call� remote procedure
call� software interrupt� event� signal� net�
work� stream� mailbox� etc

	
�
�� connection� A connection requires two
�or more� processes to communicate via a
connection One module is the sender �or
writer� and one �or more� module is the re�

ceiver �or reader� A good analogy to this
paradigm is a telephone conversation When
you initiate a telephone call� you are initiat�
ing a connection The other party hears the
telephone ring� and then answers the phone
to complete the connection How the connec�
tion is actually made is the responsibility of
the lower�layer service �the telephone com�
panies handle the underlying hardware and
communication protocol� The conversation
consisting of an agreed upon language and
dialogue protocol is equivalent to the appli�
cation session layer or Open System Intercon�
nection �OSI� �OSI� layer

	
�
�� component� A component de�nition
will adopt the NGC SOSAS �SOSAS� con�
cept of a reference architecture consisting of
primitive and aggregate components Compo�

nents are de�ned as abstract building block
elements that describe functionality and com�
munication The application architecture is
built from these components Components
have the following attributes�

� responsibility

� peer�to�peer or collaborative relation�
ships

� behavior �speci�c functionality encap�
sulated by the component�

� messages� that is� the complete set of
speci�c instructions necessary for invok�

�

UTAP�WD Standard Interface Environment

ing all of the behaviors encapsulated by
the component

� Application Program Interface�s� or
the interfaces a component uses speci��
cally to access services provided by the
SOSAS notion of an Open Systems Envi�
ronment

	
�
�	 data encapsulation� API is a part
of the notion of data and functional encap�
sulation and the concept of data hiding Data
encapsulation refers to the object�oriented idea
of grouping the data and functions into a
class container �or black box� Thus� a queue
class speci�cation o�ers the user a general
data representation �eg� circular list� with a
set of functions �create� add� remove� delete�
front� � bundled under the QUEUE class
More interesting is the notion of abstracting
the queue elements �say a queue of integers
vs a queue of �oats� allowing a user to spec�
ify the element type since the functions are
identical �eg� which could be implemented
with an ADA generic or C�� templates�

	
�
�� interface� An interface is a connec�

tion between modules The interface is de�
�ned by the language the communicating mod�
ules use to exchange information The lan�
guage is the formal system of signs and sym�
bols and rules for formulation �syntax� and
transformation of admissible expressions For
terms of this Working Draft Standard Doc�
ument� two types of interfaces will be dis�
cussed� programmable interface and published

interface A programmable interface describes
messages as programs passed between mod�
ules that would explicitly contain data struc�
ture declarations� data de�nition� program
�ow and actual data Published interfaces de�
scribe data size and ordering �or data struc�
ture� !a priori as the method to specify the
syntax of the language

NOTE � � Programmable interface languages
contain special keywords or primitives to sim�

plify the process� For example� the Postscript
�� language contains special�purpose keywords
that denote drawing primitives� An appro�
priate list of primitives is critical to the suc�
cess of an interface� For a Postscript inter�
face� instead of sending a thousand points
to de�ne a shape� one invokes a Postscript
primitive shape function with speci�c pa�
rameters� In this case� you send textual �pro�
grams	 across the interface
e�g�� those writ�
ten in Postscript� instead of raw data� Ex�
tending the language with user�de�ned prim�
itives
e�g�� subroutines or macros� is also
available within a programmable interface�
Within Postscript� one can extend the in�
terface by de�ning user�shape functions and
invoking them with a subroutine calls and a
parameter list�

The programmable interface is a powerful�
yet costly technique� It requires a high com�
putational overhead to interpret messages�
Time is a luxury that cannot be a�orded in
much of the UTAP architecture� To achieve
high performance� many interfaces limitmes�
sages to raw data consisting of a keyword
and parameter list� formatted according to
a published interface de�nition or Applica�
tion Programming Interface
API�� Such in�
terfaces have a low�overhead and are simple
to interpret� The published interface would
list acceptable keyword and parameter syn�
tax describing the module functionality and
data representation for an interface� Such
interfaces can be as simple as a subroutine
keyword and parameter list� Distributed in�
terfaces require an additional level of pack�
aging � a sender prepares a message for trans�
port along a channel to the receiver module�

	
�
� message� A message is an instance
�or program� written in the interface language
The receiver interprets the message from the
sender

	
�
�� module� A module is a collection of
similar computational services Modules con�
tain software components such as C�� classes

��Postscript is a registered trademark of Adobe System�
Inc�

	

UTAP�WD Standard Interface Environment

or ADA packages A module consists of more
than a box of functionality with an explicit
Application Programming Interface Mod�
ules consist of�

� A set of functions

� API�s for those functions

� A registration process that can be in�
voked wherein the module registers with
the system being con�gured what its ca�
pabilities are

� An auxiliary store�database contain�
ing the speci�cations for the current in�
stantiation of a module

	
�
�� open system� IEEE Controls Mag�
azine de�nes an open system standard as �a
speci�cation developed by a consensus pro�
cess to which any vendor can build products�
The following features are characteristics of
�openness��

� Products are implemented to inter�
nationally agreed standards Ideally� in�
ternationally agreed de jure standards are
preferred to de facto standards� but the
latter are often used in practice To be ap�
propriate� a de facto standard must have
a large base of independently developed
applications available� be supported on a
range of di�erent hardware� can be licensed
for use by anyone� and have international
support

� Standards are nonexclusive� nonpro�
prietary� and vendor independent A stan�
dard satis�es this requirement if an agreed
de�nition is publicly available� the spec�
i�cation is not owned or controlled by a
company or group of companies with vested
commercial interests� and no restrictions
are imposed on its use

� Applications can be moved as neces�

sary between systems of di�erent makes
and sizes This is more than a simple
matter of application portability It is
also a means of ensuring that data and
user experience is also portable between
the same application on di�erent hard�
ware systems

� Usable information can be exchanged
when required between di�erent systems
This ensures that data is usable by dif�
ferent applications thereby ensuring that
di�erent applications can work together�

	
�
�� protocol� The protocol describes the
message passing mechanism and the method
in which each module acknowledges receipt
of a message� eg ack�nack� guaranteed de�
livery� in�order� blocking�non�blocking� time�
out� bu�ering� queuing� persistent� dynamic
The connection de�nes the con�guration of
the interface� eg� point�to�point� broadcast�
blackboard

	
�
�� telerobotics� Telerobotics methods
can be separated into three types� manual
control� supervisory control� and fully auto�
matic control The distinction between these
methods is brie�y described here The term
teleoperation may be used generically to de�
scribe all telerobotics methods but is used
here in its more common connotation of man�
ual control In manual control� all robot mo�
tion is speci�ed by continuous input from a
human� with no additional motion caused by
a computer In supervisory control� robot
motion may be caused by either human in�
puts or computer generated inputs In fully

automatic control� all robot motion is caused
by computer generated inputs

There are two primary subsets of supervisory
control� supervised autonomy and shared con�
trol The distinction between them is the
nature of the inputs from the operator In
shared control� operator commands are sent

�

UTAP�WD Standard Interface Environment

during execution of a motion and are merged
with the closed loop motion generated auto�
matically Therefore� in shared control� all
inputs from the operator are not known !a
priori to execution of a motion since inputs
during execution are also used In supervised

autonomy� autonomous commands are gener�
ated through human interaction� but sent for
autonomous execution A command can be
sent immediately or iteratively saved� simu�
lated� and modi�ed before sending it for ex�
ecution on the real robot Also� individual
commands can be complete descriptions of
the motion or module commands specifying
only modi�cations to the control or monitor�
ing of a speci�c module of the remote system

� Abbreviations

For the purposes of this standard de�nition�
the following abbreviations apply

ADS Analysis and Diagnosis Mod�
ule

API Application Programming
Interface

CORBA Common Object Request�
Broker Architecture

COTS Commercial O� The Shelf

DCE Distributed Computing En�
vironment

DB Data Base

DLL Dynamically Linked Library

OC Object Calibration

OI Operator Input Devices

OM Object Modeling

OK Object Knowledge

OSF Open Software Foundation

POSIX Portable Operating System
Interface for Computer En�
vironments

PTPS Parent Task Program Se�
quencer

RSC Robot�Axis Servo Control

SC Sensor Control

SGD Status Graphics and Dis�
plays

SIE Standard Interface Environ�
ment

SOSAS Speci�cation for an Open
System Architecture Stan�
dard

SS Subsystem Simulators

TC Tool Control

TD Trajectory Description

TDS Task Description and Su�
pervision

TK Task Knowledge

TPS Task Program Sequencer

TLC Subsystem Task Level Con�
trol

TRD Trajectory Description

�

UTAP�WD Standard Interface Environment

VS Virtual Sensor

XDR External Data Representa�
tion

� Conformance requirements

��� Implementation Confor	
mance

A conforming implementation shall meet all
of the following criteria�

a� The system shall support all required
interfaces de�ned within the standard These
interfaces shall support the behavior de�
scribed herein The algorithms or other
internal mechanisms used to achieve these
behaviors is not speci�ed by the standard

b� The system may support additional
features or facilities not required by this
standard Nonstandard extensions should
be identi�ed as such in the documenta�
tion Nonstandard extensions� when used�
may improve the behavior of functions or
facilities de�ned by this standard� but shall
maintain basic performance behavior In
the case of nonstandard extensions� the
documentation shall de�ne an environment
in which an application can be run with
the behavior speci�ed by the standard
In no case shall such environment require
modi�cation of a strictly conforming ap�

plication

��� Environment Conformance

A module shall conform to the environment
as indicated by the con�guration �le The
environment de�nition shall conform to the
pro�le speci�cation as de�ned in C that com�
plies with the NGC Open System Environ�

ment framework �SOSAS� Other conformance
issues remain to be resolved

��� Documentation Conformance

A document with the following information
shall be available for an implementation claim�
ing conformance to the standard

This document shall contain a conformance
statement that indicates the full name� num�
ber and date of the standard that appliesThis
document shall contain a conformance sec�
tion that lists other software standards used
to satisfy the infrastructure

This document should specify the behavior
of the implementation of the standard where
implementation may vary

This document should specify the time�based
performance of the implementation of the stan�
dard where implementation may vary

Modules complying with this standard will
supply a document that describes the envi�

ronment pro�le as given the NGC Open Sys�
tem Environment framework �SOSAS� which
is de�ned in Annex C

 Application Architecture

The UTAP application architecture is de�ned
so as to avoid point solutions to speci�c appli�
cations Instead� the UTAP architecture ac�
commodates di�erent types of robotic manip�
ulators with di�erent degrees of freedom� ac�
commodate di�erent part materials and part
geometries� new tasks in the workplace� and
provide a facility to upgrade�change equip�
ment� sensors� and feedback mechanisms as
technology advances

A reference model architecture is a guide as
to how to structure the components in a sys�
tem Depending on the application� a sim�
ilar� but not necessarily duplicate instance

UTAP�WD Standard Interface Environment

Se
ns

or
 A

C
on

tr
ol

Se
ns

or
 A

Se
ns

in
g

T
oo

l A
C

on
tr

ol

T
oo

l A
M

ot
io

n

R
ob

ot
 A

Se
rv

o
C

on
tr

ol

R
ob

ot
 A

M
ot

io
n

R
ob

ot
 B

Se
rv

o
C

on
tr

ol

R
ob

ot
 B

M
ot

io
n

T
oo

l B
C

on
tr

ol

T
oo

l B
M

ot
io

n

Se
ns

or
 B

C
on

tr
ol

Se
ns

or
 B

Se
ns

in
g

Database

R
em

ot
e

L
oc

al

Su
bs

ys
te

m
 B

C
on

tr
ol

(e
.g

. t
ra

ns
po

rt
)

Su
bs

ys
te

m
 C

C
on

tr
ol

(e
.g

. s
pr

ay
er

)

V
ir

tu
al

Se
ns

or
,

e.
g.

 c
ol

lis
io

n
de

te
ct

io
n

T
ra

je
ct

or
y

D
es

cr
ip

tio
n

T
as

k
K

no
w

le
dg

eb
as

e

O
bj

ec
t

M
od

el
in

g
O

bj
ec

t
C

al
ib

ra
tio

n

Su
bs

ys
te

m
 A

T
as

k
Pr

og
ra

m
Se

qu
en

ci
ng

Pa
re

nt
T

as
k

Pr
og

ra
m

Se
qu

en
ci

ng

Su
bs

ys
te

m
 C

T
as

k
Pr

og
ra

m
Se

qu
en

ci
ng

Su
bs

ys
te

m
 B

T
as

k
Pr

og
ra

m
Se

qu
en

ci
ng

A
na

ly
si

s
&

D
ia

gn
os

is
Su

bs
ys

te
m

Si

m
ul

at
io

n

Operator Input Devices
T

as
k

D
es

cr
ip

tio
n

&
 S

up
er

vi
si

on

High Speed Link

Status &
Graphical Display

O
bj

ec
t

K
no

w
le

dg
eb

as
e

O
pe

ra
to

r
In

te
rf

ac
e

(e
.g

. m
an

ip
ul

at
io

n)
Su

bs
ys

te
m

 A
 C

on
tr

ol

F
ig
u
re
	
�
T
e
le
ro
b
o
t
a
rc
h
it
e
c
tu
re
fo
r
a
ir
c
ra
ft
m
a
in
te
n
a
n
c
e
a
n
d
re
m
a
n
u
fa
c
tu
ri
n
g

�

UTAP�WD Standard Interface Environment

of the reference architecture may be devel�
oped The goal of the reference model archi�
tecture is to model the relationships among
elemental components that may exist in any
system The goal of the reference model is
to provide a framework as to how to orga�
nize system components Figure � shows the
UTAP application architecture in terms of
its elemental components The architecture
includes both implementation and execution
features although implementation and exe�
cution would be done at di�erent times by
di�erent people Central to the architecture
is the application program This is the pro�
gram which is run by the operator to execute
the telerobotic task The application pro�
gram is separated into subsystem task pro�
grams and a parent task program A sub�
system is characterized by having a separate
task program There may be separate task
programs running on separate controllers for
di�erent robots or mechanisms� or separate
task programs running on the same controller
hardware Coordinated control between sep�
arate task programs is achieved by direct com�
munication between the subsystem task pro�
grams and�or through communication with
a parent task program which communicates
with the subsystem task programs to coordi�
nate their control

The generic architecture actually has sepa�
rate hardware and software architectures since
for di�erent implementations� software of a
speci�c functionality may reside on di�erent
computational hardware For example� servo
control software could reside on a special servo
control board or on the same cpu board as
task level control The software module has
a clear functionality� but where it is located
is application dependent

The NGC terminology for components is ex�
panded here to separate components into three
types of components� architecture components
�AC�� hardware components �HC�� and soft�
ware components �SC� Architecture compo�

nents are the components consistent with NGC
which are not hardware or software speci�c�
but are functionality speci�c� and describe
the application architecture Hardware and
software components are used in this report
to specify the unique hardware and software
modules of the system This distinction is
made because it is desired that the compo�
nents be replaceable and software can be re�
placed independently of hardware and vice�
versa The architecture components are de�
scribed in Annex A

�� Hardware Architecture

The hardware architecture is shown in �g�
ure 	 The hardware components are

Interface
Controller

Task
Controller

Device
Controller

Device
Amplifier

Device

Figure � � Hardware Architecture

separated into physical hardware items that
might be purchased Hardware compatibility
is a critical feature of an open architecture
controller Hardware compatibility implies
physical connection between pieces of hard�
ware The connection can be communication
lines such as serial� parallel� and ethernet ca�
bles� and the backplane which cards can plug
into These connection standards are not sep�

�

UTAP�WD Standard Interface Environment

arate components� but are features between
hardware components to make them compat�
ible in an open system

A common backplane for computer cards to
plug into is a critical feature for hardware
compatibility Candidate backplanes for stan�
dardization include VME� ISA� EISA� and
VISA The backplane must support multi�
ple processors and have su�cient through�
put It is important that the backplane speci�
�cation is rigorous� complete� and unambigu�
ous A well speci�ed backplane allows suppli�
ers to develop boards for the backplane know�
ing the constraints for a board and for each
pin� thereby ensuring safety for the hardware
The allowable power per board needs to be
speci�ed Each pin that might be used by
multiple boards needs to be well speci�ed If
a pin is not well speci�ed� then a supplier
may not know how another board in a sys�
tem might use the pin and therefore not be
able to guarantee safety if the pin is used

To allow a spectrum of common architecture
controllers� multiple backplane options should
be allowed� corresponding to lesser capabil�
ity inexpensive systems and greater capabil�
ity more expensive systems Perhaps one low
end backplane and one high end backplane
should be selected As with the NGC con�

cept� the backplane is not speci�ed here The
controller developer selects the backplane from
a standard list for their speci�c pro�le It is
felt that a small number of backplanes will
emerge It is felt that presently the VME
backplane is the desired backplane for high
end� more expensive� systems and ISA and
EISA for lower end� less expensive� systems

The VME bus meets the backplane criterion
the best of the backplanes considered It
speci�es the allowable power draw per board
It�s P� bus is completely de�ned The P�
bus has some de�ned lines and some lines left
open to the user The lines left open to the
user must be further speci�ed for use in an
open architecture system The other back�

planes are less expensive and could be used in
less demanding� or diverse� applications than
the VME bus

The hardware components are separated into
types of hardware components as described
in Annex A There may be one �eg� in�
terface controller� or more �eg� device con�
troller� hardware components in the system
for each type of hardware component Also�
the hardware component types apply for var�
ious device types including tools� sensors and
manipulators

�� Software Architecture

The software architecture is separated into
functional types of software modules� the soft�
ware modules themselves� and the applica�
tion programs Software modules are described
in this report as modules� components and
agents The software modules� or compo�
nents� can actually be aggregates of multi�
ple software modules which collectively have
speci�ed responsibility� input and output Mod�
ules and components both imply a software
entity with a speci�c responsibility and in�
puts and outputs The term agent also im�
plies a software entity with a speci�c respon�
sibility and inputs and outputs� but it also
implies that this software entity runs as a
separate thread of execution An agent is
likely to be an aggregation of software mod�
ules running as a separate thread of execution
with a speci�ed interface Agent based sys�
tems have the bene�t of being highly mod�
ular and recon�gurable with easily replace�
able individual agents Consistent with an
NGC architecture� the software modules can
be implemented as agents� ie� as separate
threads of execution But� agent based sys�
tems have not been demonstrated su�ciently
in real�time applications to justify a require�
ment for the use of agents Therefore� the
software modules of the system will be de�
scribed as components with well de�ned re�

��

UTAP�WD Standard Interface Environment

sponsibilities� inputs and outputs� but with
the implementation details� eg� the use of
agents or not� left to the application system
implementation

The software module types and organization
are �rst described followed by their interac�
tion for supervisory and shared control and
then by descriptions of the software modules
as components

���� Software Module Func	
tional Types

The software architecture is shown in �gure �
Figure � distinguishes the types of software

Operator
Interface

Application
Program

Device
Control

Task
Control

Task - Device
Map

Device
Driver

Figure � Software Architecture

modules� or equivalently� components� for ex�
ecution of an application program A second
�gure� �� shows how software modules are
grouped and communication is constrained
The ovals indicate which components can com�

Subsystem A
Task Program

Device
Driver

Trajectory
Generator

Visual
Servoing

Force
Control

Motion
Fusion

Device
Control

Device
Control

Device
Driver

Parent
Task Program

Subsystem N
Task Program

Operator
Interface

Figure � � Software Grouping

municate directly with each other modules
within the same oval can communicate di�
rectly It is a goal to separate the di�er�
ent types of software components and specify
their interfaces so that these can be devel�
oped independently Libraries of application
programs� macro commands� or task control
modules could then be selected� perhaps pur�
chased� as needed for a speci�c application

The components of the architecture corre�
spond to the components shown in �gure ��
but the modules of �gure � indicate the mod�
ules for task execution whereas the modules
of �gure � show components for both develop�
ment and execution The operator interface
together with the application program repre�
sent the Application module of �gure � The
task control represents the Interpreter� Tra�
jectory Planner and Controller and the task�
device map represents the Inverse Kinematics

��

UTAP�WD Standard Interface Environment

of �gure � The device control together with
the device driver represents the Servo Con�
trol of �gure � The language is an integral
part of the architecture but is not a compo�
nent since it does not process information
The architecture does not specify a translator
module although one would be needed if the
language for task description is di�erent from
the language of the commands sequenced in
task execution The macro commands and
task program editor of the architecture rep�
resent the Tools component of �gure �

The groupings of software modules given in
�gure � are functional Where the speci�c
software modules reside will depend on the
pro�le of the system selected The options
for mapping software module types onto the
hardware is given in �gure

Interface
Controller

Task
Controller

Device
Controller

Device
Amplifier

Device

Operator
Interface

Application
Program

Device
Control

Task
Control

Task - Device
Map

Hardware Software

or

Device
Driver

or

or

Figure � � Software to Hardware Map

Options

The types of software modules that will be in
a controller are described below� followed by

descriptions of the actual software modules

������ Operating System

The operating system is not one of the mod�
ules of the architecture Rather it is a com�
mon service to the modules There is likely to
be separate operating systems for the plan�
ning and real�time control parts of the sys�
tem � running on the interface controller ver�
sus running on the task controller comput�
ers Standard operating systems would be
very useful for development of an open archi�
tecture controller Then all software modules
could be developed and independently tested
against given versions of an operating system
This would simplify software integration If
speci�c operating systems are not speci�ed�
then the constraints on the allowable operat�
ing system options should be speci�ed� eg�
POSIX compatibility The selected operat�
ing systems will be part of the architecture
pro�le

������ Operator Interface

The operator interface is the group of soft�
ware which controls the inputs and outputs
to the operator This includes interaction
with the application developer and the op�
erator The operator interface may be imple�
mented in various forms� but a goal is to have
a common method of interacting with sys�
tems across multiple applications There will
likely be multiple common interface methods�
eg� iconic systems with graphics simulation�
or simpler �and less expensive� ASCII based
inputs

The operator interface software will run on
the operator interface computer hardware In
some cases the operator interface computer
will be the same system as the task controller
hardware This computer would then have
to support the operator interface and task
control software systems

��

UTAP�WD Standard Interface Environment

���� Application Program

An application program is the stored pro�
gram which� when executed� will perform a
task An application program may consist of
subsystem task programs and a parent task
program A subsystem task program can have
multiple threads of execution� eg� one for
task control and another for status update to
the operator interface Application programs
consist of sequences of macro commands and
a limited set of conditionals and math oper�
ations

������ Macro Commands

Macro commands encapsulate an algorithm
which provides a type of capability� eg� free
motion command or grinding command Macro
commands will have a given set of param�
eters� but may have various internal imple�
mentations Macro commands are automat�
ically decomposed and translated into com�
mands to control the task level control

������ Task Control

Task control occurs when the task programs
are executed The task programs make calls
to the task control modules There will be
many task control modules including force
control� trajectory generator� visual servoing�
monitoring� and motion command modules
By specifying the interfaces of the modules�
modules can be acquired from di�erent sources
The various sources of motion will generate
motion commands which the motion fusion
module will merge into a command to the
device to be controlled

������ Task	Device Map

The task level command is transformed into
the actuator coordinates� eg� joint angles�
velocities or torques� with a task�device map

module A separate module is used to trans�
form measured data from the device coor�
dinates to the task space coordinates This
module is mechanism dependent Sensor com�
mands also go through a task�device func�
tional module to transform the command to
the coordinates of the sensor� and when read�
from the sensor frame to the task control
frame

������ Device Control

The device control software modules provide
the control of the axes of the mechanism or
interface to sensors It also provides the in�
terpolation of setpoints for the device servo
control since this is likely running faster than
the task level control and thus has multi�
ple cycles between commands from the task
level control Servo control of joints would
be done by device control software modules
The device control software modules might
reside on the task controller or device con�
troller hardware For example� a controller
may allow joint servo control software to re�
side on the task controller board with the
task control software The device controller
hardware might then just be a D�A card
Alternatively� a servo control card could be
used for the device controller hardware which
would have the servo control device control
software on it The device control module
communicates with the power interface to the
device� eg� PWM commands to PWM drives�
analog commands to analog drives� signal in�
terfaces to sensors

������ Device Driver

The device driver software is hardware de�
pendent� residing on the device controller hard�
ware This component sends commands and
receives status from the device ampli�er hard�
ware� eg� voltage or PWM signals

��

UTAP�WD Standard Interface Environment

�����
 SW Architecture for
Supervisory and Shared
Control

A uni�ed supervisory and shared control teler�
obotic system has the same architecture for
all modes of control� teleoperation� shared
control and supervised autonomy The fun�
damental system provides task description and
task program sequencing The commands in
a sequence can imply autonomous execution
or a mix of autonomy and teleoperation in�
puts There are two basic paths for opera�
tor inputs The inputs can be incorporated
into parameters in the command path from
the operator interface to the task execution
system� or hand controller inputs from the
operator can be treated as sensory input to
the real�time task level control In both cases
they have similar form as other types of infor�
mation The system is therefore essentially
an autonomous control system which allows
operator inputs during execution

Di�erent components of the system might run
synchronously� asynchronously or upon request
For example� in the real time control� the
closed loop control components might run asyn�
chronously at di�erent rates� reading avail�
able data� and producing data to be read
Slowly changing information can be computed
at a slower rate than it is used Alterna�
tively� these components could be synchro�
nized and called in a given order The task
planning components will not be called at the
high rates that the task control components
are run Therefore� they could more readily
be implemented as agents� responding only
when their services are needed

There may be multiple sources for motion
of the tool� and therefore the manipulator�
including hand controller� trajectory genera�
tor� and closed loop sensor based control such
as force control and proximity control Mo�
tion commands from each of these sources
can be generated by speci�c software com�

ponents associated with the motion source
These motion commands then have to be merged
This merging is done by the motion fusion
component There are many ways that mo�
tion can be merged� or fused� with motion
commands of various types� eg� disturbance
forces� incremental motion� velocities and ab�
solute positions The motion source compo�
nents therefore have to generate motion com�
mands which are consistent with the motion
fusion component input types

� Interface Environment

The UTAP architecture is a modularized ar�
rangement of control services As a result� a
modularized system reduces complexity and
makes it easier to understand� design� and
implement the system The complementary
result of the modularization of a system into
components are interfaces An interface pro�
vides access to a module�s services where each
interface is de�ned by a language that speci�
�es the tokens �or keywords�� syntax �or for�
mat�� and semantics �or legitimate values and
interpretation� that are acceptable to a mod�
ule Indeed� one could have several interface
languages to the same module of computa�
tional services The goal of a generic interface
is to unify similar computational services un�
der one� general�purpose� access mechanism
supporting a wide range of uses

The major observation within the UTAP In�
terface Environment is that an interface is
composed of two elements� a language and
a protocol This observation can be repre�
sented by the following equation�

Interface " Language� Protocol ���

Which is equivalent to saying that an inter�
face is de�ned as �What�to�pass� plus �How�
to�Pass�

In order to realize the hard real�time process�
ing demands of motion control� one requires

�	

UTAP�WD Standard Interface Environment

that UTAP interface languages must be e��
cient and allow timely transmission and inter�
pretation of data A modeling schism devel�
ops attempting to meet the desire for gener�
ality and the requirement for performance A
more expressive language is desirable but suf�
fers the penalty of an increased performance
requirement The UTAP Interface Environ�
ment is framed by the assumptions made in
order to resolve con�icting notions of inter�
face de�nition �See Annex G for further dis�
cussion of these issues�

NOTE � � Ultimately� the followingassump�
tions were made for this Working Draft Stan�
dard Document� The �rst assumption was
to focus on what�to�pass� not how�to�pass�
The second assumption was to minimize com�
plexity and adopt a simple de�nition style�
A simple language strategy would appeal to
a greater audience� Initial attempts at an el�
egant software solution were confusing and
drew attention away from the focus of the
problem � de�ning the language primitives�
The third assumption was that a �published	
interface would be necessary� A published
interface would require minimal interpreta�
tion and allow shared memory schemes� The
fourth assumption was to allow both mea�
surement units and computer representation
to be adjustable� The environment would
explicitly de�ne message primitives for dif�
ferent units and representation� The �fth
assumption was to provide for symbolic ma�
nipulation of data� in that� although the mes�
sage de�nitions were in a raw format� textual
information would be required also�

The de�nition of interfaces consists of two el�
ements� Con�guration and Language Frame�

work

Con�guration deals with naming� system iden�
ti�cation� narrowing the scope of the problem
through labelling� and system scaling Nam�
ing includes acronyms� message naming con�
ventions and communication channel nam�
ing conventions Con�guration includes clas�
si�cation� resolving duplicate module types�
dynamic con�guration and attachment of a
protocol to channel A service directory is

associated with each module that describes
the permissible set of messages into�outof the
module This capability allows scaling of the
system

The Language Framework covers Information

Models and the Interface Language�

Information Models de�ne the data represen�
tation within the messages A substantive in�
formation model is required for interoperabil�
ity One could de�ne everything as tokens�
but this o�ers little in helping with the stan�
dardization process The Information Model
includes �� domain�independent items or generic
data de�nitions �� feature�based de�nitions
such a geometry� topology� shape� and pat�
terns and �� object knowledge Object knowl�
edge covers the devices� parts� modules� and
general system state information Object knowl�
edge is de�ned with attributes� and access to
information is through query�response con�
nection

The UTAP Interface Language was de�ned as
a set of messages The C�C�� language was
used to de�ne messages There is a trade�o�
between interface language complexity and
performance The distributed and real�time
nature of the UTAP predicated an explicit�
simple approach to de�ning messages The
UTAP message de�ning style uses #de�nes
to enumerate message name and id� plus gives
data structures to each message id The in�
formation models �data declarations� and mes�
sages were de�ned within C�C�� header �les
The information models and messages are com�
pilable A more abstract Application Pro�
gramming Interface is de�ned and was de�
rived by running a �lter on the message def�
initions

Generic messages were de�ned that are ap�
plicable to all modules in the UTAP architec�
ture Mode and state change commands are
covered by the generic messages Such state
change commands include� start� halt� hold�
resume� suspend� etc Extensibility and cus�
tomization are provided with the MACRO�

��

UTAP�WD Standard Interface Environment

and PLAN set of messages Synchronization
of messages is provided with the BLOCK and
EVENT set of messages

The UTAP framework provides for these ma�
jor styles of messages $ sensor�e�ector con�
trol and query�response The UTAP sen�
sor�e�ector �S�E� control interfaces apply pro�
gramming concepts from servo control� pro�
grammable input�output and the program�
ming format RS�
	 �EIA�
	� The S�E con�
trol interfaces divide communication into ��
mode and �� action messages The mode
messages provide for event sequencing �eg�
start� halt� abort� etc�� set�up� algorithm se�
lection �eg PID� FEEDFORWARD� etc�
and provide for loading control parameters
The action messages either write a command
or initiate a sensor reading Action messages
treat communication as clocked data �ow
Query�Response �Q�R� interfaces adopt a sim�
ilar strategy but one generally assumes one
cycle per clocked data �ow The Q�R data
can be of the form of a query message from
the superior to the subordinate� or as a read�
ing from the subordinate to the superior and�or
Object Knowledge module

��� Viewpoints

Some interfaces do not need to have an innate
understanding of the control domain and will
be merely performing symbolic manipulation
of the interface data For example� an Ob�
ject Knowledge Base or Operator GUI do not
need to understand the application in order
to store�retrieve or display the information
Instead� these modules must have a system�
atic �and symbolic� means of receiving sys�
tem information and capabilities� and then
organizing this information for either the user
or other modules in the system For exam�
ple� I as a user may wish to override the feed
rate for a particular task if I observe chatter
The GUI cannot understand why I�m chang�
ing the feed rate Instead� the GUI may have

limits on the acceptable range of numeric val�
ues� and pass the new value to the control sys�
tem which makes the determination for the
validity of the new data value

Likewise� when one module requests the value
of the feed rate from the Object Knowledge
Module� the data manager doesn�t need to
know the purpose of the feed rate� but rather�
it needs to know its computer representation
�double�� its range of legal values� and possi�
bly all the users of this information through�
out the system

The UTAP interfaces will provide a capabil�
ity� tasking� and data framework for the mod�
ules that may only require symbolic manip�
ulation of data The capability framework
speci�es what resources are in the system�
eg� robots� tools and sensors The tasking
framework will provide the necessary knowl�
edge about how the capabilities can be used
The data framework provides an all�encompassing
description of the potential data that the sys�
tem has at its disposal It is foolish for the
system to pass every conceivable variable to
the Object Knowledge Base Instead� we will
assume that con�guration of data posting�
data viewing and data modifying is possible
For instance� various con�gurations could de�
�ne what values are periodically posted to
the object knowledge base� what values are
visually presented to the user� what presen�
tation style the user prefers to view data� etc

� UTAP Information Models

The UTAP applications operate on such parts
as wings� fuselages� and other plane related
parts These parts can be described as a
combination of geometry� topology and shape
to derive UTAP features These features are
used to identify the focus of attention for the
tooling operation For the initial phase of the
UTAP� features will be described as simple

��

UTAP�WD Standard Interface Environment

shapes that are �lled by motion patterns

The UTAP framework will use information
models to describe part features and system
attributes Currently� the information mod�
els include generic types� part information
models� and system data de�nitions Generic
information models cover domain�independent
types The generics include basic data types
including� mode directive� generic directives�
user type� mode states� results� and a state type
The part information models de�ne measure�
ment units� representation units� features and
object attributes required of the system Sys�
tem data de�nitions are intended to cover
sensing and control attributes

The sum of these information models describe
the Object Knowledge and are preliminary
The �les generic defsh� utap info modelh and
utap data defsh in Annex H� present the
current state of these de�nitions Presently�
the feature�based information model is rela�
tively modest We have provided for an evo�
lutionary path to allow for growth of poten�
tial part shape geometries The ISO STEP
Part for Geometrical Shape and Material In�
formation Models �STEP	�� covers a more
complete range of data modelling

NOTE � � A translation fromEXPRESS Part
Model into a C language informationmodel
can be done� and was done to derive the cur�
rent set of data de�nitions� To provide for
a broader set of part description� the STEP
Part �� geometrical models could be substi�
tuted for the current data de�nitions � but
is beyond the scope of the current level of
e�ort�

��� Shape Geometries

For the sake of clarity only the range of part
shapes that are foreseen within the scenarios
will be addressed These parts are of course
a small subset of the realm of potential parts
shapes The major assumption to the current
de�nition of the UTAP part geometry is that
the operator will de�ne or choose the work�

part geometry from a set of prescribed shape
models

The UTAP interfaces have a preliminary geo�
metric shape model that describes the shapes
required within the application scenarios Such
shapes can be one� two or three dimensional
The shape dimensionality speci�es the geo�
metric form of a topological or geometric en�
tity Edges �curves�� Faces �surfaces� and
shells�volumes� have dimensionality of �� ��
and � respectively By convention a Vertex
�point� has dimensionality of � These ge�
ometric shapes required of the UTAP inter�
faces include�

� �D � surface� planar or curvilinear
edge

� �D � rectangle� circle� polygon or con�
nected edge list

� �D � box� cylinder

The features can be embedded within each
other This capability allows us to de�ne cir�
cular�rectangular obstacles within our workarea
feature

��� Patterns

A type of motion within the work volume
will be termed the motion pattern Some
patterns are merely shorthand notation for
a larger set of motions For example� a raster
motion sweep can be composed of a set of
linear motions But� it is more intuitive to
the operator �and programmer� to de�ne a
raster pattern within a rectangle workarea
Patterns can be shape �ll patterns or edge
patterns One is either applying a motion
pattern to the face of a part or to the edge of
a part

The edge patterns are�

� exact or within some tolerance along
edge

�

UTAP�WD Standard Interface Environment

� sine or square�wave weave �eg� for
arc�welding� The �ll patterns are�

� horizontal and vertical raster

� orbital type motion

� dithered or chaotic motion

� concentric circle �ll

Of course� these de�nitions are not complete
but appear to handle the task scenarios New
pattern de�nitions can easily be added by a
systems programmer as the need arises

��� Features

A UTAP feature is a combination of a geo�
metrical shape and pattern to describe the
motion applied to that shape For the UTAP
application domain� the primary features will
be pattern motions within faces of di�erent
geometrical shape � eg� �at surfaces with
rectangular and circular features or� curved
surfaces with conic features In this case the
faces �and their constituent edges� vertices�
surfaces etc� are the primitives that can
also be operated on Given the shape we
must then describe the motion pattern that
will be applied to the feature Thus� we de�
�ne a feature with the following equation�

FEATURE " shape � pattern ���

Features are constructed using the following
base de�nitions�

� GEOMETRY� gpoint� vector� pose�
transform� arc

� TOPOLOGY� tpoint� vertex� edge�
edge list� loop� face

� SHAPE� box� rectangle� helix

� PATTERN� edge pattern� blend pattern�
face pattern� shell pattern

The part shape geometry determines the work
volume The topology is used to de�ne bound�
aries Shape is derived from geometry and�or
topology Most of the application scenarios
involve tooling the surface area or face of a
part To cover the surface a series of motion
patterns will be required

 Integration and Con�gura	
tion Management

The UTAP architecture emphasizes telerobotic
control Because of this� the UTAP archi�
tecture is divided into a REMOTE teleop�
erated partition and a LOCAL motion and
tooling control partition Although the RE�
MOTE topology of the UTAP architecture is
a static arrangement �ie� they is only one in�
stance of many of the modules�� the LOCAL
topology will vary between actual systems
For the LOCAL partition� the UTAP archi�
tecture describes a topology framework for
composing modules Identical modules can
exist as subordinates to the same superior
For these modules to be con�gured in a com�
plete topology� an identi�cation or naming
convention is required With a naming con�
vention� a directive will be sent to the proper
subordinate

A classi�cation framework helps bound the
range of module capabilities and to provide
for a smooth evolutionary path For compar�
ison� the term �printer� � although descrip�
tive � can be vague One can have a color
printer� a dot matrix printer� a laser printer�
ad in�nitum Without a classi�cation frame�
work� one cannot accurately determine the
expected capabilities of the modules Before
one can de�ne interfaces one must categorize
the range of modules in a UTAP system In
turn� proper categorization of UTAP systems
will provide a more coherent framework for
de�ning the interfaces

��

UTAP�WD Standard Interface Environment

�� Identi�cation

The UTAP describes an architecture that can
vary in size and complexity For some of these
modules� only a single�instance of the mod�
ule exists in a system These modules in�
clude OI� OM� OC� TD� TDS� TK� PTPS�
SGD� AD� and SS For the remaining mod�
ules �ie� TPS� TLC� SC� RSC� TC� and VS��
multiple�instances can exist in the system si�
multaneously The variability of the number
and scope of the module members means the
system architecture can vary To quantify
the size and scope of the architecture� one
is required to �� enumerate the active single�
instance modules in the system and �� iden�
tify and categorize the multi�instance mod�
ules

To de�ne the multi�instance modules� the iden�
tity� the grouping� and the relationship of
modules must be de�ned The multi�instance
modules must be declared and linked to the
relevant superior�owner�parent Multi�instance
modules require a unique naming convention
The proposed syntax for module naming is
the following�

module�list�� module � module�list �

module�� module�name�identifier

This syntax enables a system to be described
as a tree Some modules are capable of con�
trolling multiple subordinates of the same mod�
ule type Each subordinate of identical mod�
ule type must have an instance identi�er For
example� there can be multiple Task Level
Control modules ie� TLC�A� TLC�B In turn�
each of these modules is capable of control�
ling a subsystem� eg� TLC�A�TOOL�A� TLC�A�TOOL�B

�� Classi�cation

The UTAP architecture contains a list of ��
modules This architecture has the poten�
tial to describe a broad range of systems
The realm of possibilities should be narrowed
to allow ranges of compatibility To achieve

compatibility� one needs to attach labels to
identify the types of modules Table � de�
scribes a naming scheme that classi�es mod�
ules with type labels and illustrates the op�
erational relationship among modules Those
types that have a preceding asterisk will not
be considered in the UTAP at this time

�� Con�guration File Format

The System Con�guration Files will be re�
sponsible for de�ning the architectural tree
The System Con�guration Files are a com�
bination of �� the multiplicity of modules�
and �� the classi�cation labeling scheme Ex�
amples are given in Annex annex�example
The purpose of the tables is to assist in de�
termining module interconnections and inter�
face naming convention The exact format of
these �le is not currently de�ned There is
great potential for the con�guration �le that
will not be addressed here

�� Module Speci�cation

The conceptual model forms a framework for
the required functionality required of a UTAP
module interfaces The UTAP conceptual in�
terface framework will be described as with
a set of component units Figure � illus�
trates a conceptual model of the UTAP mod�
ule and the component units In this concep�
tual model� the UTAP will adopt the strat�
egy that a module must publish a SERVICE
PROFILE of accepted messages and postable
data The SERVICE PROFILE is the um�
brella under which a module declares its ca�
pabilities The SERVICE PROFILE unit con�
tains a slot for de�ning the timing of the mod�
ule A conceptual module contains a CLI or
command line interface unit that receives ei�
ther transmitted command messages or has
the ability to read programs or commands
from disk The CLI is responsible overseeing
the set up of modes and PARAMETERS for

��

UTAP�WD Standard Interface Environment

NAME ID
CONFIG:
- upper system (link)
- functions
(list)- subsystems used (list)
- parameters needed for
function- input data (for
motion)- output data (from
motion)- input request data
- output request
data- receive data

information
data

request
GET

response
POST

sequence
parameter
setting

(real time)
operating
data

information
data

request
GET POST

(real time)
clocked/event
data

STARTUP, SHUTDOWN,RESET ,HALT

ENABLE(id), DISABLE(id), ESTOP

INIT,START,STOP,ABORT,
SUSPEND,RESUME,

{BEGIN,NEXT,CLEAR}_SINGLE_STEP,
MARK_BREAKPOINT,MARK_EVENT

LOAD
INCR
ZERO(*)

SET(*)
ADJUST(*)
JOG(*)

status or
data readings

status or
data readings mode

 USE

selection

USE
START
STOP

sequence parameter
setting

mode selection

GENERIC MESSAGING PRIMITIVES

BEGIN_BLOCK, END_BLOCK
BEGIN_MACRO, END_MACRO, USE_MACRO
BEGIN_PLAN, END_PLAN, USE_PLAN
BEGIN_EVENT, END_EVENT
USE_SELECTION_ID, USE_AXIS_MASK

Figure � � Module Speci�cation Model

a given module The POST unit within the
conceptual model is responsible for maintain�
ing the module output updates These out�
put updates are periodically sent to either
the Object Knowledge module or the SUPE�
RIOR module The PROG MACROS unit
allows aggregating and naming of parameter
or command sets

Annex C contains boilerplate Service Pro�le
checklists for the remote modules

���� Scaling

The system should allow scaling The set of
UTAP messages is quite extensive It is not
expected that all modules should accommo�
date every interface message Further� some
systems will specialize in certain aspects of
control or sensing� and completely ignore some
aspects of a UTAP module interface The
goal of the UTAP was to scale options through

the message list Many of the messages could
be combined under a broader message cate�
gory but this creates a problem How do you
say that I accept this message but not a cer�
tain part of the message� It was felt that
scaling would be best accomplished if main�
tained under a single concept of reference

The UTAP interface de�nitions are designed
to remain constant whatever the system ca�
pability The UTAP module SERVICE PRO�
FILE is de�ned to provide a scaling mecha�
nism For each module� the SERVICE PRO�
FILE describes the set of acceptable UTAP
messages and data posting capabilities

���� Timing

The timing deadline element within the in�
terfaces will be done in a worst case manner
The module will specify the worst�case time
duration that it can receive expects new mes�
sage The modules must publish this value

�� UTAP Interface Frame	
work

���� Interface Types

Not every interface in the system is identical
conceptually Communication interfaces will
be categorized into the following groups� ��
control for superior�subordinate command�
status interfaces� �� query�response� and ��
peer�peer event synchronization

������ Control Interface Type

A superior�subordinate control interface type
applies to either Sensor or E�ector �S�E� be�
havior Each control interface is part of a
larger chain of command The objective of
the control interface is to make the subor�
dinate do something for the superior The

��

UTAP�WD Standard Interface Environment

subordinate may be a simple slave that sim�
ply obeys the orders from the superior and
translates these instructions into some ma�
chine physical format The subordinate may
contain some intelligence and add some func�
tional transformation of which it is the ex�
pert See Albus �RCS� for more insight into
this command and control theory The UTAP
control interfaces will adopt a format that
draws from concepts used in Servo Control�
Programmable I�O chips �PIO�� and the RS�
	D
language

The UTAP control interface mimics servo con�
trol with communication from a superior to a
subordinate module treated as clocked data
�ow Of note� the clocked data �ow may only
last one cycle The clocked data �ow can be
either control commands or status readings
For control commands� response to the com�
mand is not an answer� but a servoing action
and status report For status readings� re�
sponse is either a status report or a sensor
interpretation

The UTAP control interface strategy adopts
command� status and mode concepts of PIO
chips A programmable I�O chip �PIO� has
operational modes and parameters that must
be initialized before the chip is functional
Further PIO chips allow for combinations of
selection modes Selection vectors are of ex�
treme relevance to teleoperated robotics � for
example� the application of force control in
one axis� while using position control in the
other axes UTAP interface format applies
the PIO programming paradigm requiring to
�rst initialize the subordinate with the ap�
propriate mode and control parameters� and
then initiate data exchange The ability to
combine modes and load parameters creates
the potential for errors � either over or un�
der specifying of the desired control�sensing
strategy These error cases have associated
UTAP messages

The blocking sequence and synchronization
concept of RS�
	 were used and extended

to accommodate other needs Although the
UTAP set of messages for BLOCK� MACRO�
PLAN� and EVENT are primitive computer
language constructs� they are helpful in re�
ducing the complexity of an interface Each
of these language primitives is discussed fur�
ther in a later section The BLOCK messages
allow for synchronizing concurrent events The
MACRO messages allow a series of mode and
parameter settings to be grouped and named
This allows for easy context switches among
operational modes The EVENT messages
are designed to augment the BLOCK mes�
sages and o�er more robust synchronization
of operation The PLAN messages are for
grouping and naming a set of data commands�
eg� naming a SAFE motion or zone

������ Query	Response

The query response interface is more closely
associated with state knowledge or sensor read�
ing updates One form is the client�server
which provides a dialogue or question�answer
interface The client asks the server �in many
cases a subordinate or expert� to periodically
post status or state information This post�
ing can go to the superior or to the object
knowledge module

Obviously� one doesn�t want every conceiv�
able piece of system state information �ow�
ing through the system at every clock cycle
One would prefer that under certain circum�
stances� relevant state information is posted
in the timely manner desired For example�
under normal operation� it would be desir�
able to post the current position as status
every �� milliseconds For gain tuning� one
may require position readouts every millisec�
ond Under maintenance operation� it might
be desirable to post the current position and
encoder readings so that a problem can be
tracked down The interface must be �exible
and allow a range of state information to be
posted

��

UTAP�WD Standard Interface Environment

The ROUTE data structure de�ned below
was intended to provide a contextual�based
mechanism for posting state information A
module would receive a get�info query and
then post the desired state information De�
pending on the type of get� the state infor�
mation could be posted once or periodically
updated The same mechanism can be used
to read state information data from the Ob�
ject Knowledge module

struct ROUTE �

enum � �STATUS � �� �� post response to questioner

�WRITE�TO�OK � �� �� posting response values to ok

�READ�FROM�OK � �� �� read from ok

�DELTA�OFFSET � �� �� use data as delta offset

�ALTER � �� �� alter cmd dx�dy�dz�rx�ry�rz

� type� �� Bitmask for response dest

int times� �� ��� continuous� 	�stop� �������

TIME update�period� �� frequency of update

��

The range of potential Object Knowledge at�
tributes is formidable As a basis� the follow�
ing generic attributes have been designated
These attributes cover both sensor�e�ector
control and part modeling information The
baseline UTAP data dictionary of parameters
is given in Figure �

acceleration jerk pressure
attribute name luminance roughness
device units�e�g��encoder ticks� mass temperature
�ow material time
force material name torque
geometry object name velocity
hardness orientation viscosity
humidity pose others
Jacobian position

Figure � � Object Knowledge Parame�

ter List

The concept of max� min� avg� real �current��
desired� last� and timed historical reading �eg�
�nd to last� will be used as attribute modi�ers

within the message interface Thus� one can
get and post desired position and real posi�
tion The attribute in this case is position�
and the modi�ers are desired and real

������ Peer	to	Peer

Peer�to�peer may be necessary for synchro�
nization of modules Cases such as awaiting
the completion of �xturing by an operator or
awaiting the completion of a tool change be�
fore moving are examples of synchronization
events Synchronization of this type can be
avoided by synchronizing events at a higher
level in the architecture We will assume
this can be done� and will not address peer�
to�peer synchronization within the UTAP at
this time

���� Syntactics

Interfaces will have the following naming con�
ventions The C preprocessor directive #de�
�ne will be used to de�ne message names
and assign a unique system numeric id Each
message name will be in capital letters Each
message name will be prepended by a US for
Uni�ed System The US part will be followed
by the module name � unless the message is
a generic message � eg� US ModuleName
Then� the actual message name will follow
� eg� US ModuleName MessageName The
data type naming convention will use lower�
case letters and in general merely append a
msg t to signify message type� eg�

us modulename messagename msg t

Table � gives a summary table of contents for
the message numbering

Annex H summarizes the set of messages
Within Annex H�� the �le utap interfacesh
contains the message id and associated mes�
sage structure Below are two examples from
this �le The presentation style has a #de�ne
message id preceding each message structure
So far� there are approximately ��� messages

�define US�HALT �	�

struct us�halt�msg�t �

int msgid�

� �

�define US�AXIS�SERVO�LOAD�PID�GAINS ��	

struct us�axis�servo�load�pid�gains�msg�t �

��

UTAP�WD Standard Interface Environment

pos *

pos 1 pos 2 pos 3 pos 4 pos 5 pos 6

msg id

vel 1 vel 2 vel 3 vel 4 vel 5 vel 6

vel *

MESSAGE

HEAP

Figure �� � Heap Applied to Message
Handling

int msgid�

double p�

double i�

double d�

��

������ Variable Length Arrays

Resolution

One of the di�culties that arises de�ning in�
terfaces concerns the problem of handling vari�
able length arrays Unless one rejects the
notion of �exibility� an interface should not
preordain a �xed array size for any interface
One would �nd passing
 joint values to a ��
axis mill less than intuitive Generally� array
pointers are used to overcome this problem

The UTAP interfaces shall use the following
strategy� �� if necessary� declare the degrees
of freedom as a mode parameter� and �� ref�
erence data array information indirectly into
a heap mechanism �ie� a zone of memory
in which multi�linked nodes of variable size
are allocated� that follows the message Fig�
ure �� illustrates the concept when passing
an array of joint positions and velocities to
a � DOF robot Should one pass to a �DOF
machine tool� the message would still have
the position and velocity contents� but the
heap would only contain three elements for
each �eld

Overall� the message structure can be repre�
sented with the following equation�

MESSAGE " HEADER�CONTENT�HEAP

���
where the HEADER contains protocol or �how�

to� speci�c information� the CONTENT de�
�nes �what�is� or the message information�
and the HEAP contains the variable�length
data contents

���� Semantic Meaning

At this point� the exact semantic meaning
of many of the UTAP messages has not been
explicitly spelled out in English For now� the
intent and meaning of UTAP API messages
should be apparent from the message name

One simpli�cation was the use a special key�
words and a keyword convention to specify
the semantic intent The keyword convention
provides consistent message naming which leads
to easier comprehension The UTAP naming
convention follows a generic �ow plan that
categorizes control� data� parameter and mode
message tra�c Figure � illustrates the �ow
of information and the naming convention re�
lationships The �ow of tra�c is divided into
�� control sequence� �� modes� �� algorithm
selections� 	� parameter settings� �� real�
time data� �� information requests and
� in�
formation responses The information �ow is
equivalent for superior as well as subordinate
connections� except that there can be multi�
ple instances of subordinate information �ow
Although conceptually demarcated� the in�
formation �ow would most likely require only
one or two connections to the superior� and to
each subordinate � one for command and pos�
sibly another for status �The bi�directional
arrows for many of the categories was used to
convey the notion that one wire is for com�
mands and the other wire is for errors or ac�
knowledgment�

The naming convention uses keywords to de�
lineate mode�goal�state information These
keywords are embedded within the messages
to categorize the semantic interpretation of a
message The keywords are grouped by type�

� MESSAGING �ie� BLOCK� MACRO�
PLAN� EVENT� SELECTION�

��

UTAP�WD Standard Interface Environment

� SEQUENCING CONTROL� gener�
ics �ie� STARTUP� SHUTDOWN� EN�
ABLE� DISABLE� etc�

� MODALITY� USE� START� STOP�
COMPUTE

� PARAMETRIC� LOAD� INCREMENT�
SELECT

� DATA COMMAND� SET� ADJUST�
GET

� STATUS� POST

Annex C provides a module by module pro�le
of the UTAP �ow plans These pro�les are
blank templates that can be used to specify
the requirements of a desired system These
pro�les provide a complete list of all the po�
tential inputs and outputs of a module The
annex lists input and output entries by �ow
category Some categories have cross�references
to other �ow plans

������ Control Mode Sequenc	
ing

Most module control sequencing is done with
generics The sequencing generics are grouped
by levels of operation � module operation�
sensor�e�ector operation� and software oper�
ation STARTUP� RESET and SHUTDOWN
are module power�cycle sequencing operations
ENABLE DISABLE� HOLD� and ESTOP are
sensor�e�ector power sequencing operations
INIT� START� STOP� PAUSE� HALT� ABORT�
are software basic program sequencing com�
mands BEGIN SINGLE STEP� NEXT SINGLE STEP�
CLEAR SINGLE STEP�
MARK BREAKPOINT and MARK EVENT
are generic keywords that deal with more ad�
vanced program execution The only generic
not commonly found is MARK EVENT which
is used as a reference marker for an EVENT
primitive

A typical sequencing operation consists of the
following steps First� the control sequence
keyword STARTUP brings the module into
a safe state Second� one programs the mod�
ule with the appropriate control� mode and
parametric settings Once programmed� the
sensor�e�ectors are powered on with the con�
trol sequence keyword ENABLE Finally� the
software program is executed by issuing the
control sequence keyword START At this
point� clocked data �ow commences

������ Keywords

For mode messages� the words USE� START�
STOP� COMPUTE are used to convey the
notion of parameter setting or algorithmic se�
lection The word LOAD and INCREMENT
are used for parameter values The words
SET� GET� and ADJUST are used to denote
a commanded action

USE�

The USE keyword conveys the notion of
modal or a mutually exclusive algorithm
selection Modal commands stay in e�ect
until cancelled The COMPUTE keyword
is a synonym for the USE keyword and ex�
ists since some messages aren�t as appar�
ent with the USE keyword� eg� USE GREY VALUE
versus COMPUTE GREY VALUE

START�STOP�
It was decided that the UTAP interfaces
must support simultaneous multiple ac�
tions The terms START and STOP con�
vey the notion for initiating�terminating
simultaneous or multiple selections Thus�
one can START one or multiple algorithms
when necessary Then� the command STOP
is used to discontinue the algorithm For
example� gravity compensation can be used
to augment many servo algorithms Thus
START GRAVITY COMPENSATION re�
mains in e�ect until terminated with a
STOP GRAVITY COMPENSATION

�	

UTAP�WD Standard Interface Environment

LOAD� INCR�EMENT�� ZERO�

The LOAD keyword signi�es parametric
value setting Load implies that one pre�
sets a parameter during initialization� or
can dynamically change the value during
clocked data updates For example� veloc�
ity can be �xed or dynamically updated
with each motion The INCREMENT key�
word is used to denote an incremental �or
decremental� update to a parameter For
example� INCREMENT is useful for rela�
tive increases of desired velocity INCR
may be used as shorthand for INCRE�
MENT The ZERO keyword means to use
the current reading as the origin Thus�
ZERO is often used to initialize a relative
coordinate frame The SELECT keyword
is used with a parameter setting for choos�
ing from a set of established parameters

SET� ADJUST�

The SET and ADJUST keyword signify
instructional command messages These
messages provide a goal for the module
to achieve The verb SET signi�es a goal
for the subordinate to attain or maintain
The verb ADJUST is used to convey in�
cremental or decremental changes Such
changes are useful for tuning the com�
manded goal state Conceptually� this is
equivalent to moving to a position� zero�
ing the position as a relative position and
then moving a small relative o�set � but
ADJUST is conceptually simpler A joy�
stick ��� button interface is an example of
interface that requires the ADJUST con�
cept where positional change is relative

GET�
The verb GET is used to initiate a re�
sponse � either a status report� or a sen�
sor reading GET has a corresponding
response POST The GET is part of the
Query�Response interface connection Each
GET message contains routing� attribute
and modi�er information For example�

the generic message US GET VALUE re�
quires routing� an attribute and a modi�
�er

�define US�GET�VALUE ��

struct us�get�value�msg�t �

int msgid�

ROUTE r�

Attribute�t items�

Modifier�t modifiers�

��

The routing information �ie� ROUTE�
describes the return destination of the re�
sponse The Attribute t entry contains
the query identi�er For common attributes�
the attribute information is explicit to the
message name� eg US ATTRIBUTE GET POSITION
The Modi�er t describe state information
about the attribute� eg real� desired�
max� min� etc GET LIST is available to
query information about data collections

POST�

The verb POST is used to convey the no�
tion of an output reading This output
reading could be either a status report�
or a sensor reading Further� the output
reading could be posted to the superior or
to the Object Knowledge module Within
the GET� a �eld is set aside to designate
the destination of the subsequent POST �
either to the superior� Object Knowledge
module or both The POST messages use
this information for return routing

INPUT�OUTPUT�

Interfaces that support query or posting
services and provide the same interface to
numerous modules will adopt the follow�
ing naming convention� for input and out�
put� append either INPUT or OUTPUT
to the server module name� eg� OK INPUT

��

UTAP�WD Standard Interface Environment

������ Designating Subordi	
nate Selections

The UTAP architecture allows multiple sub�
ordinate modules to be controlled by one su�
perior module In Figure � for example� the
Task Level Control module is controlling �
submodules � pairs of robot� tool and sensor
modules Because of the existence of alter�
natives� a robot command issued to the Task
Level Control can be ambiguous as to which
robot the command is intended Addition�
ally� generic messages such as LOAD SAMPLING RATE
are applicable across many of the subordi�
nate modules Thus� an interface mechanism
is required to resolve this confusion Nam�
ing resolution of identical module types was
addressed within the con�guration section
This section describes a message set to en�
able selections

The generic messages GET� POST� USE SELECTION
and USE AXIS MASK are UTAP program�
ming primitives enabling the interface to spec�
ify selections The GET SELECTION is a
primitive to request a read of the con�gu�
ration table� and subsequent mapping of a
symbolic name into a system id number The
POST SELECTION returns the id number
The message USE SELECTION and appro�
priate numeric id designates the destination
of the future messages USE SELECTION is
a modal command and stays in e�ect until
changed USE AXIS MASK is a program�
ming convenience for modules with multiple
servos under coordinated control The AXIS MASK
message contains a bitmask enumerating the
selected axis

The following code illustrates the use of the
SELECTION message set First� one does
the symbolic mapping with GET SELECTION
to retrieve the appropriate ids for robot� and
robot� �It is assumed that the Object Knowl�
edge module responds with a POST SELECTION�
but is hidden in this example� Then one al�
ternates between robot selections to describe

the coordinated motion The addition of the
BEGIN BLOCK and END BLOCK message
primitives illustrates a mechanism to do con�
current motion control

robot� � GET�SELECTION
�TLC�A�ROBOT�A��

robot� � GET�SELECTION
�TLC�A�ROBOT�B��

robot� � GET�SELECTION
�TLC�B�ROBOT�A��

BEGIN�BLOCK
�

USE�SELECTION
robot��

SET�POSITION
�	�	��	�	��	�	�	�	� �	�	� 	�	�

USE�SELECTION
robot��

SET�POSITION
�	�	��	�	��	�	�	�	� �	�	� 	�	�

END�BLOCK
�

The SELECTION message set is intended for
multiple subordinates that are in need of pro�
grammatic control It may be an option of
the system to let the module itself designate
the recipient of a set of messages For ex�
ample� suppose a system has a right and left
arm that are functionally equivalent� then se�
lection of the left or right subordinate can be
context�driven or situation�dependent If the
superior is privy to some future knowledge
that impacts the selection� it may select the
best��t Otherwise� the subordinate could se�
lect a �rst��t or random��t

������ Synchronization

Control systems require synchronization of
devices within the system For example� one
would like for a tool change to complete be�
fore initiating the next tooling motion An�
other possibility is that one desires that a se�
ries of motions be treated as one continuous
motion without any interruption � or some
dwell could occur

Within the UTAP framework� synchroniza�
tion is achieved with BEGIN BLOCK and
END BLOCK generic messages This con�
struct is similar to the block concept in RS�
	
Messages that arrive between the BEGIN and
END BLOCK messages are treated as a unit
It is assumed that the receiving module un�
derstands�describes how a set of operations
are synchronized The BLOCK set of mes�

��

UTAP�WD Standard Interface Environment

sages is especially valuable for coordinating
actions within the Parent Task Program Se�
quencer module in the UTAP

The EVENT set of messages provides event�
driven command sequencing This is useful
for operations that are sequenced to begin or
end at some speci�ed time within a BLOCK
of commands� or begin or end when a concur�
rent operation reaches some state The BE�
GIN EVENT is embedded within a BLOCK
construct and provides for an event to occur
within the BLOCK either FROM START� FROM END�
ERROR� or AT a speci�ed time t The ER�
ROR event would call the currently loaded
SAFE motion plan should some limit or er�
ror be encountered �See following section for
more details on this concept� It is hoped to
allow further exception handling and event
triggered callbacks within the EVENT prim�
itive at some future point in time

���� Extensibility

The ability to broaden� shrink� or advance
a system�s functionality is required by the
UTAP architecture and must be supported
by the interfaces This �exibility and ex�
tensibility must be achieved through explicit
mechanisms Extensibility within UTAP In�
terface Framework features �� state context
and parameter aggregating and naming� and
�� scalable and �� seamless integration of sen�
sors

������ State Context Naming

The ability to aggregate and name a set of
messages based on some state context infor�
mation can greatly simplify programming One
of the small enhancements to the messaging
system was the inclusion of the MACRO and
PLAN set of messages

The MACRO set of commands allow one to
group and name a set of parameter messages
One sends a BEGIN MACRO with a name�

a set of parameter messages and then the
END MACRO message to de�ne the macro
One uses the USE MACRO command to in�
voke these parameter settings Below is an
example set of messages that may be grouped
to describe a fragile or rigid parameter set�
ting Then� depending on the type of ob�
ject� one selects the correct parameter con�
text For china� use delicate For steel� use
rigid

US�BEGIN�MACRO
requires name� e�g�� fragile or rigid

US�LOAD�TLC�DOF

US�LOAD�TLC�FEED�RATE

US�LOAD�TLC�TRAVERSE�RATE

US�LOAD�TLC�CONTACT�FORCES

US�LOAD�TLC�STIFFNESS�PARAMETERS

US�LOAD�TLC�JOINT�GAIN�THRESHOLD

US�LOAD�TLC�JOINT�SINGULARITY�THRESHOLD

END�MACRO

USE�MACRO fragile

Similarly� the PLAN set of commands allow
one to aggregate and name a set of motions
This feature would be useful if one wanted
to name a �SAFE� motion zone as a fallback
motion in case of an error

������ Scaling Control Dimen	

sions

One peril involving generic interfaces is the
requirement to satisfy a broad performance
range For example� some systems can pro�
vide a cost�e�ective solution with minimal
complexity and were not intended for more
sophisticated applications One cannot re�
quire a simple but cost�e�ective module to
accommodate the entire realm of interface
possibilities To be e�ective� the ability to
scale the interface is needed

Scaling within the Task Level Control mod�
ule implies that its generic interface must ac�
commodate simple position control as well
as hybrid force�control with multi�device sen�
sor fusion Previous discussion illustrated the
concept of scaling mode and parameter selec�
tion vectors This section will discuss the use
of option levels The following message illus�

�

UTAP�WD Standard Interface Environment

trates the levels one can have when de�ning
the trajectory kinematic ring �BACKES��

�define US�TLC�USE�KINEMATIC�RING�POSITIONING�MODE ���

struct us�tlc�use�kinematic�ring�msg�t �

int id�

Measurement�units�type units�

enum � BASE � 	x						��

TOOL � 	x						��

SENSOR�FUSION � 	x						��

�� RHS

DELTA � 	x					�	�

OBJECT � 	x					�	�

OBJECTBASE � 	x			�			�

OBJECTOFFSET� � 	x			�			�

OBJECTOFFSET� � 	x			�			�

OBJECTOFFSET� � 	x			�			�

� ring�mask�

��

A selection mask is provided to allow the so�
phistication of the Task Level Control mod�
ule to vary The selection mask provides for
one to de�ne levels of positioning control �
from simple position updates� to allowing sen�
sor fusion and specifying transform models
for the base� tool� object base This range
of speci�city allows a broader range of mod�
ules to use the same generic interface without
unnecessary expectations of a simpler control
module

������ Integration

An extension that one might desire is the
ability to do on�line con�guration and assign�
ment of communications For example� when
you add a new sensor to your system� and you
may wish to pump this data into an exist�
ing module This can be especially di�cult if
real�time readings impact the control behav�
ior How do you accomplish this task� Gen�
erally� one would have a sensor fusion hook
that allows sensors to pump readings into the
sensor fusion slot

One would desire the ability to say to a sub�
ordinate� �I want you to input readings from
the so�and�so sensor and use this reading to
calculate�an�o�set�postmultiply�alter�delta�frame
and modify the nominal goal action into an
altered goal action� The use of the MACRO�

GET message with the USE SELECTION mes�
sage enables this capability Within the GET
message� one speci�es the routing informa�
tion as a delta o�set destination Thus� the
module uses a subordinate reading to modify
its nominal goal with a delta o�set The fol�
lowing code demonstrates this concept The
code embeds a SELECTION and GET mes�
sage within a MACRO message that will in�
struct a subordinate to use one of its subor�
dinates readings as a delta o�set value

us�begin�macro
�Sensor Integration��

us�use�selection
us�get�selection
�ROBOT�A�SENSOR�B��

us�get�value
ROUTE��DELTA�OFFSET�

��� �� fo

�		�� �� ev

	� �� in

us�end�macro
�Sensor Integration��

us�use�selection
us�get�selection
�ROBOT�A��

us�use�macro
�Sensor Fusion��

������ New Messages

The UTAP interfaces de�ne a great many
messages Yet� it would be impossible to an�
ticipate and explicitly enumerate every pos�
sible control and sensing algorithm and pa�
rameter For example� suppose a better servo
control algorithm is developed� how will the
interface permit the selection of this algo�
rithm� Further� suppose an additional com�
pensation parameter could be speci�ed within
the servo control How will the system adapt
to the additional parametric capability�

Although it is hoped that the current set of
messages do indeed satisfy the needs of the
UTAP task scenarios� a mechanism is required
for extending the scope of the interfaces There
exist many possibilities to extending the mes�
sage set Providing new de�nition construct
�such as �%name� def in Postscript� within
the interface language is one solution but greatly
complicates the interface For statically de�
�ned and published interfaces� the extensibil�
ity problem is inherent since the interface lan�
guage does not provide general programming
constructs Without general programming

��

UTAP�WD Standard Interface Environment

constructs� supporting the requirements of porta�
bility and extensibility is di�cult

Adhering to a simple strategy for now� the
current UTAP solution is to provide slot�holder
messages to handle new messages For com�
parison� the part description language RS�
	
provides macro slot holders� M���M��� as

a means of customization in a constrained
manner The UTAP extension will use the
letters �EXT� to signify non�standard mes�
sage extension The extension messages in�
clude US USE EXT ALGORITHM� US LOAD EXT PARAMETER�
US SET EXT DATA VALUE� US GET EXT DATA VALUE
and US POST EXT DATA VALUE Each mes�
sage uses a numeric id to specify the exten�
sion instance For example� id"� speci�es
extension one� id"� speci�es extension two�
etc

The �exibility to add new messages comes
at a cost Complete interoperability can no
longer be guaranteed For example� RS�
	�
de�ned parts that use the M����� macros
contain implementation speci�c descriptions
These macros are rarely portable UTAP ex�
tensibility will allow for technology to evolve�
so that if an algorithm or feature extension
becomes popular enough � so that more than
one vendor is supporting it � then it can be
transformed into a �regular� supported mes�
sage in a later revision of the UTAP inter�
faces

Table � � Module Classi�cation

Module Class Type Examples

OI POS Joystick Spaceball
Force Re�ecting Joystick �DOF F�R
Pendant
Panel PIO� Screen
Windows X�Windows

OM� OC� OK

TD� TK� TDS Teach Record�Pla
Scripted Save�Load
Programmable Save�Load

TPS Manipulation
Navigation
Tooling
Machining
Assembly �Not covere

TPS� Transport Teleop Lift
Guided Tracked
Autonomous overhead ga

TPS� Tooling Contact Finishing
Non�contact Spraying

TPS� Machining Horizontal

TLC� AXIS SERVO SLM Serial Link
�SCARA
�GANTRY
�STEWART PLATFORM

TLC� SENSOR FTS JR� force t
IMAGE camera ima
PROBE LVDT
�SWITCH beam�break

TLC� TOOL SPRAY coolant� pa
FINISH sand� grind
�GRASP grasp
�SQUEEZE squeeze

��

UTAP�WD Standard Interface Environment

Table � � Message Type Identi�cation
Table of Contents

GENERIC� ��� � ���
ERROR� ���� � ����

REMOTE

AXIS SERVO� ��� � ���
TOOL� ��� � ���
SENSOR� 	�� � 	��
PIO� ��� � ���
TLC� ��� � ���
DB�
�� �
��
VS� ��� � ���

LOCAL

TDS� ���� � ����
TK� ���� � ����
TRD� ���� � ����
PTPS� ���� � ����
TPS� �	�� � �	��
OI� ���� � ����
OK� ���� � ����
SGD� �
�� � �
��
ADS� ���� � ����
SS� ���� � ����

��

UTAP�WD Standard Interface Environment

Annex A
�informative�

Bibliography

�BACKES�� P G Backes� W Zimmerman�
MB Leahy� Jr� �Telerobotics Application
to Aircraft Maintenance and Remanufactur�
ing�� IEEE International Conference on Robotics
and Automation� San Diego� CA� ���	

�BACKES�� PG Backes� �Dual�Arm Super�
visory and Shared Control Space Servicing
Task Experiments�� AIAA Space Programs
and Technologies Conference� Huntsville� AL�
March �	��
� ����

�BOURNE� DA Bourne� DT Williams� �Sat�
isfying the Needs of the Neutral Manufac�
turing Language with the Feature Exchange
Language�� Robotics Institute� Carnegie Mel�
lon University� Pittsburgh� PA� August ����

�EMC� F M Proctor� JL Michaloski� �En�
hanced Machine Controller Architecture Overview��
National Institute of Standards and Technol�
ogy� Technical Report ����� Gaithersburg� MD�
December ����

�GISC� JM Greismeyer� MJ McDonald� RW
Harrigan� PL Butler� JB Rigdon� �Generic
Intelligent System Control �GISC��� Sandia
Internal Report� SAN�������� October ����

�KRAMER� TR Kramer� FM Proctor� JM
Michaloski� �The NIST RS�
	�NGC Inter�
preter � Version ��� National Institute of Stan�
dards and Technology� Technical Report �	���
Gaithersburg� MD� April ���	

�NASREM� JS Albus� HG McCain� R Lu�
mia� �NASA�NBS Standard Reference Model
for Telerobot Control System Architecture �NAS�
REM�� National Institute of Standards and
Technology� Technical Report ����� Gaithers�
burg� MD� ����

�ONIKA� D B Stewart� RA Volpe� PK
Khosla� �Integration of Real�Time Software
Modules for Recon�gurable Sensor�Based Con�
trol Systems�� Proceedings of ���� IEEE�RSI
International Conference on Intelligent Robots
and Systems �IROS %���� Raleigh� NC� July

���� ����� pp �������

�RCS� JS Albus� �Outline for a Theory of
Intelligence�� IEEE Transactions on Systems�
Man� and Cybernetics� ������ May�June �����
pp 	
�����

�SANCHO� M McDonald� RD Palmquist�
�Graphical Programming� On�Line Robot Sim�
ulation for Telerobotic Control�� International
Robots and Vision Automation Show and Con�
ference Proceedings� April ���� ���� Cobo
Center� Detroit� Michigan USA� pp ����� to
���
�

�SMART� R Anderson� �SMART� a modu�
lar architecture for robotics and teleopera�
tion�� Proceedings of the IEEE Conference
on Robotics and Automation� Vol �� At�
lanta� Georgia� May ����� pp 	���	��

�STA� R Bajcsy� V Kumar� M Mintz� R
Paul� X Yun� �A small�team architecture for
multiagent robotic systems�� in Workshop on
Intelligent Robotic Systems� Design and Ap�
plications� SPIE�s Intelligent Robotics Sym�
posium� �Boston� MA�� November ����

�STELER� RD Steele� PG Backes� �ADA
and Real�Time Robotics� Lessons Learned��
IEEE Computer Magazine� Vol �
�	�� April�
���	� pp 	���	

�SUB� R Brooks� �Elephants Don�t Play Chess��
Robotics and Autonomous Systems� No ��
����� pp ����

�TCA� R Simmons� �An architecture for co�
ordinating� planning� sensing� and action��
In Proceedings DARPA Planning Workshop�
San Diego� CA� ����� pp ������

��

UTAP�WD Standard Interface Environment

�VCE� RW Harrigan� MJ McDonald� BR
Davies� �Remote Use of Distributed Robotics
Resource to Enhance Technology Development
and Insertion�� ISRAM��	

��

UTAP�WD Standard Interface Environment

Annex B
�normative�

Component Analysis

The National Center for Manufacturing Sci�
ences sponsorship of the Next Generation Con�
troller project which de�ned the Speci�cation
for an Open System Architecture Standard
�SOSAS� document �SOSAS� This document
provides an overview of philosophy and struc�
ture of the NGC The SOSAS describes a
reference architecture that is comprised of
primitive components From the reference ar�
chitecture an application architecture is con�
structed that captures the functionality of
the end systems at an abstract level The
selection of implementation components de�
termines the �nal system

Each component is an abstract encapsulation
of funcionality

B�� Application Architecture

AC � � Object Modeling�

RESPONSIBILITY� Object modeling
provides for modeling of objects This
includes initial o��line description of ob�
jects and run�time model building

INPUT� Object types� attributes� sen�
sor data� operator input

OUTPUT� Updated object types� attributes�
sensor data� operator input

AC � � Object Calibration�

RESPONSIBILITY� Calibration of an
object�s actual properties� eg� position

INPUT� Object initial calibration prop�
erties

OUTPUT� Updated object calibration
properties

AC � � Trajectory Description�

RESPONSIBILITY� Specify a trajec�
tory for use in an application program

INPUT� Path information such as start�
ing and end points� continuous inputs such
as from a hand controller� preferred path
segments

OUTPUT� Trajectory for insertion into
task program

AC � � Object Knowledgebase�

RESPONSIBILITY� Store information
about objects in the task environment in�
cluding geometry and task information

INPUT� Object information

OUTPUT� Object information

AC � � Operator Input Devices�

RESPONSIBILITY� Transform oper�
ator input information into data for soft�
ware modules and provide feedback to op�
erator via input mechanisms

INPUT� Operator interaction and feed�
back data

OUTPUT� Operator input data to sys�

��

UTAP�WD Standard Interface Environment

tem modules� eg� keyboard� audio� and
handcontroller

AC
 � Status � Graphical Display�

RESPONSIBILITY� Display system sta�
tus including geometry� sensor data and
task execution status

INPUT� Object status� task execution
status� system status

OUTPUT� Status and geometry displays
to operator� eg� task execution status
and geometric graphical display

AC � � Task Description � Supervision�

RESPONSIBILITY� Interactive task se�
quence �application program� generation
and run�time interaction with operator for
sequencing and sequence modi�cation

INPUT� Information to generate appli�
cation programs� eg� task commands� macros�
task sequences� object information� tra�
jectories

OUTPUT� Application program includ�
ing task programs

AC � � Analysis � Diagnosis�

RESPONSIBILITY� Analyze and di�
agnose task execution status

INPUT� Task execution status and task
information on what and how to monitor

OUTPUT� Execution status and execu�

tion control commands such as stop

AC � Subsystem Simulation�

RESPONSIBILITY� Provide a simu�
lation of the task execution

INPUT� Task program commands

OUTPUT� Simulated subsystem control
data

AC �� � Task Knowledgebase�

RESPONSIBILITY� Provide task se�
quence building blocks such as macro com�
mands and sequences

INPUT� Requests for commands or com�
mand types

OUTPUT� Macro commands and sequences
with unbound parameters

AC �� � Subsystem Task Program Seq

RESPONSIBILITY� Sequence the sub�
system task program commands

INPUT� Task programs and execution
status

OUTPUT� Task level control commands
and execution status

AC �� � Parent Task Program Sequen

�	

UTAP�WD Standard Interface Environment

RESPONSIBILITY� Sequence the par�
ent task program commands

INPUT� Parent task program and exe�
cution status

OUTPUT� Next command to execute

AC �� � Subsystem Control�

RESPONSIBILITY� Execute task pro�
grams including closed loop and non�closed
loop control

INPUT� Task program commands and
command sequences and data from sen�
sors� tools and mechanisms

OUTPUT� Status and commands to sen�
sors� tools and mechanisms

AC �� � Sensor Control�

RESPONSIBILITY� Provide control of
a sensor

INPUT� Sensor commands and raw sen�
sor data

OUTPUT� Processed sensor data and low
level sensor commands

AC �� � Sensing�

RESPONSIBILITY� Gather raw sen�
sor data

INPUT� Low level sensor commands

OUTPUT� Raw sensor data

AC �
 � Tool Control�

RESPONSIBILITY� Control a tool

INPUT� Tool control commands and tool
status

OUTPUT� Processed tool data and low
level tool commands such as analog volt�
age

AC �� � Tool Motion�

RESPONSIBILITY� Generate the tool
motion such as by driving a motor

INPUT� Low level tool commands such
as analog voltage

OUTPUT� Tool status

AC �� � Robot Servo Control�

RESPONSIBILITY� Provide joint level
servo control

INPUT� Robot con�guration commands
and status

OUTPUT� Joint status and low level robot
joint commands such as voltage and sta�
tus

AC � � Robot Motion�

RESPONSIBILITY� Generate the joint
motion of the robot such as by driving a
motor

INPUT� Low level robot joint commands

OUTPUT� Robot joint status

��

UTAP�WD Standard Interface Environment

AC �� � Virtual Sensor�

RESPONSIBILITY� Compute informa�
tion as if it came from a real sensor� but
using available data� such as for multiple
sensor fusion

INPUT� Sensor commands and data

OUTPUT� Computed virtual sensor data

B�� Hardware Architecture

HC � � Interface Controller�

RESPONSIBILITY� The interface con�
troller is the computer which the operator
uses to interact with the application pro�
grams The supported interface may be
simple� eg� ascii inputs and outputs� or
more complex� eg� iconic interface with
multiple input devices The actual input
devices such as voice input�output and
hand controller� are treated as individual
devices with their control programs

INPUT� Inputs from operator input de�
vices and status from task controller

OUTPUT� Status to operator� eg� vi�
sual or audio� and task commands to task
controller

HC � � Task Controller�

RESPONSIBILITY� The task controller
is the physical computer hardware where
the task level control of a task program is
executed The task sequencing software�
task�device map� and device control soft�
ware could also run on this controller

INPUT� Task commands from the inter�

face controller and status from the device
controllers

OUTPUT� Commands to the device con�
trollers and status to the interface con�
troller

HC � � Device Controller�

RESPONSIBILITY� The device con�
troller hardware receives the device com�
mands from the task controller hardware
These commands will vary depending on
the con�guration �pro�le� of the controller
There are various options for the hard�
ware pro�les The device controller could
be a microprocessor card which has servo
control software on it It could take joint
positions as input commands and output�
to the device ampli�er� analog or digital
commands such as velocity or torque Pa�
rameters for the servo control will also be
communicated to the servo control This
same functionality could also be provided
by buying a motion control card For sen�
sors� the device controller converts com�
mands to low level sensor signals When
reading the sensor� the device controller
processes the sensor data and provides it
to the task controller For tools� the de�
vice controller converts task controller tool
commands to the low level device ampli�
�er signals and returns to the task con�
troller the tool status

INPUT� Device commands from the task
controller and status from the device am�
pli�er

OUTPUT� Device ampli�er signals to
the the device ampli�er and status to the
task controller

��

UTAP�WD Standard Interface Environment

HC � � Device Ampli�er�

RESPONSIBILITY� The device ampli�
�er provides the analog or digital control
signal to the device This could be analog
voltage or a PWM signal to a motor drive
or power to a sensor A device ampli�er
module also generates the raw feedback
data from the device

INPUT� Device ampli�er commands from
the device controller and status from the
device

OUTPUT� Control signals to the device
and status to the device controller

HC � � Device�

RESPONSIBILITY� The device is the
hardware that is being controlled or the
sensor that is being used

INPUT� Control signals from the device
ampli�er

OUTPUT� Device action� eg� motion
or sensing

B�� Software Components

The types of software modules in the system
were described Software modules in the sys�
tem will now be described as software com�
ponents with speci�ed responsibilities� inputs
and outputs Some of the components could
be further decomposed into multiple software
modules The application programs are treated
here as software components and are given
below

B���� System Software Com	

ponents

SC � � Object Modeling�

RESPONSIBILITY� Provide function�
ality for modeling objects This includes
initial o��line description of objects and
run�time model building

INPUT� Object types� kinematics� at�
tributes� operator input

OUTPUT� Updated object types� kine�
matics� attributes

SC � � Object Calibration�

RESPONSIBILITY� Calibration of an
object�s actual properties� eg� position

INPUT� Object initial calibration prop�
erties� data on actual properties

OUTPUT� Updated object calibration
properties

SC � � Trajectory Description�

RESPONSIBILITY� Generate a trajec�
tory for use in an application program

INPUT� Path information such as start�
ing and end points� continuous inputs such
as from a hand controller� preferred path
segments

OUTPUT� Trajectory for insertion into
task program

�

UTAP�WD Standard Interface Environment

SC � � Object Knowledgebase�

RESPONSIBILITY� Store information
about objects in the task environment in�
cluding geometry� task information and
functions to call to acquire data

INPUT� Object information

OUTPUT� Object information

SC � � Operator Input Device Control�

RESPONSIBILITY� Transform oper�
ator input information into data for soft�
ware modules and provide feedback through
input devices� eg� force re�ection

INPUT� Operator inputs� eg� keyboard�
audio and handcontroller and feedback data

OUTPUT� Data to system modules and
feedback to operator through input de�
vices

SC
 � Status � Graphical Display�

RESPONSIBILITY� Display system sta�
tus including geometry� sensor data� and
task execution

INPUT� Object status� task execution
status� system status

OUTPUT� Status and geometry displays
to operator

SC � � Task Program Editor�

RESPONSIBILITY� Provide an inter�
active interface to program developer for
task sequence �application program� gen�
eration and modi�cation

INPUT� Information to generate appli�
cation programs� eg� task commands� macros�
task sequences� object information� tra�
jectories� rules

OUTPUT� Application program includ�
ing task programs

SC � � Task Program Supervisor�

RESPONSIBILITY� Provide operator
based sequence execution control Allows
for single stepping commands� sending com�
plete sequences and backing up Allows
task program editor to modify sequence

INPUT� Application task programs� sta�
tus� and operator inputs

OUTPUT� Task program commands or
sequences to task program sequencers

SC � Analysis � Diagnosis�

RESPONSIBILITY� Analyze and di�
agnose task execution status such as check�
ing for collisions

INPUT� Task execution status and task
information on what and how to monitor

OUTPUT� Execution status and execu�
tion control commands such as stop

SC �� � Subsystem Simulation�

��

UTAP�WD Standard Interface Environment

RESPONSIBILITY� Provide a simu�
lation of the task execution with same in�
puts and outputs as the the real system

INPUT� Task program commands

OUTPUT� Simulated task level control
system data

SC �� � Task Knowledgebase�

RESPONSIBILITY� Provide task se�
quence building blocks such as macro com�
mands and sequences

INPUT� Requests for commands or com�
mand types

OUTPUT� Macro commands and sequences
with unbound parameters

SC �� � Subsystem Task Program Sequencing�

RESPONSIBILITY� Sequence the sub�
system task program commands

INPUT� Task programs and execution
status

OUTPUT� Task level control commands
and execution status

SC �� � Parent Task Program Sequencing�

RESPONSIBILITY� Sequence the par�
ent task program commands

INPUT� Parent task program and exe�
cution status

OUTPUT� Coordination commands to
the subsystem task program sequencers

SC �� � Subsystem Task Level Coordi

RESPONSIBILITY� Execute non�closed
loop control of task programs

INPUT� Task program commands and
data from sensors� tools and mechanisms

OUTPUT� Commands to task level closed
loop control� sensors� tools and mecha�
nisms and status

SC �� � Subsystem Task Level Closed

RESPONSIBILITY� Execute closed loop
control of task programs

INPUT� Commands to closed loop con�
trol modules and data from sensors� tools
and mechanisms

OUTPUT� Commands to sensors� tools
and mechanisms and status

SC �
 � Task Control Database�

RESPONSIBILITY� Store and provide
information relevant to the task execution
system such as status to be sent periodi�
cally to the object knowledgebase and ac�
tual data to be used which is associated
with symbolic parameters

INPUT� Status data and database com�
mands

OUTPUT� Status data

��

UTAP�WD Standard Interface Environment

SC �� � Sensor Control�

RESPONSIBILITY� Provide control of
a sensor

INPUT� Sensor commands and raw sen�
sor data

OUTPUT� Processed sensor data and low
level sensor commands

SC �� � Tool Control�

RESPONSIBILITY� Control a tool

INPUT� Tool control commands and tool
status

OUTPUT� Low level tool commands such
as analog voltage and tool status

SC � � Robot Servo Control�

RESPONSIBILITY� Provide joint level
servo control

INPUT� Robot con�guration commands
and status

OUTPUT� Low level robot joint com�
mands such as voltage and status

SC �� � Virtual Sensor�

RESPONSIBILITY� Compute informa�
tion as if it came from a real sensor� but
using available data� such as for multiple
sensor fusion

INPUT� Sensor commands and data

OUTPUT� Computed virtual sensor data

SC �� � Motion Fusion�

RESPONSIBILITY� Combine the var�
ious sources of motion into a task level
motion command for the mechanism

INPUT� Motion commands from the var�
ious motion control components� eg� force
control� visual servoing� trajectory gen�
erator� teleop motion parameters speci�
fying weights for each axis of control for
each motion source

OUTPUT� A combined task level mo�
tion command for the mechanism This
is taken by the task�device map compo�
nent and transformed into commands to
the mechanism servoed axes

SC �� � Teleop Motion�

RESPONSIBILITY� Read hand con�
troller inputs and generate motion com�
mands for hand controller

INPUT� Hand controller motion input
data from hand controller device control

OUTPUT� Motion command associated
with teleoperation

SC �� � Force Control�

RESPONSIBILITY� Perform closed loop
force control and generate motion com�
mands for force control

INPUT� Sensed force data� force setpoints�
force control parameters

OUTPUT� Motion command associated
with force control

	�

UTAP�WD Standard Interface Environment

SC �� � Task Space Trajectory Generator�

RESPONSIBILITY� Generate task space
pose trajectory and provide associated mo�
tion commands from trajectory generator

INPUT� Trajectory parameters� goal po�
sition� obstacle information

OUTPUT� Trajectory setpoints represent�
ing motion inputs from trajectory gener�
ator

SC �� � Proximity Servo�

RESPONSIBILITY� Perform closed loop
proximity control and generate motion com�
mands for proximity control

INPUT� Sensed proximity data� proxim�
ity setpoints� proximity control parame�
ters

OUTPUT� Motion command associated
with proximity control

SC �
 � Orientation Servo�

RESPONSIBILITY� Perform closed loop
orientation control and generate motion
commands for orientation control

INPUT� Sensed orientation data� orien�
tation setpoints� orientation control pa�
rameters

OUTPUT� Motion command associated
with orientation control

B������ Application Program
Components

SC �� � Mobile	Platform	Control�

RESPONSIBILITY� This program is
for positioning the mobile platform in an
appropriate location relative to the sur�
face targeted for paint stripping The mo�
bile platform can be placed to the de�
sired location and posture automatically
by the system using the preassigned data
or manually by the operator using the hand
controller The selection of automatic con�
trol mode in turn provides options for des�
ignating the platform location and pos�
ture Manual control can share control
with automatic control� as desired The
platform is �xed upon the completion of
the task A more advanced future system
may have coordinated platform and ma�
nipulator control� but this would require
accurate platform control and real�time
platform�manipulator combination position
information relative to the aircraft which
will probably not be available in the �rst
implementation

INPUT� � PARAMETERS LIST $

� The �nal desired pose of the mo�
bile platform in case of the automatic
control mode

� The desired platform pose incre�
ment in case of the manual control
mode

OUTPUT� � PARAMETERS LIST
$

� The system state including cur�
rent pose of the mobile platform

	�

UTAP�WD Standard Interface Environment

� The execution state� eg� comple�
tion state for automatic control

SC �� � Worksite	Registration�

RESPONSIBILITY� This program is
for con�guring the manipulator in an ap�
propriate position of the worksite to start
the desired tool �gun� motion The po�
sition of the manipulator base relative to
the aircraft skin area to be stripped is de�
termined The data required for the work�
site registration should be provided as in�
put� which include the distance of tool
separation� the orientation of tool with re�
spect to the surface� and the landmarks
or features of targeted surface �such as
the surface curvature that can be mea�
sured by the force�torque or tactile sen�
sor� The manual mode of control com�
bined with the sensor�based distance and
orientation servos can accomplish this task
This program and the mobile�platform�
control can be used together for two con�
secutive paint�stripping operations

INPUT� � PARAMETERS LIST $

� The data for worksite registration�
including the stand�o� distance and
the orientation of the tool with respect
to the targeted surface

� The priority setting between man�
ual and sensor�based automatic oper�
ation

OUTPUT� � PARAMETERS LIST
$

� The measured data from the sen�
sors

� The current manipulator pose

SC � � Paint	Stripping	Operation�

RESPONSIBILITY� This program is
for stripping paint o� the skin of a large
aircraft based on supervisory and shared
telerobotics control Prior to running this
program� the following initialization is re�
quired�

� Setting up the mobile platform to
an appropriate position

� Con�guring the manipulator at the
initial pose for worksite registration

Upon execution of this program the op�
erator is asked whether the initial set�up
by moving the mobile platform to the de�
sired location and con�guring the manip�
ulator at the start position are done If
not� the operator should open the mobile�
platform�control and worksite�registration
programs by clicking the corresponding
icons and execute them for the initializa�
tion Once the initial set�up is completed�
the operator is asked to assign the system
parameters and control modes

INPUT� � PARAMETERS LIST $

� O� line generated tool path

� Run time generated tool path

� The desired separation�stand�o�
of the tool from the target surface

� The desired tool orientation rela�
tive to the target surface

� The constraints on tool path such
as the constrained motion imposed on

	�

UTAP�WD Standard Interface Environment

individual axes

� Tool speed

� PMB �Plastic Media Bead� pres�
sure

� The selection of the motion input
sources a�ecting the tool �which will
indicate the desired control mode�

OUTPUT� � PARAMETERS LIST
$

� Commands to the task control in�
cluding equivalent commands associ�
ated with the application command in�
puts above

� Status of execution including ma�
nipulator status� sensors� status� and
current subtask status for use in anal�
ysis and display to the operator

	�

UTAP�WD Standard Interface Environment

Annex C
�normative�

Environment Pro�le Suite

Annex C contains a list of the pro�les that
can be used to generate a UTAP system spec�
i�cation Each module in the system would
be required to �ll out one� maybe several�
generic� error and data knowledge pro�les �
depending on the number of upper and sub�
system links in the system For now� only the
local modules have been speci�ed

C�� Application Environment

Pro�le

A UTAP module shall conform to the envi�
ronment which includes system pro�le that
names each hardware device and device pro�
�le in the system A device could be a com�
puter or control device The system pro�le
runs under a system environment which is
also pro�led This system environment pro�
�le

Computer boards have a device pro�le that
includes CPU type� CPU characteristics and
the CPU performance characteristics Included
pro�le is the operating system support for the
CPU

Controller boards are devices that would have
a application�speci�c pro�le

The system environment describes the infras�
tructure support �such as communication mech�
anisms� and resources �disks� extra memory�
etc� available to system devices

Table C
� � System Pro�le

DEVICE Device Pro�le Platform

��� ��� ���

C�� Interface Environment Pro	
�le

A universal format is assumed in developing
the message interfaces It is assumed that
each module displays a similar �ow of mes�
sages Figure C� illustrates the message �ow
of a module A message naming convention
is used for improved comprehension Within
a messages� a keyword is used to delineate
between mode�goal�state information The
keywords are grouped by type�

� MESSAGING �ie� BLOCK� MACRO�
PLAN� EVENT� SELECTION�

� SEQUENCING CONTROL� gener�
ics �ie� STARTUP� SHUTDOWN� EN�
ABLE� DISABLE� etc�

� MODALITY� USE� START� STOP�
COMPUTE

� PARAMETRIC� LOAD� INCREMENT�
SELECT

� DATA COMMAND� SET� ADJUST�
GET

� STATUS� POST

Table C
� � System Environment Pro�
�le

Bus�
Memory�

Disk�
Disk Memory�
Floppy Disk�
Floppy Size�

Floppy Density�
Compact Disk �
LAN Cabling�
LAN Protocol�

		

UTAP�WD Standard Interface Environment

Table C
	 � Processor Board Pro�le

Board Id
CPU Type
Memory�
OS Type�

OS Version�
OS Release�

BUS Support
IO Support

Peripheral Support
Special�

Table C
� � Generic Message Pro�le

Con�guration
Name

Module Type

MESSAGE PRIMITIVES Comply

BLOCK
MACRO
PLAN
EVENT
USE SELECTION

SEQUENCE Comply

Powerup STARTUP
SHUTDOWN
RESET

S�E ENABLE
DISABLE
ESTOP

Software START
STOP
HALT
HOLD
SUSPEND
RESUME
BEGIN SINGLE STEP
NEXT SINGLE STEP
CLEAR SINGLE STEP
MARK BREAKPOINT
MARK EVENT

Status LOAD STATUS TYPE
LOAD STATUS PERIOD
STATUS REPORT

OBJECT DATA Comply

POST ID
GET OBJECT ID
USE OBJECT
GET FEATURE
USE FEATURE
GET VALUE
POST VALUE
GET LIST
POST LIST

Table C
 � Data Knowledge

Con�guration
Name

Module Type

ATTRIBUTES Actual Desired Max Min Avg

POST RESPONSE
GET SELECTION
GET TIME
GET POSITION
GET ORIENTATION
GET POSE
GET VELOCITY
GET ACCELERATION
GET JERK
GET FORCE
GET TORQUE
GET MASS
GET TEMPERATURE
GET PRESSURE
GET VISCOSITY
GET LUMINANCE
GET HUMIDITY
GET GEOMETRY
GET TOPOLOGY
GET SHAPE
GET PATTERN
GET MATERIAL
GET KINEMATICS

Table C
� � Errors

Con�guration
Name

Module Type

ERRORS Comply

POSIX ERRORS
CMD NOT IMPLEMENTED
ERROR COMMAND ENTRY
ERROR DUPLICATE NAME
ERROR BAD DATA
ERROR NO DATA AVAIL
SAFETY VIOLATION
LIMIT EXCEEDED
ERROR OVER SPECIFIED
ERROR UNDER SPECIFIED

	�

UTAP�WD Standard Interface Environment

Table C
� � Axis Servo Command Pro�
�le

Con�guration Comply

Name
Module Type US AXIS SERVO

Links Up� TASK LEVEL CONTROL
Links Down� PIO

Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

Safety� SET BRAKES
CLEAR BRAKES

MODES Comply

INPUT
Units� USE ANGLES

USE RADIANS
Reference� USE ABSOLUTE

USE RELATIVE
Representation� USE POSITION

USE VELOCITY
USE CURRENT
USE VOLTAGE
USE FEEDFORWARD TORQUE

SELECTIONS Comply

Compensation� USE PID
USE STIFFNESS
USE IMPEDANCE
USE COMPLIANCE

AUGMENTATIONS
fSTART	STOPg GRAVITY COMP

PARAMETER LOADS Comply

LOAD DOF
LOAD CYCLE TIME
LOAD AXIS MASK
LOAD STATUS UPDATE
LOAD SAMPLING PERIOD
LOAD FREQUENCY RESPONSE

Gains� LOAD PID
LOAD DAMPING VALUES

Limits� LOAD JOINT LIMIT
LOAD VELOCITY LIMIT
LOAD GAIN LIMIT

Table C
� � Axis Servo Data Pro�le

Con�guration
Input Command Data SET ADJ JOG
POSITION
VELOCITY
TORQUE
VELOCITY
ACCELERATION
FORCES

Request Input�
Output Posted SET ADJ JOG

Position� ACTUAL
DESIRED
MAX
MIN
HISTORY�
t�t��

Velocity� ACTUAL
DESIRED
MAX
MIN
HISTORY�
t�t��

Output Status

See � Data Knowledge

SUBSYSTEM LINK
Name�

Command Data
See � Subsystem Module Prole

Request Data

See � Data Knowledge

Receive Data
See � Data Knowledge

	�

UTAP�WD Standard Interface Environment

Table C
� � Tool Control Pro�le � Spin�

dle
Con�guration Comply

Name
Module Type US TOOL

Class� �Spindle�
Links Up� TASK LEVEL CONTROL

Links Down� PIO
Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

SELECTIONS
START TURNING
STOP TURNING
LOCK Z
UNLOCK Z

AUGMENTATIONS
USE FORCE
USE NO FORCE

PARAMETER LOADS Comply

LOAD SPEED
SPINDLE ORIENT

Input Data Accepted Comply

SPINDLE RETRACT TRAVERSE
SPINDLE RETRACT
SPINDLE ORIENT

Output Status

See � Data Knowledge

SUBSYSTEM LINK
Name�

Command Data
See � Subsystem Module Prole

Request Data

See � Data Knowledge

Receive Data
See � Data Knowledge

Table C
�� � Tool Control Pro�le �

Coolant
Con�guration Comply

Name
Module Type US TOOL

Class� �Spindle�
Links Up� TASK LEVEL CONTROL

Links Down� PIO
Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

SELECTIONS
START MIST
STOP MIST
START FLOOD
STOP FLOOD

Input Data Accepted

See � Data Knowledge

Output Status

See � Data Knowledge

SUBSYSTEM LINK
Name�

Command Data
See � Subsystem Module Prole

Request Data

See � Data Knowledge

Receive Data
See � Data Knowledge

	

UTAP�WD Standard Interface Environment

Table C
�� � Generic Sensor

Con�guration Comply

Name
Module Type US SENSOR

Class� �Generic�
Links Up� TASK LEVEL CONTROL

Links Down� PIO
Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

use� USE MEASUREMENT UNITS

SELECTIONS
START�STOP US START TRANSFORM
US STOP TRANSFORM
US START FILTER
US STOP FILTER

PARAMETER
load� US LOAD SAMPLING SPEED

US LOAD FREQUENCY
US LOAD TRANSFORM
US LOAD FILTER

Input Data Accepted

set� POSITION
ORIENTATION

Output Status Posted Comply

See Data Knowledge
post� SENSOR POST READING

SCALAR SENSOR POST READING
VECTOR SENSOR POST READING

Output Status

See � Data Knowledge

SUBSYSTEM LINK
Name�

Command Data
See � Subsystem Module Prole

Request Data

See � Data Knowledge

Receive Data
See � Data Knowledge

get� GET READING
GET ATTRIBUTES READING

Table C
�� � Sensor � Image

Con�guration
Name

Module Type US SENSOR
Class� �Image�

Links Up� TASK LEVEL CONTROL
Links Down� PIO

Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES
use� US IMAGE USE FRAME GRAB MODE

US IMAGE USE HISTOGRAM MODE
US IMAGE USE CENTROID MODE
US IMAGE USE GRAY LEVEL MODE
US IMAGE USE THRESHOLD MODE
US IMAGE COMPUTE SPATIAL DERIVATIVES MODE
US IMAGE COMPUTE TEMPORAL DERIVATIVES MODE
US IMAGE USE SEGMENTATATION MODE
US IMAGE USE RECOGNITION MODE
US IMAGE COMPUTE RANGE MODE
US IMAGE COMPUTE FLOW MODE

PARAMETER
load� US IMAGE LOAD CALIBRATION

Input Data Accepted

set� POSITION
ORIENTATION
US IMAGE ADJUST POSITION
US IMAGE ADJUST FOCUS

Output Status Posted

See � Data Knowledge
post� US �D SENSOR POST READING

US IMAGE POST SPECIFICATION
US IMAGE POST PIXEL MAP READING
US IMAGE POST HISTOGRAM READING
US IMAGE POST XY CHAR READING
US IMAGE POST BYTE SYMBOLIC READING
US IMAGE POST THRESHOLD READING
US IMAGE POST SPATIAL DERIVATIVE READING
US IMAGE POST TEMPORAL DERIVATIVE READING
US IMAGE POST RECOGNITION READING
US IMAGE POST RANGE READING
US IMAGE POST FLOW READING

Request Data

� See Data Knowledge
get� GET READING

GET ATTRIBUTES READING

Receive Data
See � Data Knowledge

	�

UTAP�WD Standard Interface Environment

Table C
�	 � Subsystem Task Level
Control

Con�guration Comply

Name
Module Type US TLC

Class� �Generic�
Links Up� TASK PROGRAM SEQUENCER

Links Down�
Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

use� US TLC USE JOINT REFERENCE FRAME
US TLC USE CARTESIAN REFERENCE FRAME
US TLC USE REPRESENTATION UNITS
US TLC USE ABSOLUTE POSITIONING MODE
US TLC USE RELATIVE POSITIONING MODE
US TLC USE WRIST COORDINATE FRAME
US TLC USE TOOL TIP COORDINATE FRAME
US TLC USE MODIFIED TOOL LENGTH OFFSETS
US TLC USE NORMAL TOOL LENGTH OFFSETS
US TLC USE NO TOOL LENGTH OFFSETS
US TLC USE KINEMATIC RING POSITIONING MODE

load� US TLC LOAD DOF
US TLC LOAD CYCLE TIME
US TLC LOAD REPRESENTATION UNITS
US TLC LOAD LENGTH UNITS
US TLC LOAD RELATIVE POSITIONING
US TLC ZERO RELATIVE POSITIONING
US TLC ZERO PROGRAM ORIGIN
US TLC LOAD KINEMATIC RING POSITIONING MODE
US TLC LOAD BASE PARAMETERS
US TLC LOAD TOOL PARAMETERS
US TLC LOAD OBJECT
US TLC LOAD OBJECT BASE
US TLC LOAD OBJECT OFFSET
US TLC LOAD DELTA
US TLC LOAD OBSTACLE VOLUME
US TLC LOAD NEIGHBORHOOD
US TLC LOAD FEED RATE
US TLC LOAD TRAVERSE RATE
US TLC LOAD ACCELERATION
US TLC LOAD JERK
US TLC LOAD PROXIMITY
US TLC LOAD CONTACT FORCES
US TLC LOAD JOINT LIMIT
US TLC LOAD CONTACT FORCE LIMIT
US TLC LOAD CONTACT TORQUE LIMIT
US TLC LOAD SENSOR FUSION POS LIMIT
US TLC LOAD SENSOR FUSION ORIENT LIMIT
US TLC LOAD SEGMENT TIME
US TLC LOAD TERMINATION CONDITION
US TLC INCR VELOCITY
US TLC INCR ACCELERATION

Table C
�� � Subsystem Task Level

Control � cont

selections� US TLC START MANUAL MOTION

US TLC STOP MANUAL MOTION
US TLC START AUTOMATIC MOTION
US TLC STOP AUTOMATIC MOTION
US TLC START TRAVERSE MOTION
US TLC STOP TRAVERSE MOTION
US TLC START GUARDED MOTION
US TLC STOP GUARDED MOTION
US TLC START COMPLIANT MOTION
US TLC STOP COMPLIANT MOTION
US TLC START FINE MOTION
US TLC STOP FINE MOTION
US TLC START MOVE UNTIL MOTION
US TLC STOP MOVE UNTIL MOTION
US TLC START STANDOFF DISTANCE
US TLC STOP STANDOFF DISTANCE
US TLC START FORCE POSITIONING MODE
US TLC STOP FORCE POSITIONING MODE

Input Data Accepted

US TLC SET GOAL POSITION
US TLC GOAL SEGMENT
US TLC ADJUST AXIS

Output Status

See � Data Knowledge

SUBSYSTEM LINK
Name�

Command Data
See � Subsystem Module Prole

Request Data

See � Data Knowledge

Receive Data
See � Data Knowledge
US TLC UPDATE SENSOR FUSION

	�

UTAP�WD Standard Interface Environment

Table C
� � Subsystem Task Level
Control

Con�guration Comply

Name
Module Type US TLC

Class� �Generic�
Links Up� TASK PROGRAM SEQUENCER

Links Down�
Other�

Interface� GENERICS
DATA KNOWLEDGE
ERRORS

MODES Comply

Task Level Generics
use� US TLC SELECT PLANE

US TLC USE CUTTER RADIUS COMPENSATION
load� US TLC LOAD DOF

selections� US TLC START CUTTER RADIUS COMPENSATION
US TLC STOP CUTTER RADIUS COMPENSATION

Input Data Accepted

US TLC STRAIGHT TRAVERSE
US TLC ARC FEED
US TLC STRAIGHT FEED
US TLC PARAMETRIC �D CURVE FEED
US TLC PARAMETRIC �D CURVE FEED
US TLC NURBS KNOT VECTOR
US TLC NURBS CONTROL POINT
US TLC NURBS FEED

Output Status

See � Data Knowledge

SUBSYSTEM LINK
Name�

Command Data
See � Subsystem Module Prole

Request Data

See � Data Knowledge

Receive Data
See � Data Knowledge
US TLC UPDATE SENSOR FUSION

��

UTAP�WD Standard Interface Environment

STATUS
RECEIVE DATA

COMMAND
REQUEST DATA

NAME ID
CONFIG:
- upper system (link)
- functions
(list)- subsystems used (list)
- parameters needed for
function- input data (for
motion)- output data (from
motion)- input request data
- output request
data- receive data

POST
(use DATA KNOKWLEDGE Profile)

-

MODE PARAMETER - USE, START, STOP
CONTROL PARAMETER: - LOAD, INCREMENT,
DATA PARAMETER:- SET, ADJUST, JOG,
REQUEST DATA - use DATA KNOWLEDGE Profile (GET)
GENERIC PROFILE

STARTUP, SHUTDOWN, RESET
ENABLE(id), DISABLE(id), ESTOP
INIT,START,STOP,ABORT,
SUSPEND,RESUME,
{BEGIN,NEXT,CLEAR}_SINGLE_STEP,
MARK_BREAKPOINT,MARK_EVENT

STATUS
or

DATA READINGS

GOAL COMMAND
or
OBJECT KNOWLEDGE REQUEST

-

IN
 POST (use DATA KNOWLEDGE Profile)

OUT
 MODE PARAMETER - USE, START, STOP

CONTROL PARAMETER - LOAD, INCREMENT,
DATA PARAMETER - SET, ADJUST, JOG,

REQUEST DATA - use DATA KNOWLEDGE Profile (GET)
GENERIC PROFILE

STARTUP, SHUTDOWN, RESET
ENABLE(id), DISABLE(id), ESTOP

INIT,START,STOP,ABORT,
SUSPEND,RESUME,

{BEGIN,NEXT,CLEAR}_SINGLE_STEP,
MARK_BREAKPOINT,MARK_EVENT

STATUS
RECEIVE DATA

COMMAND
REQUEST DATA

-

IN
POST (use DATA KNOWLEDGE Profile)

OUT
MODE PARAMETER - USE, START, STOP
CONTROL PARAMETER - LOAD, INCREMENT,
DATA PARAMETER- SET, ADJUST, JOG,
REQUEST DATA - use DATA KNOWLEDGE Profile (GET)
GENERIC PROFILE

STARTUP) SHUTDOWN, RESET
ENABLE(id), DISABLE(id), ESTOP
INIT,START,STOP,ABORT,
SUSPEND,RESUME,
{BEGIN,NEXT,CLEAR}_SINGLE_STEP,
MARK_BREAKPOINT,MARK_EVENT

2 ... n-1
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

Figure C
� � Module Pro�le Speci�cation

��

UTAP�WD Standard Interface Environment

Annex D
�informative�

Examples

D�� API Interface Example

The UTAP message format provides the size
and structure for the interfaces The UTAP
messages de�ne the information that crosses
the communication channel �or link or wire�
This message interface is supposed to be �ex�
ible� but not necessarily suitable for applica�
tion programming One may require an API
to sit between the message interface and the
programmer� much like a device driver hides
the implementation details of a device Fig�
ure D� illustrates the relationship between
the superior and the subordinate in such a
setup An API exists in the superior as a ab�
straction mechanism for communicating with
the subordinate

The programmer can use the UTAP isomor�
phic functional API or can use existing soft�
ware that has a customized middleware to
map the application code into the UTAP mes�
sage interface This section will present an
example that illustrates the �rst possibility �
using the UTAP isomorphic functional API
for servo control The hope is that this func�
tional API is similar to most existing prod�
ucts and can be achieved by renaming key�
words with new procedural names and re�
ordering the procedural parameters

An example to control a �DOF servo from
the task level control module will be devel�
oped In this example� the �rst point of il�
lustration will be to use the API to de�ne a
hi�gain and a low�gain mode Within the ex�
ample� the API subroutine calls still use the
heap �or pointer to the data� concept to pass
parameters

hi�gain
�

double p��		� i��		� d��	�

double ilimit��	�

 UTAP Message Interface

SUPERIOR

SUBORDINATE

API

Figure D
� � Superior use of API In�
terface to Command Subordinate

us�begin�macro
�hi�gain��

us�axis�servo�load�pid�gain
�p��i��d�

limiti���	� us�axis�servo�load�integration�limit
�ilimit�

us�end�macro
�

�

lo�gain
�

double p��	� i��		� d��	�

double ilimit��	�

us�begin�macro
�lo�gain��

us�axis�servo�load�pid�gain
�p��i��d�

ilimit���	� us�axis�servo�load�integration�limit
�ilimit�

us�end�macro
�

Once we have the parameters and modes de�
�ned� we can then work on the process model
Within the SERVO interface process� you would
need to startup� run� and shutdown

Servo�Interface�init
 �

us�axis�servo�load�dof
�� �� assign dof for heap

us�axis�servo�use�degree�units
� �� prefer degrees to ra

us�servo�init
� �� init servos

us�servo�enable
� ��

hi�gain
� �� set up hi gain

lo�gain
� �� set up lo gain

�

The actual process will be to initialize the
servo� use hi�gain parameters with PID con�
trol mode� and then move to a desired joint
position The concept of getting and updat�
ing readings of the actual position will also be
developed The test fuzzy equal was coined
to provide an approximately equal function

Servo�Interface
 �

double joint�

us�use�selection
us�get�selection
�DOFSERVO���

us�axis�servo�load�absolute�positioning
�

us�startup
�

Servo�interface�init
�

us�use�macro
�hi�gain��

us�use�pid
�

us�axis�servo�home
� �� reset s

��

UTAP�WD Standard Interface Environment

us�start
� �� now the system will move home

�� One time move

joint � �	�

us�axis�servo�set�position
joint�

�� Post actual readings

� ROUTE p�

double now�

p�type � ROUTE�STATUS�

do � now�us�axis�servo�get�position
p � Modifier�t��real�

while
 fuzzy�equal
now� joint�

�

�

us�axis�servo�disable
�

us�axis�servo�shutdown
�

�

This example illustrated a simple servo inter�
face Although illustrative it presented an ad
hoc solution One would prefer to use a more
elegant internal control architecture �eg� see
�RCS�� �ONIKA�� �GISC�� �STELER�� �TCA��
among others cited in Bibliography� so that
one has better coordination of the sensing�
world modeling and behavior generation as�
pects of intelligent control

D���� Tool Manipulation

One can program the tool in several methods
A superior module can enable the tool in the
kinematic ring bitmask� and then send the
tool transform Another option is for the in�
terface to use CHANGE TOOL and TOOL OFFSET
messages and override the kinematic ring se�
lection mask

The tool o�set messages are more in line with
traditional NC tool programming
�see �KRAMER�� Within the UTAP inter�
face� it will be assumed that there is a table
of 	� tool length o�set numbers� and one or
more registers� each with a tool length o��
set modi�er number There is a tool length
o�set mode which can be set to one of three
values� NONE� NORMAL� and MODIFIED
In the NONE mode� no tool length o�sets
are used In the NORMAL mode� the tool
length o�set value in the position of the ta�
ble with the same index as the tool currently
in the spindle is used In the MODIFIED

mode� the value used for the tool length o��
set is the modi�er number in the currently
selected modi�er register added to the o�set
value for the tool currently in the spindle
There are currently no commands for setting
the values in the tool length o�set table or for
setting the values of the modi�er numbers in
the modi�er registers

D���� Sensor Programming Ex	
ample

The sensor messages were categorized by di�
mensionality The sensors were generically
grouped as scalar� vector� and �D array Across
each category� the GET READINGS message
is generally universal On the other hand�
posting messages were customized according
to expected sensors readings For example�
although one can construct a force�torque
query message from generic building blocks�
it is redundant since this sensor is so com�
mon �For example one can use the generic
message GET DATA LIST with attribute "
force j torque� Wherever possible� sensor

readings that were anticipated to be common
were given a distinguishing message name

The following example outlines an interface
to a force torque sensor

ROUTE route�

Attribute�t attr�

Modifier�t modifier�

us�ft�sensor�post�reading�t reading�

double fx�fy�fz� ��

double tx�ty�tz� ��

�� setup parameter attribute and modifier info

attr � Attribute�t�force ! Attribute�t�torque�

modifier�Modifier�t�actual�

�� setup routing info

route�type � ROUTE�STATUS�

route�times � ��

us�use�selection
us�get�selection
�TLC�A�FORCE�TORQUE�SENSOR��

us�load�dof
��

us�load�sampling�speed
�		Hz� ��

us�load�frequency
��	� ��

us�load�filter
us�sensor�load�filter�msg�t�HI�PASS��			�

us�start�filter
� ��

us�start
�

��

UTAP�WD Standard Interface Environment

��

while
�

� reading � us�sensor�get�attributes�reading
route�attr�modifier�

fx�reading�	�� fy� reading���� fz�reading����

tx�reading���� ty� reading���� tz�reading����

�� Now� do something with the values����

�

D�� Channel Interface Exam	
ple

As suggested� the communication protocol is
treated as a separate issue from language or
messaging strategy Just like the C language
�le descriptor construct separates the con�
cept of the physical implementation of a �le
or a device from the program� one could adopt
a communication message descriptor to sepa�
rate the concept from the actual communica�
tion implementation The message descriptor
could be used to implement�

� a piece of information that is shared
in memory and cyclically updated�

� a streamed interface

Below� one �nds an example of a possible in�
terface that combines the messaging with a
protocol The set of data type cms msg t and
corresponding functions cms open� cms send�
cms close constitute a portion of a communi�
cation management system �cms�

moduleA
 �

cms�msg�t msg�

us�tlc�set�traverse�rate�msg�t rate �

� US�TLC�SET�TRAVERSE�SPEED�

	 � �

msg�name � �TPS�TO�TLC�TOOL�A�

msg�protocol � SHMEM�

cms�open
�msg�

speed�value � �	� �� rpm

cms�send
msg� rate�

cms�close
msg�

In the example� one opens a communication
channel much like one opens a �le descrip�
tor within C In C� the �le descriptor can be
to a device or a �le Within UTAP Inter�
face Framework� one should assume that the
communication descriptor should allow any

number of communication protocols� for ex�
ample� shared memory or INET sockets

D�� Con�guration File Exam	
ple

Table D� illustrates an example REMOTE
con�guration �le Within the REMOTE con�
�guration� one can safely assume that single�
instance modules are unique� but one may
need to establish existence The enable �eld
de�nes whether a module exists For exam�
ple� a REMOTE system may only consist of
an operator joystick interface to the LOCAL
system In this case� most modules in the
REMOTE system would be inactive

Table D
� � Example Remote System
Con�guration File
Module Set Enabled Types

OI Y Panel

OM� OC� OK Y Vanilla

TD� TK� TDS Y Teach� Programmable

SGD Y see �SANCHO�

ADS N

SS N

PTPS�TPS�A Y Manipulation

PTPS�TPS�B Y Navigation

PTPS�TPS�C Y Tooling

The multi�instance modules require a supe�
rior�subordinate link to establish the group�
ing relationship The multi�instance modules
will implicitly be enabled if they are linked to
subordinates The subordinates are grouped
according to the UTAP architecture That is�
one cannot expect to group REMOTE mod�
ules within a LOCAL subordinate group Ta�
ble D� illustrates the format required for Fig�
ure � for the LOCAL system con�guration

�	

UTAP�WD Standard Interface Environment

Table D
� � Example Local System
Con�guration File
Superior Module Path Subordinate Module Name Type

PTPS TPS�A Manipulation
TPS�B Navigation
TPS�C Tooling

TPS�A TLC�A Position� Force
or Compliance� Impedance

TPS�B TLC�B Teleop� Guided� Autonomous

TPS�C TLC�C Position� Force� Impedance

TLC�A ROBOT�A MANIPULATION
ROBOT�B
SENSOR�A
TOOL�A
SENSOR�B FTS� IMAGE� PROBE
TOOL�B SPRAY
VS

TLC�A�SENSOR�B BEAM BREAK Switch

TLC�A�TOOL�B� GRIPPER grasp

TLC�A�ROBOT�A RRC position

TLC�A�ROBOT�B ACTIVE TOOL

TLC�A�SENSOR�A CAMERA

TLC�A�TOOL�A ��FINGER GRIPPER

TLC�A�VS Proximity �don�t care if sonar or laser�

TLC�B� ROBOT TRANSPORT �Lift�

TLC�C TOOL�A� SENSOR�A

TLC�C�TOOL�A ORBITAL SANDER

TLC�C�SENSOR�A CAMERA �stationary�

TLC�C� ROBOT� SENSOR

TLC�C�ROBOT COMPLIANT ROBOT

TLC�C�SENSOR WRIST FORCE SENSOR

D�� Example of Message Flow
for Sample UTAP Sce	
nario

An example of message tra�c in a sample
scenario will help to verify the interface def�
initions made about the tasks� sensors� ob�
ject models and part features Since UTAP
applications stress operator�supervised� teler�
obotic activity� the operator panel is funda�
mental to assessing strengths and weaknesses
A simple operator panel is given in Figure

reffg� oipanel This panel visually depicts one
of many possible operator interface paradigms
This operator paradigm uses the display to
do feature�based tooling The operator chooses
from the variety of feature panels �shape� pat�
tern� edge� force� to select the desired pa�
rameters It is assumed that defaults could
already be registered on the screen for a par�
ticular task The operator would then select
speci�c feature icons to modify and assist in
developing the feature�based world model

The panels match the object analysis For
example� in the Shape Panel� the panel items
have the following meaning � from the top
left� clockwise around the panel� target se�
lect� �D circle� �D rectangle� straight�line� �D
cylindrical volume� �D cubic volume� obsta�
cle� and a �D polygon The pattern panel
items correspond to horizontal raster� ver�
tical raster� concentric circular �ll� overlap�
dither� and orbital The nozzle panel items
correspond to density of spray or �ow rate � in
one possible data view If one selects to do an
edge instead of pattern �ll� the edge panel is
available for this task The edge panel allows
exact motion along the curvilinear edge� a
cosine weave pattern along the edge �eg� for
welding�� and dither correspond to the types
of motion along the edges of the part features
discussed within the features analysis

A UTAP sample session is described herein
for a refurbishing task The operator turns
on the system The operator waits for a prompt
from the system to proceed The operator de�
�nes a work area by teaching the robot points
about the edges of the work area The oper�
ator uses the joystick and moves the robot
to each desired location and presses a but�
ton to record the location The work area is
usually a default geometry �circle� rectangle�
The operator adjusts the parameter settings
that are speci�c to the process Each pro�
cess maintains a stando� distance though it
varies from process to process The opera�
tor presses a button to start the robot The

��

UTAP�WD Standard Interface Environment

robot will move through the taught geome�
try The operator observes the process for
correct execution During this time the oper�
ator can adjust the parameters as needed He
can pause the process if something is not op�
erating properly �eg� clogged sprayer� The
operator can also press an emergency stop
button if something is very wrong When the
process is complete� the operator inspects the
results If there are areas that were not done
properly the operator can do a touch�up op�
eration The operator can do the touch�up
himself by moving the robot and controlling
the tool or he can de�ne a work area around
the bad region and have the robot do it as
it did the larger region Once the work area
or part is �nished the operator moves to the
next work area or part

The following message �ow summarizes the
correspondence between a task steps and mes�
sage tra�c during a refurbishing task Within
the following message �ow summary� the chan�
nel across which the message is transmitted
is listed �rst The transmission channel is la�
belled
source to destination� where source and des�
tination correspond to the communicating mod�
ules Then� a UTAP message follows option�
ally requiring calling parameters Messages
that cause recursive action and subsequent
messaging before the next step can continue
are indented

Table D
	 � Sample Session � init

HUMAN TO OI powerup
OI TO OC US STARTUP�cong�
OI TO OM US STARTUP�cong�
OM TO OK US STARTUP�cong�
OI TO TD US STARTUP�cong�
OI TO TDS US STARTUP�cong�
TDS TO TK US STARTUP�cong�
TDS TO OK TPS�A�US GET SELECTION ID��SUBSYSTEM TPS�A

TDS TO PTPS US STARTUP�cong�
PTPS TO OK TPS�A�US GET SELECTION ID��SUBSYSTEM TPS�A

TDS TO TPS�A US STARTUP�cong�
TDS TO OK TLC�A�US GET SELECTION ID��SUBSYSTEM TPS�

RSC�A�US GET SELECTION ID��ROBOT A���
TC�A�US GET SELECTION ID��TOOL A���
TC�A�US GET SELECTION ID��SENSOR A���
SC�B�US GET SELECTION ID��SENSOR B���

TPS�A TO TLC�A US STARTUP�cong�
TLC�A TO OK RSC�A�US GET SELECTION ID��ROBOT A���

US USE SELECTION�RSC�A��
US STARTUP�cong�

TLC�A TO OK TC�A�US GET SELECTION ID��TOOL A���
US USE SELECTION�TC�A�� US STARTUP�cong�

TLC�A TO OK SC�A�US GET SELECTION ID��SENSOR A���
US USE SELECTION�SC�A�� US STARTUP�cong�

TLC�A TO OK SC�B�US GET SELECTION ID��SENSOR B���
US USE SELECTION�SC�B�� US STARTUP�cong�

HUMAN TO OI enters Name and Passwd
OI TO TDS US TDS LOAD USER�OPERATOR�

� System Initialization�
TDS TO TK US USE SELECTION ID� US TK GET FRAMEWORK
TK TO TDS US POST FRAMEWORK�����

TDS TO PTPS US USE SELECTION ID�id for SUBSYSTEM�A� �
US USE FRAMEWORK��defaults��

PTPS TO TPS�A US USE SELECTION ID�id for SUBSYSTEM�A� �
US USE FRAMEWORK��defaults�� �

TPS�A TO TLC�A US USE SELECTION ID�id for RSC�A�
US BEGIN MACRO��default setup��
US LOAD DOF����
US LOAD REPRESENTATION�Euler��
US LOAD LENGTH UNITS�mm��
US USE CARTESIAN MODE �ALL��
US USE KINEMATIC RING� BASE 	 TOOL ��
� �same as� US USE TOOL TIP REFERENCE FRAME
US LOAD BASE PARAMETERS������
US USE SELECTION ID�id for TC�A��
US LOAD TOOL PARAMETERS�������
US END SELECTION�
US LOAD JOINT LIMITS������
US LOAD VELOCITY LIMIT�velmax��
US LOAD ACCELERATION LIMIT�accmax��
US LOAD TRAVERSE RATE�tr�� US LOAD FEED RA
US END MACRO
US USE MACRO��default setup���

TLC�A TO RSC�A US USE SELECTION ID�id for robot servos A��
US BEGIN MACRO��default setup���
US LOAD JOINT LIMIT������
US LOAD VELOCITY LIMIT������
US LOAD PID GAIN�p�i�d��
US USE ABSOLUTE POSITION MODE��
US USE RADIAN UNITS���
US USE PID���
�Closed loop control
 feedback every �� milliseconds�
US GET POSITION�ACTUAL� ��ms��
US END MACRO�
US END SELECTION�

��

UTAP�WD Standard Interface Environment

Table D
� � Start Teleoperation

�Assume lift in place�
HUMAN TO OI �selects subsystem A to do shared control to teach positions�

OI TO TDS US SELECT MODE�shared� x
axis�
TDS TO TK US USE SELECTION ID

US TK GET FRAMEWORK��stando� teach��
TK TO TDS US POST FRAMEWORK�����

TDS TO PTPS US USE SELECTION ID�id for SUBSYSTEM�A��
US USE FRAMEWORK��stando� teach��

PTPS TO TPS�A US USE SELECTION ID�id for SUBSYSTEM�A��
US USE FRAMEWORK��stando� teach�� �

TPS�A TO TLC�A US USE SELECTION ID�id for RSC�A�
US BEGIN MACRO��stando� teach��
US USE MACRO��defaults���
US START STANDOFF MOTION��x�� ���mm��
US START MANUAL MOTION�ALL X AXIS��
US END MACRO
US USE MACRO��stando� teach���

HUMAN TO OI push start button� waits for robot to home� then use joystick
OI TO TDS US START

TDS TO TPS�A US START
TPS�A TO TLC�A US HOME� US START�
TLC�A TO RSC�A US USE MACRO��default���

US HOME� �� put values in� for eventual motion
US ENABLE�ALL�� �� enable servos
US CLEAR BRAKES�ALL��
US START� �� software start

TLC�A TO SEN�A US START MACRO��range��
US LOAD SAMPLING SPEED�speed�
US LOAD FREQUENCY�freq�
�more sensor inits��
US END MACRO
US USE MACRO��range��
�Repeated Joystick Motion�

HUMAN TO OI � DOF joystick motion
OI TO TLC�A US BEGIN BLOCK� US ADJUST AXIS�ALL� values��

US END BLOCK�
�Monitors for stando� distance�

OI TO TLC�A US SET POSITION�desired values�
TLC�A TO RSC�A US SET POSITION�desires values��
RSC�A TO TLC�A US POST POSITION�actual values�

�Calibrate Corner of Rect�
HUMAN TO OI marks corner of feature �where feature � shape � pattern�

OI TO OC US SET CALIB�feature origin� rect��
OC TO OK now�US GET POSITION�actual��

rect�x�now�y� rect�y� now�z�
OC TO OK obj�US CREATE OBJECT�name� part t� rect� raster��

�Move to Second Point using Joystick Motion
 see above�
�Dene Second Corner�

HUMAN TO OI marks �nd corner of feature �where feature � shape � pattern�
OI TO OC US SET CALIB�feature o�set� rect��
OC TO OK now�US GET POSITION�actual��

obj�xlength � rect�x
 now�y�
obj�ylength � rect�y
 now�z�

OC TO OK US MODIFY OBJECT�obj��
�User nished teaching�

HUMAN TO OI presses button to end teaching
OI TO TDS US STOP

TDS TO TPS US STOP
TPS TO TLC US BEGIN MACRO��stando� teach halt��

US STOP MANUAL MOTION
US STOP STANDOFF MOTION
US END MACRO
US USE MACRO��stando� teach halt��

Table D
 � Start Automated Process

�Start Automated Process�
HUMAN TO OI �human presses button to get into process control scr

OI TO TDS US SELECT MODE�supervised� all �
OI TO TDS US SET TDS SELECT OPERATION��strip��
TDS TO TK US USE SELECTION ID� US TK GET FRAMEWO
TK TO TDS US POST FRAMEWORK�����

TDS TO PTPS US USE SELECTION ID�id for SUBSYSTEM�A� �
US USE FRAMEWORK��stando� teach��

PTPS TO TPS�A US USE SELECTION ID�id for SUBSYSTEM�A� �
US USE FRAMEWORK��stando� teach�� �

TPS�A TO TLC�A US USE SELECTION ID�id for RSC�A�
US BEGIN MACRO��stando� teach��
US USE MACRO��defaults���
US START STANDOFF MOTION��x�� ���mm��
US START MANUAL MOTION�ALL X AXIS��
US END MACRO
US USE MACRO��stando� teach���

TLC�A TO SEN�A US START MACRO��range��
US LOAD SAMPLING SPEED�speed�
US LOAD FREQUENCY�freq�
US END MACRO
US USE MACRO��range��

TLC�A TO TOOL�A US FLOW LOAD PARAMETERS��ow rate� beam� s

HUMAN TO OI �human presses button on OI to start process�
OI TO TDS US START���

TDS TO PTPS US USE SELECTION ID�id for SUBSYSTEM�A� � U
PTPS TO TPS�A US USE SELECTION ID�id for SUBSYSTEM�A� � U
TPS�A TO TLC�A US USE SELECTION ID�id for RSC�A�

US START���
TLC�A TO SEN�A US ENABLE��

US START���
TLC�A TO TOOL�A US ENABLE���

US START���
TLC�A TO ROBOT�A US ENABLE���

US CLEAR BRAKES���
US START���
�Subsystem TLC�A Series of commands to do raster p

SEN�A TO TLC�A US POST READING��range reading��
TLC�A TO ROBOT�A US AXIS SERVO SET POSITION��desired position�
ROBOT�A TO TLC�A US POST READING��actual position��

US GENERIC STATUS REPORT�executing� progres
���
US GENERIC STATUS REPORT�nished� succeede

�

UTAP�WD Standard Interface Environment

ESTOP
ESTOP

VIEW
PANEL

MODE
TELOP

COMMAND
CALIBRATE

OPERATION
 SANDING

PENDANT
 CAMERA

TOOL SET
 ORBITAL

��
��
��
��

Shape:

��
��
�
����
��
�

Video Image 1

Pattern:� Edge:

UTAP REFURBISHING SYSTEM

��Force:

PARAMETERS
 FEED RATE

VIEW
PANEL

PART
FUSELAGE

 CALIBRATION

MODE
TELOP

COMMAND
CALIBRATE

OPERATION
 SANDING

PENDANT
 CAMERA

X

X

Video Image 2 - Closeup

 X

TOOL SET
 ORBITAL

��
��Nozzle:�

Figure D
� � Example OI Control Panel

��

UTAP�WD Standard Interface Environment

Annex E
�informative�

Related Standards

E�� RS���D

EIA�RS�
	D is a standard programming lan�
guage that is intended to serve as a uniform
interface for command and control of numer�
ically controlled machine tools

E�� RS���

The UTAP operator interfaces will use the
RS		� existing standard to de�ne operator
control and modes of operation

E�� POSIX

ISO�IEC ��	� and IEEE ���� standard se�
ries are intended to de�ne a standard portable
operating system interface and environment
to support application portability at the source�
code level Areas of POSIX standardization
e�orts include de�nitions for system services
user interface �shell� and associated commands
real�time extensions networking protocols graph�
ical interfaces data base management system
interfaces object and binary code portabil�
ity system con�guration and resource avail�
ability behavior of system services for sys�
tems supporting concurrency within a single
process

E�� IEC ����	�

Parent Task Program Sequencing input shall

use IEC���� Part � as a the interface lan�
guage to describe any parallel or simultane�
ous behavior

IEC ���� Part � speci�es the syntax and se�
mantics of a uni�ed suite of programming
languages for Programmable Controllers �PCs�

These consist of two textual languages� IL
�instruction lists� and ST �Structured Text�
and two graphical languages LD �Ladder Di�
agram� and FBD �Function Block Diagram�
Sequential Function Chart �SFC� elements
are de�ned for structuring the internal orga�
nization of PC programs and function blocks
written in one of the 	 languages

The SFC elements provide a means of parti�
tioning a PC program organization unit into
a set of steps and transitions inter�connected
by directed links Associated with each step
is a set of actions� and with each transition
is associated a transition condition Because
SFC elements require storage of state infor�
mation� the only program organization units
which can be structured using these elements
re function blocks and programs Con�gura�
tion elements are de�ned which support the
installation of PC programs into PC systems
and include con�gurations� resources� tasks�
global variables� and access paths A con�g�
uration contains one or more resources �eg�
CPU� each of which may contain one or more
tasks and programs

E�� ANSI�RIA R��	�
	��

The American National Standard �ANSI� for
Industrial Robots and Robot Systems Safety
Requirements� ANSI�RIA R����������� Spon�
sor� RIA was approved � August ��� ����
The purpose of this standard is to provide
guidelines for industrial robot manufacture�
remanufacture and rebuild robot system in�
stallation and methods of safeguarding to
enhance the safety of personnel associated
with the use of robots and robot systems�

E�
 EIA Standard RS	�
�	A

This standard comply with terminology de�
�ned in EIA�RS��
�A for �Axis and Motion
Nomenclature for Numerically Controlled Ma�
chines�

��

UTAP�WD Standard Interface Environment

E�� XDR

Public�domain set of routines to allow C pro�
grammers to describe arbitrary data struc�
tures in a machine�independent fashion Data
for remote procedure calls �RPC� are encoded
and decoded using XDR Can be used for
other heterogeneous platform communication
as well

��

UTAP�WD Standard Interface Environment

Annex F
�informative�

Target Applications

The architecture has been developed for gen�
eral aircraft maintenance and remanufactur�
ing applications Among the many applica�
tions in aircraft maintenance and remanufac�
turing� three target applications were speci��
cally addressed� stripping paint from the skin
of an aircraft surface �nishing and advanced
cutting The potential application of teler�
obotics to these applications is described in
this section

F�� Paint Stripping

One way of stripping paint from the skin of an
aircraft is to blast Plastic Media Bead �PMB�
on the painted surface of the aircraft The
operator applies PMB to a targeted surface
area with a certain pressure� using the blast
gun located at a designated distance from the
surface with a certain orientation �relative to
the tangential plane of the surface� To cover
the entire surface area of an aircraft� a mobile
platform or a telecrane is used to move the
operator around the aircraft More specif�
ically� the paint stripping task requires the
following subtasks and considerations�

a� The positioning of the mobile plat�
form at a location that allows the oper�
ator to cover the new targeted area with
su�cient dexterity

b� The maintaining of the designated
distance and orientation of the gun with
respect to the blasting surface� while fol�
lowing the proper trajectory

c� The controlling of the speed of the
gun based on the visual monitoring of the
progress of stripping Due to the pos�
sible di�erence in paint thickness� with�
out proper monitoring of the progress of

stripping for adjusting speed and pressure
of blast� over�stripping as well as under�
stripping may result The skill of the op�
erator is important for this task

d� The �nishing up process to strip
under�stripped areas

It is expected that the application of teler�
obotics to the above paint stripping task can
bring forth the following advantages�

a� The operator can stay in a remote
location protected from pollutant contam�
ination during operation� such that not
only safety but also e�ciency in task ex�
ecution can be enhanced

b� The machine may be better in ac�
curacy and consistency for maintaining the
distance and orientation of the gun with
respect to the blasting surface

c� The larger workspace of manipula�
tors can be exploited

d� The advanced visual sensors and dis�
plays may provide the operator with more
e�ective tools for inspecting the progress
of stripping

Based on the above observations� we can con�
struct the following telerobotics system for
the paint�stripping operation�

a� A dextrous manipulator replaces a
human operator in the immediate work�
site

b� The human operator is able to man�
ually control the manipulator

c� The human operator is given visual
displays for monitoring the progress of paint
stripping The visual displays may be
based on cameras mounted on the manip�
ulator or based on another manipulator
carrying cameras and light sources and
other sensors

��

UTAP�WD Standard Interface Environment

d� Sensor�based automatic operations
are provided for maintaining the distance
and orientation of the gun automatically

e� The manipulator trajectories can be
determined by the human operator� or by
the system� or by a combination of both
The trajectories generated by the system
can be from the o��line interactive graphic
simulation or from a functional form in
relation to the known geometric model
of the target surfaces The capability of
combining the manual and system trajec�
tories allows the integration of the opera�
tor skill in reacting to the visual monitor�
ing of the task progress

f� To execute the system generated tra�
jectories� the manipulator should be reg�
istered on a predetermined location or lo�
calized with respect to the geometric model
of the surface

g� The application program developer
should be provided with an iconic and
menu�driven interface that allows easy pro�
gramming That is� programming is done
by con�guring the existing software mod�
ules through an iconic and menu�driven
interactive computer interface

F�� Telerobotic Surface Fin	
ishing

Surface �nishing is an important task in air�
craft maintenance and remanufacturing The
damaged or corroded portion of the aircraft
skin is patched or replaced Uneven surfaces
are ground smooth Telerobotics technology
can be used for automatically controlling the
contact force�torque of a tool during surface
�nishing while maintaining the designated tool
angles with respect to the surface normal�
without !a priori knowledge of part geometry�
through shared control The tool path may
be generated either manually by the operator

or from the preassigned trajectory generated
by o��line programming The tool path may
be subject to certain arti�cial motion con�
straints Note that� in the case of manual
operation� the contact force�torque needs to
be guarded so as not to exceed the maximum
allowable force�torque Similar to the paint
stripping task� the operator should monitor
the progress of surface �nishing based on vi�
sual and graphic displays� so that the oper�
ator can �ne�tune or modify the tool path
accordingly

The surface �nishing task seems quite di�er�
ent from the paint stripping task However�
a common telerobotics architecture can be
used This is because both tasks are based
upon the shared and cooperative control be�
tween human and machine� in spite of the fact
that the surface �nishing task depends on
force�torque sensing whereas the paint strip�
ping task depends on proximity sensing for
sensor�based automatic operations The only
major di�erence is that the path fusion in
surface �nishing requires consideration of the
increment of force and torque together with
the increment of path

F�� Telerobotic Advanced Cut	

ting System

The maintenance and remanufacturing of air�
craft requires cutting of all types of material
in many di�erent shapes and sizes Teler�
obotics technology can provide shared control
for generating the tool trajectory in advanced
cutting The trajectory may be speci�ed by
prestored data generated by o��line program�
ming or by the operator through a hand con�
troller or by visual servoing of a marked path
on the object surface The system automati�
cally regulates the surface stand�o��separation
and the tool orientation at the designated
values� as well as imposing certain arti�cial
constraints on the trajectory The change of
tools and the initialization of system need to

��

UTAP�WD Standard Interface Environment

be incorporated into the system

The telerobotics architecture for advanced cut�
ting is basically same as that of paint strip�
ping and surface �nishing A unique feature
is the integration of visual servoing based on
vision sensors

��

UTAP�WD Standard Interface Environment

Annex G
�informative�

API Issues

De�ning the range of capability expected of
the API mechanism is problematic One can�
not arrive at the perfect solution that is ex�
ceedingly complex or prohibitively expensive
Instead� compromises must be made in arriv�
ing at an API mechanism that resolve issues
for �exibility and extensibility Issues that
the UTAP API will have to resolve �noted
by the �Unresolved� after the item� or have
been resolved �noted by the �Resolved� after
the item� include

G�� Messages� Macros and Nam	

ing

The UTAP interfaces will de�ne a broad API
Yet� it would be impossible to anticipate and
explicitly enumerate every possible control and
sensing algorithm and parameter For exam�
ple� suppose a better control algorithm is de�
veloped� how will the interface permit the se�
lection of this algorithm� Further� suppose
an additional compensation parameter could
be speci�ed within the servo control How
will the system adapt to the additional para�
metric capability� Will macro programma�
bility of an interface be allowed� and how
would this be achieved�

G�� Integration

One desires the ability to do on�line con�g�
uration and assignment of modules and con�
nect the module communication The abil�
ity to CONNECT�DISCONNECT to actual
devices �such as actuators or sensors� or vir�
tual devices �such as other modules� is pro�
vided by the UTAP API de�nitions Once
connected� one must be concerned with com�
munication data �ow

The connection for command communication
�such as a superior�subordinate connection�
is straightforward In this case� one sends
goal�action commands to a subordinate and
awaits results However� model�driven data
communication �peer�to�peer� is not directly
apparent For example� when you add a new
sensor to your system� how do you pump this
sensor data into an Trajectory Generation
module for dynamic path modi�cation Re�
ceiving data from a connection is straightfor�
ward One connects to the module� queries a
variable and reads the updates that the mod�
ule provides Unresolved is the application of
external data within a module UTAP API
provide externally�accessible model�driven vari�
ables within UTAP API modules for update
� such as overrides or o�sets � to allow in�
tegration of user�customized or third�party
sensor�based control �The question remains
whether enough externally�accessible model�
driven variables will be de�ned�

G�� De�nition Style

The style of the API de�nitions is of con�
siderable importance One could use ASN�
or the STEP modeling language EXPRESS
to develop a rigorous de�nition of the inter�
faces For all indications from UTAP API
members� this is be too cumbersome and ap�
proach One could use BNF� source head�
ers �les� or any syntax de�nition mechanism
to de�ne a grammar that each channel ac�
cepts There is a trade�o� between interface
language complexity and performance This
is an issue of major importance that has been
discussed but every solution has baggage

This De�nition Style issue also must resolve
the problem of di�erentiating between cycli�
cally executing processes �such as servo or
discrete logic module or trajectory generator�
and asynchronous processes �such as Part Pro�
gram Interpreter and the Task Coordination
Module� The problem is that a de�nition

�	

UTAP�WD Standard Interface Environment

consisting of a set of function calls alone is
not su�cient to describe the a cyclically exe�
cuting or event�driven API One needs to un�
derstand the trigger mechanism that drives
the event �such as an external clock or a syn�
chronization trigger from a cooperating mod�
ule� This issue has been discussed but no
�nal resolution has been forwarded

G�� Variable Length Arrays

One of the problems that arises de�ning in�
terfaces concerns the handling of variable length
arrays Unless one rejects the notion of �ex�
ibility� an interface should not preordain a
�xed array size for any interface One would
�nd passing � axis values to a ��axis mill less
than intuitive Heaps will be used to resolve
this problem

G�� Units and Representation

It is possible to mandate Standard Interna�
tional Units Yet� this can cause problems
since one prefers to use units that are natural
for the application �millimeters� inches� etc�
For many robotics and automation applica�
tions� the millimeter is the natural and intu�
itive way of thinking about a problem There
should be no reason to contradict the natural
reasoning process Further� NASA mandates
foot and pounds as the units of choice Thus�
one needs conversion One has to make the
decision as to whether the conversion is done
by the sender or the receiver In the vendor
marketplace� a commercial product module
should provide conversion utilities

UTAP modules shall state acceptable mea�
surement units within its interfaces The range
of acceptable measurements units may be�
come broader as the application requirements
dictate For example� an automated horse
may require the addition of the furlong dis�
tance as an interface measurement unit

The default units shall be SI� and are�

Table G
� � Parameter and Units

Distance or Length or Position$ Meters
Velocity$ Meters�Second

Acceleration$ Meters�Second�

Jerk$ Meters�Second�

Angular measurement$ Radians
Forces$ Newtons

Torques$ NewtonMeter
Light$ Lumen

Viscosity$ millipascalSecond �mPa S�
Humidity$ Grams�Meter� �That�s gram

Temperature$ Celsius
Noise$ Decibel

From a standards aspect� data exchange be�
tween modules is designed to be in a neutral
representation However� selection of the cor�
rect neutral representation is also problem�
atic The UTAP modules shall support API
de�nitions with selectable representation as
a part of the mode control

NOTE � � The UTAP interfaces include the
representation measurement units of an in�
terface item� Incompatibility among like�
representation� dissimilar�units interfaces will
be resolved by providing use measurement units
or use representation type messaging� If the
module does not support the measurement
units or representation types that you desire�
the programmer must perform the conver�
sion� It is assumed that more robust mod�
ules will be better able to handle a broader
variety of representation units and be ulti�
mately more commercially viable� For ex�
ample� a trajectory interface may accept tra�
jectory position descriptions in millimeters
or meters or even inch length units� Or the
trajectory may accept orientation represented
as Euler angles in degrees or radians or as el�
ements in a Homogeneous Matrix represen�
tation�

G�
 Selection

Multiple subordinate modules to be controlled
by one superior module is possible Because

��

UTAP�WD Standard Interface Environment

of the existence of alternatives� some mes�
sages to a subordinate can be ambiguous as
to their intent In the case of multiple axes
of control� one must resolve the destination
for which axis the command is intended The
framework will provide a device�module nam�
ing convention but the selection mechanism
is unresolved

G�� Parameterization

At opposite ends of the spectrum is a pro�
gramming facility with a large set of func�
tions and �xed parameters versus a program�
ming facility with small set of functions and
a wider range of arguments The informa�
tion content is the same Yet� the presen�
tation and programming is di�erent As for
comprehension� there are arguments for and
against both styles For example� source is
given below for the range of styles

�define NML�SERVO�SET�ABS�POSITION ���

struct nml�servo�set�abs�position�msg�t �

int msgid�

double "joint�position�

��

�define NML�SERVO�SET�REL�POSITION ���

struct nml�servo�set�rel�position�msg�t �

int msgid�

double "joint�position�

��

�define NML�SERVO�JOG ���

struct nml�servo�jog�msg�t �

int msgid�

int axis�

double speed�

��

�define NML�SERVO�ADJUST�AXIS ���

struct us�tlc�adjust�axis�msg�t �

int msgid�

int axis� �� axis mask

double "increment� �� if amount�	� system decides

��

Style �� Embed modes�

���

�define NML�SERVO�SET�POSITION ���

struct nml�servo�set�position�msg�t �

int msgid�

enum �absolute�

relative�

incremental�

jog� �� may not belong

� mode�

double "update�

��

To further cloud the issue one can turn both
the mode and the parameter into arguments
For example� one can set both the mode and
parameter type be it position� velocity or ac�
celeration

Style �� Arguments

���

�define NML�SERVO�SET�VALUE ���

struct nml�servo�set�msg�t �

int msgid�

enum �absolute�

relative�

incremental�

jog� �� may not belong

� mode�

enum �position�

velocity�

acceleration�

� parameter�

double "update�

��

The last case is more concise� however� unless
all combinatorial arguments states are valid�
illegal and illogical messages can be formed
For example� does jogging the acceleration
make sense� The UTAP interfaces are cur�
rently de�ned with a larger set of functions
to allow scaling within this mechanism� al�
though discussions are ongoing as to the e��
cacy of this method

G�� Aggregation Model

One of the issues e�ecting the speci�cation
of open architectures is the approach to con�
necting modules

� Consistent approach wherein explicit
module exists to translate from one level
of functionality to another level of func�
tionality This module may have zero �or
phantom�hidden� functionality� in that�
its only capability is to translate from a
representation at a higher level of abstrac�
tion into representation at a lower level of
abstraction

��

UTAP�WD Standard Interface Environment

The major bene�t to this approach is a
consistent paradigm that simpli�es inter�
faces between modules to a more manage�
able set and o�ers explicit scalability and
interoperability� in that� a direct swap of
modules without �rewiring� can be used
to improve performance

The major drawback to this approach is
that it is at �rst counterintuitive� and sec�
ond may appear to add too much over�
head in the communication

� Free�wiring allows interface tra�c from
a high level of abstraction to any low level
of abstraction Thus� not all modules are
necessary when building a system How�
ever� this method assumes that a higher
level module understands the needs and
representation of a lower level module The
drawback is that upgrading the control�
ling by adding modules to improve capa�
bility is not straightforward

�

UTAP�WD Standard Interface Environment

Annex H
�normative�

Interface Descriptions

The interfaces were de�ned as a set of mes�
sages Each message has an unique numeric
identi�er and data structure de�ning param�
eter values This annex contains the list of
interface messages sorted by module by type
and alphabetically� as well as the current in�
terface de�nitions

The C�C�� language was used to de�ne mes�
sages This annex gives source listings of the
header �les used to de�ne the interfaces The
header �les are given in the following order�

� utap disclaimer�h

� generic defs�h

� utap classi�cation�h

� utap info model�h

� utap protocol�h

� utap data defs�h

� utap interfaces�h

� utap api�h

The interfaces de�ned with API function calls
were generated by a shell script that trans�
lated the messages data structures into func�
tion prototypes The enum and union C��
constructs did not have direct mapping within
the calling function� so placeholders were used

The information models� messages� and func�
tion prototypes in the header �les were com�
piled with a GNU gcc version ��� a variant
of C�� The code may look like C� but it is
actually C��

��

UTAP�WD Standard Interface Environment

H�� Interface List

UTAP�INTERFACE�DEFINITIONS

GENERIC

US�STARTUP

US�SHUTDOWN

US�RESET

US�ENABLE

US�DISABLE

US�ESTOP

US�START

US�STOP

US�ABORT

US�HALT

US�INIT

US�HOLD

US�PAUSE

US�RESUME

US�ZERO

US�BEGIN�SINGLE�STEP

US�NEXT�SINGLE�STEP

US�CLEAR�SINGLE�STEP

US�BEGIN�BLOCK

US�END�BLOCK

US�BEGIN�PLAN

US�END�PLAN

US�USE�PLAN

US�BEGIN�MACRO

US�END�MACRO

US�USE�MACRO

US�BEGIN�EVENT

US�END�EVENT

US�MARK�BREAKPOINT

US�MARK�EVENT

US�GET�SELECTION�ID

US�POST�SELECTION�ID

US�USE�SELECTION

US�USE�AXIS�MASK

US�USE�EXT�ALGORITHM

US�LOAD�EXT�PARAMETER

US�GET�EXT�DATA�VALUE

US�POST�EXT�DATA�VALUE

US�SET�EXT�DATA�VALUE

US�LOAD�STATUS�TYPE

US�LOAD�STATUS�PERIOD

US�GENERIC�STATUS�REPORT

ERRORS

US�ERROR�COMMAND�NOT�IMPLEMENTED

US�ERROR�COMMAND�ENTRY

US�ERROR�DUPLICATE�NAME

US�ERROR�BAD�DATA

US�ERROR�NO�DATA�AVAILABLE

US�ERROR�SAFETY�VIOLATION

US�ERROR�LIMIT�EXCEEDED

US�ERROR�OVER�SPECIFIED

US�ERROR�UNDER�SPECIFIED

AXIS�SERVO

US�AXIS�SERVO�USE�ANGLE�UNITS

US�AXIS�SERVO�USE�RADIAN�UNITS

US�AXIS�SERVO�USE�ABS�POSITION�MODE

US�AXIS�SERVO�USE�REL�POSITION�MODE

US�AXIS�SERVO�USE�ABS�VELOCITY�MODE

US�AXIS�SERVO�USE�REL�VELOCITY�MODE

US�AXIS�SERVO�USE�PID

US�AXIS�SERVO�USE�FEEDFORWARD�TORQUE

US�AXIS�SERVO�USE�CURRENT

US�AXIS�SERVO�USE�VOLTAGE

US�AXIS�SERVO�USE�STIFFNESS

US�AXIS�SERVO�USE�COMPLIANCE

US�AXIS�SERVO�USE�IMPEDANCE

US�AXIS�SERVO�START�GRAVITY�COMPENSATION

US�AXIS�SERVO�STOP�GRAVITY�COMPENSATION

US�AXIS�SERVO�LOAD�DOF

US�AXIS�SERVO�LOAD�CYCLE�TIME

US�AXIS�SERVO�LOAD�PID�GAIN

US�AXIS�SERVO�LOAD�JOINT�LIMIT

US�AXIS�SERVO�LOAD�VELOCITY�LIMIT

US�AXIS�SERVO�LOAD�GAIN�LIMIT

US�AXIS�SERVO�LOAD�DAMPING�VALUES

US�AXIS�SERVO�HOME

US�AXIS�SERVO�SET�BRAKES

US�AXIS�SERVO�CLEAR�BRAKES

US�AXIS�SERVO�SET�TORQUE

US�AXIS�SERVO�SET�CURRENT

US�AXIS�SERVO�SET�VOLTAGE

US�AXIS�SERVO�SET�POSITION

US�AXIS�SERVO�SET�VELOCITY

US�AXIS�SERVO�SET�ACCELERATION

US�AXIS�SERVO�SET�FORCES

US�AXIS�SERVO�JOG

US�AXIS�SERVO�JOG�STOP

TOOL

US�SPINDLE�RETRACT�TRAVERSE

US�SPINDLE�LOAD�SPEED

US�SPINDLE�START�TURNING

US�SPINDLE�STOP�TURNING

US�SPINDLE�RETRACT

US�SPINDLE�ORIENT

US�SPINDLE�LOCK�Z

US�SPINDLE�USE�FORCE

US�SPINDLE�USE�NO�FORCE

US�FLOW�START�MIST

US�FLOW�STOP�MIST

US�FLOW�START�FLOOD

US�FLOW�STOP�FLOOD

US�FLOW�LOAD�PARAMETERS

SENSOR

US�START�TRANSFORM

US�STOP�TRANSFORM

US�START�FILTER

US�STOP�FILTER

US�SENSOR�USE�MEASUREMENT�UNITS

US�SENSOR�LOAD�SAMPLING�SPEED

US�SENSOR�LOAD�FREQUENCY

US�SENSOR�LOAD�TRANSFORM

US�SENSOR�LOAD�FILTER

US�SENSOR�GET�READING

US�SENSOR�GET�ATTRIBUTES�READING

US�VECTOR�SENSOR�GET�READING

US�FT�SENSOR�POST�READING

US�SCALAR�SENSOR�POST�READING

US�VECTOR�SENSOR�POST�READING

US��D�SENSOR�LOAD�ARRAY�PATTERN

US��D�SENSOR�USE�ARRAY�TYPE

US��D�SENSOR�GET�READING

US��D�SENSOR�POST�READING

US�IMAGE�USE�FRAME�GRAB�MODE

US�IMAGE�USE�HISTOGRAM�MODE

US�IMAGE�USE�CENTROID�MODE

US�IMAGE�USE�GRAY�LEVEL�MODE

US�IMAGE�USE�TRESHOLD�MODE

US�IMAGE�COMPUTE�SPATIAL�DERIVATIVES�MODE

��

UTAP�WD Standard Interface Environment

US�IMAGE�COMPUTE�TEMPORAL�DERIVATIVES�MODE

US�IMAGE�USE�SEGMENTATATION�MODE

US�IMAGE�USE�RECOGNITION�MODE

US�IMAGE�COMPUTE�RANGE�MODE

US�IMAGE�COMPUTE�FLOW�MODE

US�IMAGE�LOAD�CALIBRATION

US�IMAGE�SET�POSITION

US�IMAGE�ADJUST�POSITION

US�IMAGE�ADJUST�FOCUS

US�IMAGE�POST�SPECIFICATION

US�IMAGE�POST�PIXEL�MAP�READING

US�IMAGE�POST�HISTOGRAM�READING

US�IMAGE�POST�XY�CHAR�READING

US�IMAGE�POST�BYTE�SYMBOLIC�READING

US�IMAGE�POST�TRESHOLD�READING

US�IMAGE�POST�SPATIAL�DERIVATIVE�READING

US�IMAGE�POST�TEMPORAL�DERIVATIVE�READING

US�IMAGE�POST�RECOGNITION�READING

US�IMAGE�POST�RANGE�READING

US�IMAGE�POST�FLOW�READING

PROGRAMMABLE�IO

US�PIO�ENABLE

US�PIO�DISABLE

US�PIO�SET�MODE

US�PIO�CONTROL�WRITE

US�PIO�LOAD�SCALE

US�PIO�DATA�WRITE

US�PIO�DATA�READ

US�PIO�BIT�READ

US�PIO�BIT�SET

US�PIO�TOGGLE�BIT

US�PIO�POST�DATA

TASK�LEVEL�CONTROL

US�TLC�USE�JOINT�REFERENCE�FRAME

US�TLC�USE�CARTESIAN�REFERENCE�FRAME

US�TLC�USE�REPRESENTATION�UNITS

US�TLC�USE�ABSOLUTE�POSITIONING�MODE

US�TLC�USE�RELATIVE�POSITIONING�MODE

US�TLC�USE�WRIST�COORDINATE�FRAME

US�TLC�USE�TOOL�TIP�COORDINATE�FRAME

US�TLC�CHANGE�TOOL

US�TLC�USE�MODIFIED�TOOL�LENGTH�OFFSETS

US�TLC�USE�NORMAL�TOOL�LENGTH�OFFSETS

US�TLC�USE�NO�TOOL�LENGTH�OFFSETS

US�TLC�USE�KINEMATIC�RING�POSITIONING�MODE

US�TLC�START�MANUAL�MOTION

US�TLC�STOP�MANUAL�MOTION

US�TLC�START�AUTOMATIC�MOTION

US�TLC�STOP�AUTOMATIC�MOTION

US�TLC�START�TRAVERSE�MOTION

US�TLC�STOP�TRAVERSE�MOTION

US�TLC�START�GUARDED�MOTION

US�TLC�STOP�GUARDED�MOTION

US�TLC�START�COMPLIANT�MOTION

US�TLC�STOP�COMPLIANT�MOTION

US�TLC�START�FINE�MOTION

US�TLC�STOP�FINE�MOTION

US�TLC�START�MOVE�UNTIL�MOTION

US�TLC�STOP�MOVE�UNTIL�MOTION

US�TLC�START�STANDOFF�DISTANCE

US�TLC�STOP�STANDOFF�DISTANCE

US�TLC�START�FORCE�POSITIONING�MODE

US�TLC�STOP�FORCE�POSITIONING�MODE

US�TLC�LOAD�DOF

US�TLC�LOAD�CYCLE�TIME

US�TLC�LOAD�REPRESENTATION�UNITS

US�TLC�LOAD�LENGTH�UNITS

US�TLC�LOAD�RELATIVE�POSITIONING

US�TLC�ZERO�RELATIVE�POSITIONING

US�TLC�ZERO�PROGRAM�ORIGIN

US�TLC�LOAD�KINEMATIC�RING�POSITIONING�MODE

US�TLC�LOAD�BASE�PARAMETERS

US�TLC�LOAD�TOOL�PARAMETERS

US�TLC�LOAD�OBJECT

US�TLC�LOAD�OBJECT�BASE

US�TLC�LOAD�OBJECT�OFFSET

US�TLC�LOAD�DELTA

US�TLC�LOAD�OBSTACLE�VOLUME

US�TLC�LOAD�NEIGHBORHOOD

US�TLC�LOAD�FEED�RATE

US�TLC�LOAD�TRAVERSE�RATE

US�TLC�LOAD�ACCELERATION

US�TLC�LOAD�JERK

US�TLC�LOAD�PROXIMITY

US�TLC�LOAD�CONTACT�FORCES

US�TLC�LOAD�JOINT�LIMIT

US�TLC�LOAD�CONTACT�FORCE�LIMIT

US�TLC�LOAD�CONTACT�TORQUE�LIMIT

US�TLC�LOAD�SENSOR�FUSION�POS�LIMIT

US�TLC�LOAD�SENSOR�FUSION�ORIENT�LIMIT

US�TLC�LOAD�SEGMENT�TIME

US�TLC�LOAD�TERMINATION�CONDITION

US�TLC�INCR�VELOCITY

US�TLC�INCR�ACCELERATION

US�TLC�SET�GOAL�POSITION

US�TLC�GOAL�SEGMENT

US�TLC�ADJUST�AXIS

US�TLC�UPDATE�SENSOR�FUSION

US�TLC�SELECT�PLANE

US�TLC�USE�CUTTER�RADIUS�COMPENSATION

US�TLC�START�CUTTER�RADIUS�COMPENSATION

US�TLC�STOP�CUTTER�RADIUS�COMPENSATION

US�TLC�STRAIGHT�TRAVERSE

US�TLC�ARC�FEED

US�TLC�STRAIGHT�FEED

US�TLC�PARAMETRIC��D�CURVE�FEED

US�TLC�PARAMETRIC��D�CURVE�FEED

US�TLC�NURBS�KNOT�VECTOR

US�TLC�NURBS�CONTROL�POINT

US�TLC�NURBS�FEED

US�TLC�TELEOP�FORCE�REFLECTION�UPDATE

TASK�DESCRIPTION

US�TDS�LOAD�USER

US�TDS�SELECT�PROGRAM

US�TDS�EXECUTE�PROGRAM

US�TDS�SELECT�OPERATION

US�TDS�SELECT�OPMODE

US�TDS�LOAD�SELECTIONS

US�TDS�LOAD�REFERENCE�UNITS

US�TDS�LOAD�RATE�DEFAULTS

US�TDS�LOAD�ORIGIN

US�TDS�LOAD�SENSING�DEFAULTS

TASK�KNOWLEDGE

US�TK�DEFINE�FRAMEWORK

US�TK�MACRO�CREATE

US�TK�MACRO�DELETE

US�TK�MACRO�MODIFY

PARENT�TASK�PROGRAM�SEQUENCING

US�PTPS�SELECT�AGENT

US�TPS�SELECT�TOOL

US�PTPS�SELECT�SENSOR

US�PTPS�INTERP�RUN�PLAN

�

UTAP�WD Standard Interface Environment

US�PTPS�INTERP�HALT�PLAN

US�PTPS�INPUT�REQUEST

US�PTPS�OUTPUT�ENABLE�SUBSYSTEM

TASK�PROGRAM�SEQUENCING

US�TPS�FREESPACE�MOTION

US�TPS�GUARDED�MOTION

US�TPS�CONTACT�MOTION

US�TPS�SET�SUPERVISORY�MODE

US�TPS�SELECT�FEATURE

US�TPS�SELECT�MATERIAL

US�LOAD�OBSTACLE

US�LOAD�PATTERN

US�TPS�MARK�EVENT

US�TPS�ENABLE

OPERATOR�INTERFACE

US�BEGIN�FRAMEWORK

US�END�FRAMEWORK

US�CREATE�FRAMEWORK

US�DELETE�FRAMEWORK

US�ADD�SYMBOLIC�ITEM

US�DELETE�SYMBOLIC�ITEM

US�ADD�SYMBOLIC�ITEM�ATTR

US�DELETE�SYMBOLIC�ITEM�ATTR

US�SET�SYMBOLIC�ITEM�ATTR

OBJECT�MODELING

US�OM�CREATE

US�OM�DELETE

US�OM�MODIFY

OBJECT�CALIBRATION

US�OC�SET�CALIB

US�OC�GET�CALIB

US�OC�SET�ATTR

US�OC�GET�ATTR

OBJECT�KNOWLEDGE

US�OK�RECORD

US�OK�PLAYBACK

US�OK�CREATE�OBJ

US�OK�DELETE�OBJ

US�OK�MODIFY

US�OK�MODIFY�ATTRIBUTE

US�OK�ATTRIBUTE�QUERY

US�OK�OUTPUT�REGISTERED�OBJ�ID

US�OK�ATTRIBUTE�RESPONSE

TRAJECTORY�DESCRIPTION

US�TRD�OPEN

US�TRD�ERASE

US�TRD�RECORD

US�TRD�RECORD�ON

US�TRD�RECORD�OFF

US�TRD�FIND

US�TRD�NEXT

US�TRD�PREVIOUS

US�TRD�DELETE

US�TRD�NAME�ITEM

US�TRD�DELETE�ITEM

US�TRD�SET�JOINT�MODE

US�TRD�SET�CARTESIAN�MODE

US�TRD�MODIFY

US�TRD�ADD�ELEMENT

STATUS�GRAPHICS�DISPLAY

ANALYSIS�DIAGNOSIS�SYSTEM

US�ADS�COLLISION�DETECTED

SUBSYSTEM�SIMULATION

UTAP�DATA�DEFS

US�POST�ID

US�GET�OBJECT�ID

US�USE�OBJECT

US�GET�FEATURE

US�USE�FEATURE

US�GET�VALUE

US�POST�VALUE

US�GET�LIST

US�POST�LIST

US�ATTRIBUTE�POST�RESPONSE

US�ATTRIBUTE�GET�TIME

US�ATTRIBUTE�GET�POSITION

US�ATTRIBUTE�GET�ORIENTATION

US�ATTRIBUTE�GET�POSE

US�ATTRIBUTE�GET�VELOCITY

US�ATTRIBUTE�GET�ACCELERATION

US�ATTRIBUTE�GET�JERK

US�ATTRIBUTE�GET�FORCE

US�ATTRIBUTE�GET�TORQUE

US�ATTRIBUTE�GET�MASS

US�ATTRIBUTE�GET�TEMPERATURE

US�ATTRIBUTE�GET�PRESSURE

US�ATTRIBUTE�GET�VISCOSITY

US�ATTRIBUTE�GET�LUMINANCE

US�ATTRIBUTE�GET�HUMIDITY

US�ATTRIBUTE�GET�FLOW

US�ATTRIBUTE�GET�HARDNESS

US�ATTRIBUTE�GET�ROUGHNESS

US�ATTRIBUTE�GET�GEOMETRY

US�ATTRIBUTE�GET�TOPLOGY

US�ATTRIBUTE�GET�SHAPE

US�ATTRIBUTE�GET�PATTERN

US�ATTRIBUTE�GET�MATERIAL

US�ATTRIBUTE�GET�KINEMATICS

�

UTAP�WD Standard Interface Environment

H�� Sorted Interface List

US��D�SENSOR�GET�READING

US��D�SENSOR�LOAD�ARRAY�PATTERN

US��D�SENSOR�POST�READING

US��D�SENSOR�USE�ARRAY�TYPE

US�ABORT

US�ADD�SYMBOLIC�ITEM

US�ADD�SYMBOLIC�ITEM�ATTR

US�ADS�COLLISION�DETECTED

US�ATTRIBUTE�GET�ACCELERATION

US�ATTRIBUTE�GET�FLOW

US�ATTRIBUTE�GET�FORCE

US�ATTRIBUTE�GET�GEOMETRY

US�ATTRIBUTE�GET�HARDNESS

US�ATTRIBUTE�GET�HUMIDITY

US�ATTRIBUTE�GET�JERK

US�ATTRIBUTE�GET�KINEMATICS

US�ATTRIBUTE�GET�LUMINANCE

US�ATTRIBUTE�GET�MASS

US�ATTRIBUTE�GET�MATERIAL

US�ATTRIBUTE�GET�ORIENTATION

US�ATTRIBUTE�GET�PATTERN

US�ATTRIBUTE�GET�POSE

US�ATTRIBUTE�GET�POSITION

US�ATTRIBUTE�GET�PRESSURE

US�ATTRIBUTE�GET�ROUGHNESS

US�ATTRIBUTE�GET�SHAPE

US�ATTRIBUTE�GET�TEMPERATURE

US�ATTRIBUTE�GET�TIME

US�ATTRIBUTE�GET�TOPLOGY

US�ATTRIBUTE�GET�TORQUE

US�ATTRIBUTE�GET�VELOCITY

US�ATTRIBUTE�GET�VISCOSITY

US�ATTRIBUTE�POST�RESPONSE

US�AXIS�SERVO�CLEAR�BRAKES

US�AXIS�SERVO�HOME

US�AXIS�SERVO�JOG

US�AXIS�SERVO�JOG�STOP

US�AXIS�SERVO�LOAD�CYCLE�TIME

US�AXIS�SERVO�LOAD�DAMPING�VALUES

US�AXIS�SERVO�LOAD�DOF

US�AXIS�SERVO�LOAD�GAIN�LIMIT

US�AXIS�SERVO�LOAD�JOINT�LIMIT

US�AXIS�SERVO�LOAD�PID�GAIN

US�AXIS�SERVO�LOAD�VELOCITY�LIMIT

US�AXIS�SERVO�SET�ACCELERATION

US�AXIS�SERVO�SET�BRAKES

US�AXIS�SERVO�SET�CURRENT

US�AXIS�SERVO�SET�FORCES

US�AXIS�SERVO�SET�POSITION

US�AXIS�SERVO�SET�TORQUE

US�AXIS�SERVO�SET�VELOCITY

US�AXIS�SERVO�SET�VOLTAGE

US�AXIS�SERVO�START�GRAVITY�COMPENSATION

US�AXIS�SERVO�STOP�GRAVITY�COMPENSATION

US�AXIS�SERVO�USE�ABS�POSITION�MODE

US�AXIS�SERVO�USE�ABS�VELOCITY�MODE

US�AXIS�SERVO�USE�ANGLE�UNITS

US�AXIS�SERVO�USE�COMPLIANCE

US�AXIS�SERVO�USE�CURRENT

US�AXIS�SERVO�USE�FEEDFORWARD�TORQUE

US�AXIS�SERVO�USE�IMPEDANCE

US�AXIS�SERVO�USE�PID

US�AXIS�SERVO�USE�RADIAN�UNITS

US�AXIS�SERVO�USE�REL�POSITION�MODE

US�AXIS�SERVO�USE�REL�VELOCITY�MODE

US�AXIS�SERVO�USE�STIFFNESS

US�AXIS�SERVO�USE�VOLTAGE

US�BEGIN�BLOCK

US�BEGIN�EVENT

US�BEGIN�FRAMEWORK

US�BEGIN�MACRO

US�BEGIN�PLAN

US�BEGIN�SINGLE�STEP

US�CLEAR�SINGLE�STEP

US�CREATE�FRAMEWORK

US�DELETE�FRAMEWORK

US�DELETE�SYMBOLIC�ITEM

US�DELETE�SYMBOLIC�ITEM�ATTR

US�DISABLE

US�ENABLE

US�END�BLOCK

US�END�EVENT

US�END�FRAMEWORK

US�END�MACRO

US�END�PLAN

US�ERROR�BAD�DATA

US�ERROR�COMMAND�ENTRY

US�ERROR�COMMAND�NOT�IMPLEMENTED

US�ERROR�DUPLICATE�NAME

US�ERROR�LIMIT�EXCEEDED

US�ERROR�NO�DATA�AVAILABLE

US�ERROR�OVER�SPECIFIED

US�ERROR�SAFETY�VIOLATION

US�ERROR�UNDER�SPECIFIED

US�ESTOP

US�FLOW�LOAD�PARAMETERS

US�FLOW�START�FLOOD

US�FLOW�START�MIST

US�FLOW�STOP�FLOOD

US�FLOW�STOP�MIST

US�FT�SENSOR�POST�READING

US�GENERIC�STATUS�REPORT

US�GET�EXT�DATA�VALUE

US�GET�FEATURE

US�GET�LIST

US�GET�OBJECT�ID

US�GET�SELECTION�ID

US�GET�VALUE

US�HALT

US�HOLD

US�IMAGE�ADJUST�FOCUS

US�IMAGE�ADJUST�POSITION

US�IMAGE�COMPUTE�FLOW�MODE

US�IMAGE�COMPUTE�RANGE�MODE

US�IMAGE�COMPUTE�SPATIAL�DERIVATIVES�MODE

US�IMAGE�COMPUTE�TEMPORAL�DERIVATIVES�MODE

US�IMAGE�LOAD�CALIBRATION

US�IMAGE�POST�BYTE�SYMBOLIC�READING

US�IMAGE�POST�FLOW�READING

US�IMAGE�POST�HISTOGRAM�READING

US�IMAGE�POST�PIXEL�MAP�READING

US�IMAGE�POST�RANGE�READING

US�IMAGE�POST�RECOGNITION�READING

US�IMAGE�POST�SPATIAL�DERIVATIVE�READING

US�IMAGE�POST�SPECIFICATION

US�IMAGE�POST�TEMPORAL�DERIVATIVE�READING

US�IMAGE�POST�TRESHOLD�READING

US�IMAGE�POST�XY�CHAR�READING

US�IMAGE�SET�POSITION

US�IMAGE�USE�CENTROID�MODE

�

UTAP�WD Standard Interface Environment

US�IMAGE�USE�FRAME�GRAB�MODE

US�IMAGE�USE�GRAY�LEVEL�MODE

US�IMAGE�USE�HISTOGRAM�MODE

US�IMAGE�USE�RECOGNITION�MODE

US�IMAGE�USE�SEGMENTATATION�MODE

US�IMAGE�USE�TRESHOLD�MODE

US�INIT

US�LOAD�EXT�PARAMETER

US�LOAD�OBSTACLE

US�LOAD�PATTERN

US�LOAD�STATUS�PERIOD

US�LOAD�STATUS�TYPE

US�MARK�BREAKPOINT

US�MARK�EVENT

US�NEXT�SINGLE�STEP

US�OC�GET�ATTR

US�OC�GET�CALIB

US�OC�SET�ATTR

US�OC�SET�CALIB

US�OK�ATTRIBUTE�QUERY

US�OK�ATTRIBUTE�RESPONSE

US�OK�CREATE�OBJ

US�OK�DELETE�OBJ

US�OK�MODIFY

US�OK�MODIFY�ATTRIBUTE

US�OK�OUTPUT�REGISTERED�OBJ�ID

US�OK�PLAYBACK

US�OK�RECORD

US�OM�CREATE

US�OM�DELETE

US�OM�MODIFY

US�PAUSE

US�PIO�BIT�READ

US�PIO�BIT�SET

US�PIO�CONTROL�WRITE

US�PIO�DATA�READ

US�PIO�DATA�WRITE

US�PIO�DISABLE

US�PIO�ENABLE

US�PIO�LOAD�SCALE

US�PIO�POST�DATA

US�PIO�SET�MODE

US�PIO�TOGGLE�BIT

US�POST�EXT�DATA�VALUE

US�POST�ID

US�POST�LIST

US�POST�SELECTION�ID

US�POST�VALUE

US�PTPS�INPUT�REQUEST

US�PTPS�INTERP�HALT�PLAN

US�PTPS�INTERP�RUN�PLAN

US�PTPS�OUTPUT�ENABLE�SUBSYSTEM

US�PTPS�SELECT�AGENT

US�PTPS�SELECT�SENSOR

US�RESET

US�RESUME

US�SCALAR�SENSOR�POST�READING

US�SENSOR�GET�ATTRIBUTES�READING

US�SENSOR�GET�READING

US�SENSOR�LOAD�FILTER

US�SENSOR�LOAD�FREQUENCY

US�SENSOR�LOAD�SAMPLING�SPEED

US�SENSOR�LOAD�TRANSFORM

US�SENSOR�USE�MEASUREMENT�UNITS

US�SET�EXT�DATA�VALUE

US�SET�SYMBOLIC�ITEM�ATTR

US�SHUTDOWN

US�SPINDLE�LOAD�SPEED

US�SPINDLE�LOCK�Z

US�SPINDLE�ORIENT

US�SPINDLE�RETRACT

US�SPINDLE�RETRACT�TRAVERSE

US�SPINDLE�START�TURNING

US�SPINDLE�STOP�TURNING

US�SPINDLE�USE�FORCE

US�SPINDLE�USE�NO�FORCE

US�START

US�STARTUP

US�START�FILTER

US�START�TRANSFORM

US�STOP

US�STOP�FILTER

US�STOP�TRANSFORM

US�TDS�EXECUTE�PROGRAM

US�TDS�LOAD�ORIGIN

US�TDS�LOAD�RATE�DEFAULTS

US�TDS�LOAD�REFERENCE�UNITS

US�TDS�LOAD�SELECTIONS

US�TDS�LOAD�SENSING�DEFAULTS

US�TDS�LOAD�USER

US�TDS�SELECT�OPERATION

US�TDS�SELECT�OPMODE

US�TDS�SELECT�PROGRAM

US�TK�DEFINE�FRAMEWORK

US�TK�MACRO�CREATE

US�TK�MACRO�DELETE

US�TK�MACRO�MODIFY

US�TLC�ADJUST�AXIS

US�TLC�ARC�FEED

US�TLC�CHANGE�TOOL

US�TLC�GOAL�SEGMENT

US�TLC�INCR�ACCELERATION

US�TLC�INCR�VELOCITY

US�TLC�LOAD�ACCELERATION

US�TLC�LOAD�BASE�PARAMETERS

US�TLC�LOAD�CONTACT�FORCES

US�TLC�LOAD�CONTACT�FORCE�LIMIT

US�TLC�LOAD�CONTACT�TORQUE�LIMIT

US�TLC�LOAD�CYCLE�TIME

US�TLC�LOAD�DELTA

US�TLC�LOAD�DOF

US�TLC�LOAD�FEED�RATE

US�TLC�LOAD�JERK

US�TLC�LOAD�JOINT�LIMIT

US�TLC�LOAD�KINEMATIC�RING�POSITIONING�MODE

US�TLC�LOAD�LENGTH�UNITS

US�TLC�LOAD�NEIGHBORHOOD

US�TLC�LOAD�OBJECT

US�TLC�LOAD�OBJECT�BASE

US�TLC�LOAD�OBJECT�OFFSET

US�TLC�LOAD�OBSTACLE�VOLUME

US�TLC�LOAD�PROXIMITY

US�TLC�LOAD�RELATIVE�POSITIONING

US�TLC�LOAD�REPRESENTATION�UNITS

US�TLC�LOAD�SEGMENT�TIME

US�TLC�LOAD�SENSOR�FUSION�ORIENT�LIMIT

US�TLC�LOAD�SENSOR�FUSION�POS�LIMIT

US�TLC�LOAD�TERMINATION�CONDITION

US�TLC�LOAD�TOOL�PARAMETERS

US�TLC�LOAD�TRAVERSE�RATE

US�TLC�NURBS�CONTROL�POINT

US�TLC�NURBS�FEED

�

UTAP�WD Standard Interface Environment

US�TLC�NURBS�KNOT�VECTOR

US�TLC�PARAMETRIC��D�CURVE�FEED

US�TLC�PARAMETRIC��D�CURVE�FEED

US�TLC�SELECT�PLANE

US�TLC�SET�GOAL�POSITION

US�TLC�START�AUTOMATIC�MOTION

US�TLC�START�COMPLIANT�MOTION

US�TLC�START�CUTTER�RADIUS�COMPENSATION

US�TLC�START�FINE�MOTION

US�TLC�START�FORCE�POSITIONING�MODE

US�TLC�START�GUARDED�MOTION

US�TLC�START�MANUAL�MOTION

US�TLC�START�MOVE�UNTIL�MOTION

US�TLC�START�STANDOFF�DISTANCE

US�TLC�START�TRAVERSE�MOTION

US�TLC�STOP�AUTOMATIC�MOTION

US�TLC�STOP�COMPLIANT�MOTION

US�TLC�STOP�CUTTER�RADIUS�COMPENSATION

US�TLC�STOP�FINE�MOTION

US�TLC�STOP�FORCE�POSITIONING�MODE

US�TLC�STOP�GUARDED�MOTION

US�TLC�STOP�MANUAL�MOTION

US�TLC�STOP�MOVE�UNTIL�MOTION

US�TLC�STOP�STANDOFF�DISTANCE

US�TLC�STOP�TRAVERSE�MOTION

US�TLC�STRAIGHT�FEED

US�TLC�STRAIGHT�TRAVERSE

US�TLC�TELEOP�FORCE�REFLECTION�UPDATE

US�TLC�UPDATE�SENSOR�FUSION

US�TLC�USE�ABSOLUTE�POSITIONING�MODE

US�TLC�USE�CARTESIAN�REFERENCE�FRAME

US�TLC�USE�CUTTER�RADIUS�COMPENSATION

US�TLC�USE�JOINT�REFERENCE�FRAME

US�TLC�USE�KINEMATIC�RING�POSITIONING�MODE

US�TLC�USE�MODIFIED�TOOL�LENGTH�OFFSETS

US�TLC�USE�NORMAL�TOOL�LENGTH�OFFSETS

US�TLC�USE�NO�TOOL�LENGTH�OFFSETS

US�TLC�USE�RELATIVE�POSITIONING�MODE

US�TLC�USE�REPRESENTATION�UNITS

US�TLC�USE�TOOL�TIP�COORDINATE�FRAME

US�TLC�USE�WRIST�COORDINATE�FRAME

US�TLC�ZERO�PROGRAM�ORIGIN

US�TLC�ZERO�RELATIVE�POSITIONING

US�TPS�CONTACT�MOTION

US�TPS�ENABLE

US�TPS�FREESPACE�MOTION

US�TPS�GUARDED�MOTION

US�TPS�MARK�EVENT

US�TPS�SELECT�FEATURE

US�TPS�SELECT�MATERIAL

US�TPS�SELECT�TOOL

US�TPS�SET�SUPERVISORY�MODE

US�TRD�ADD�ELEMENT

US�TRD�DELETE

US�TRD�DELETE�ITEM

US�TRD�ERASE

US�TRD�FIND

US�TRD�MODIFY

US�TRD�NAME�ITEM

US�TRD�NEXT

US�TRD�OPEN

US�TRD�PREVIOUS

US�TRD�RECORD

US�TRD�RECORD�OFF

US�TRD�RECORD�ON

US�TRD�SET�CARTESIAN�MODE

US�TRD�SET�JOINT�MODE

US�USE�AXIS�MASK

US�USE�EXT�ALGORITHM

US�USE�FEATURE

US�USE�MACRO

US�USE�OBJECT

US�USE�PLAN

US�USE�SELECTION

US�VECTOR�SENSOR�GET�READING

US�VECTOR�SENSOR�POST�READING

US�ZERO

	

UTAP�WD Standard Interface Environment

H�� Interface Source Listings

H���� Disclaimer

�������������������������� utap�disclaimer�h ����������������������������������

��

��

�� Unified Telerobotic Architecture Project
UTAP

�� Interface Definitions

�� Release� ��	

�� Revision 	�	

�� Release Date� ���May�����

��

��

�define UTAP�VERSION ��	

��

�� DISCLAIMER�

��

�� This software was produced by the National Institute of Standards and

�� Technology
NIST� an agency of the U�S� government� and by statute is

�� not subject to copyright in the United States� Recipients of this

�� software assume all responsibility associated with its operation�

�� modification� maintenance� and subsequent redistribution�

��

��

�"

Modification History�

	������� jlm Public Release of Messages

	������� jlm Modified definitions for greater consistency�

	������� jlm Created

"�

H���� Generic De�nitions

�������������������������� generic�types�h �����������������������������

��

�� FILE � generic�types�h

��

�� PURPOSE � This file contains a list of domain�independent types

��

�� DATE � Novemeber ��� ����

��

��

�ifndef UTAP�GENERIC�DEFINITIONS

�define UTAP�GENERIC�DEFINITIONS

��

�� MODE�DIRECTIVES � class to define enumerated set of process modes

�

UTAP�WD Standard Interface Environment

��

class MODE�DIRECTIVE �

enum �

abort � 	x�			��

halt � 	x�			��

pause � 	x�			��

resume � 	x�			��

reset � 	x�		���

estop � 	x�		���

report � 	x�		���

start � 	x�		���

shutdown � 	x�		�	�

hold � 	x�		���

reinitialize � 	x�		���

� �

��

��

�� GENERIC�DIRECTIVES � class of enumerated set of

��

class GENERIC�DIRECTIVES � public MODE�DIRECTIVE �

enum

�

no�change � 	x				� �� use same parameter

no�selection � 	x			�� �� parameter not required

delegate�selection � 	x			�� �� let subordinate decide parameter

no�op � 	x			� �� slot for commandless mode directive

� �

��

��

�� LOGICAL TYPE � enumerated list of logical states

��

typedef enum �

�if defined
TRUE

TRUE � ��

�endif

�if defined
FALSE

FALSE � 	 �

�endif

ALL � ��� �� good for bitmask

� LOGICAL�

��

�� USER�TYPE

��

typedef enum USER�TYPE �

ATTENDANT � ��

OPERATOR � ��

PROGRAMMER � ��

MANAGER � ��

MAINTENANCE � ��

SYSTEMS � ��

ROOT � ��

� USER�TYPE�

��

�� MODE�STATE

��

typedef enum �

calibration � 	x�			��

diagnostic � 	x�			��

maintenance � 	x�			��

normal�operation � 	x�			��

safe � 	x�		�	�

shutdown � 	x�		���

�

UTAP�WD Standard Interface Environment

initialize � 	x�		���

training � 	x�		���

teleoperation � 	x�		�	�

shared � 	x�		�	

� MODE�STATE�

��

�� RESULT�TYPE � enumerated set of result possibilities

��

typedef enum �

failed � ���

incomplete � 	�

succeeded � ��

partial�sucess � �

�� exception � ���

�� exception is different kind of failure

� RESULT�TYPE�

��

�� STATE�TYPE � enumerated set of

��

typedef enum �

finished� ��or is done better # � see result�type

ready�

halted�

suspended�

aborted�

resetting�

exception�

executing �� same as running

�" executing�forward� �" future "�

�" executing�backward� �" future "�

� STATE�TYPE�

��

�� STATUS�TYPE � synonym of STATE�TYPE

��

typedef STATE�TYPE STATUS�TYPE�

��

�� REQUEST�TYPE � enumerate set of request states

��

typedef enum �

request�started�

request�pending�

request�complete�

request�blocked�

request�failed�

request�aborted

� REQUEST�TYPE�

��

�� TIME � get POSIX definition

��

typedef double TIME�

��

�� TIMELINE � struct definition of time frame

��

struct TIMELINE �

TIME duration� �� how long to take

TIME earliest�start� �� earliest to start

TIME latest�start� �� latest to start

TIME earliest�completion� �� earliest to finish

UTAP�WD Standard Interface Environment

TIME latest�completion� �� latest to finish

��

��

�� SEVERITY�TYPE � enumerated definition of severity types

��

typedef enum �

fatal�

severe�

warning�

informative

� SEVERITY�TYPE�

��

�� POSITIONING�TYPE � enumerated definition of positioning types

��

typedef enum �

absolute�

incremental�

jog�

relative�

� POSITIONING�TYPE�

�endif

H���� Classi�cation

�������������������������� utap�classification�h �����������������������������

�� MODULES ACRONYMS�

�� ����������������

��

�� TDS � task description and supervision

�� TPS � task program sequencer

�� TPS � parent program sequencer

�� TLC � task level control

�� DC � device control

��

�� OI � operator interface

�� OK � object knowledge

�� TK � task knowledge

�� TD � trajectory description

�� SGD � status graphics displays

�� SS � subsystem simulators

�� AD � analysis and diagnosis

�� VS � virtual sensor

�� DB � data base

�� SC � sensor control

�� AC � axis servo control

��

�� UTAP Classification Typing

��

�ifndef UTAP�CLASSIFICATION

�define UTAP�CLASSIFICATION

enum � �JOYSTICK�

�F�R�JOYSTICK�

�PENDANT�

�PANEL�

�WINDOWS�

�

UTAP�WD Standard Interface Environment

� US�OI�MODULE�TYPES�

enum � �TEACH � 	x	��

�SCRIPTED � 	x	��

�PROGRAMMABLE � 	x	��

� US�TD�MODULE�TYPES�

enum � �MANIPULATION � 	x	��

�NAVIGATION � 	x	��

�TOOLING � 	x	��

�MACHINING � 	x	��

�� obviously more

� US�TPS�MODULE�TYPES�

enum � �PICK�PLACE � 	x	��

�DEXTROUS � 	x	��

��###

� US�TPS�MANIPULATION�TYPES�

enum � �TELEOP � 	x	��

�GUIDED � 	x	��

�AUTONOMOUS � 	x	��

��###

� US�TPS�NAVIGATION�TYPES�

enum � �VERTICAL � 	x	��

�HORIZONTAL � 	x	��

�TURNING � 	x	��

�EDM � 	x	��

��###

� US�TPS�MACHINING�TYPES�

enum � �CONTACT � 	x	��

�NONCONTACT � 	x	��

� US�TPS�TOOLING�TYPES�

enum � �DENAVIT�HARTENBURG � 	x	��

�SCARA � 	x	��

�GANTRY � 	x	��

�STEWART�PLATFORM � 	x	��

�� obviously more

� US�ROBOT�TYPES�

enum � �SPRAY � 	x	��

�FINISH � 	x	��

� US�TOOL�TYPES�

enum � �FTS � 	x��

�IMAGE � 	x��

�PROBE � 	x��

�SWITCH � 	x��

�RANGE � 	x��

� US�SENSOR�TYPES�

�endif

H���� Protocol

�������������������������� utap�protocol�h ����������������������������������

�

UTAP�WD Standard Interface Environment

��

�� UTAP Protocol Typing

��

struct MsgTransmitHeader �

int byte�order� �� big�little endian#

int command�num� �� increment with every new command

�� any others##

��

struct MsgAckHeader �

int byte�order� �� big�little endian#

int echo�message�num� �� acknowledge receipt

int health� �� health of device � mimics Lords Sensor

�� any others##

��

MODE�DIRECTIVE mode� �� combine mode x command

typedef enum �

read�only�

write�only�

read�write

� ACCESS�TYPE�

typedef int CHANNEL���

typedef enum �

SEND�

RECEIVE

� COMMUNICATION�DIRECTION�TYPE�

typedef enum � local�procedure�call�

remote�procedure�call�

sw�interrupt�

event�

signal�

MMS�

network�comm�

shared�memory�

message�queue�

mailbox�

SP��	�

SERCOS�

CAN�

� CONNECTION�TYPE�

H���� Information Model

�������������������������� utap�data�defs�h ���������������������������������

�ifndef UTAP�DATA�DEFS

�define UTAP�DATA�DEFS

�include �generic�defs�h�

typedef

enum � X�AXIS � 	x	��

Y�AXIS � 	x	��

��

UTAP�WD Standard Interface Environment

Z�AXIS � 	x	��

POSITION�AXES � 	x	��

ROLL�AXIS � 	x	��

PITCH�AXIS � 	x�	�

YAW�AXIS � 	x�	�

ORIENTATION�AXES � 	x���

JOINT��AXIS � 	x	��

JOINT��AXIS � 	x	��

JOINT��AXIS � 	x	��

JOINT��AXIS � 	x	��

JOINT��AXIS � 	x�	�

JOINT��AXIS � 	x�	�

JOINT��AXIS � 	x�	�

JOINT��AXIS � 	x�	�

JOINT��AXIS � 	x�		�

JOINT�	�AXIS � 	x�		�

�� Modifiers

ELBOW � 	x�			�

WRIST � 	x�			�

TOOLTIP � 	x�			�

� AxisMask�

typedef

enum � unitless�u � 	x		�

meters�u �
�L$$��

grams�u �
�L$$��

liters�u �
�L$$��

seconds�u �
�L$$��

radians�u �
�L$$��

angles�u �
�L$$��

newtons�u �
�L$$��

celsius�u �
�L$$��

pascal�u �
�L$$��

lumin�u �
�L$$�	�

psi�u �
�L$$���

rpm�u �
�L$$���

Hz�u �
�L$$���

cardinal�u �
�L$$���

updown�u �
	x�L $$ ���

�� Non�SI Modifier

nano�u �
�L$$�	�

micro�u �
�L$$���

milli�u �
�L$$���

kilo�u �
�L$$���

nonSI�modifier �
	xFL $$ �	�

�� Non�SI altogether

inches�u �
�L$$�	�

feet�u �
�L$$���

pounds�u �
�L$$���

English�units �
	xFL $$ �	�

� Measurement�units�type�

typedef

enum �

char�t � 	x	�				��

short�t � 	x	�				��

��

UTAP�WD Standard Interface Environment

int�t � 	x	�				��

long�t � 	x	�				��

u�char�t � 	x	�				��

u�short�t � 	x	�				��

u�int�t � 	x	�				��

u�long�t � 	x	�				��

float�t � 	x	�				��

double�t � 	x	�				A�

array�t � 	x	�					�

ptr�t � 	x	�					�

cartesian�t � 	x�						�

spherical�t � 	x�						�

cylindrical�t � 	x�						�

H�matrice�t � 	x�						� �� naop homogeneous transform matrix

transform�t � 	x�						� �� ibid

Euler�t � 	x�						� �� Euler Angles

ZYXEuler�t � 	x�						� �� ZYX Euler Angles

ZYZEuler�t � 	x�						� �� ZYZ Euler Angles

Quaternion�t � 	x�						� �� Quaternian Angles

Equiv�Angle�Axis�t � 	x�						� �� Equivalent Angle Axis

RPY�t � 	x�						� �� Roll Pitch Yaw

geometry�t � 	x�							�

topology�t � 	x�							�

material�t � 	x�							�

shape�t � 	x�							�

pattern�t � 	x�							�

kinematics�t � 	x�							�

bitmask�t � 	x�								�

� Representation�units�type�

��

�� Object type

��

struct Object�type �

int id�

enum � �location� � 	x�				�

�part� � 	x�			��

�simple� � 	x�			��

�robot� � 	x�			��

�tool� � 	x�			��

�list� � 	x�			��

�module� � 	x�			��

� type�

��

��

�� Attribute Types � Enumeration

��

typedef enum �

�object�name� � 	x						��

�attribute�name� � 	x						��

�material�name� � 	x						��

�time� � 	x						��

�position� � 	x					�	�

�orientation� � 	x					�	�

�pose� � 	x				�		�

�velocity� � 	x				�		�

�acceleration� � 	x				�		�

�jerk� � 	x				�		�

�force� � 	x			�			�

�torque� � 	x			�			�

�temperature� � 	x			�			�

��

UTAP�WD Standard Interface Environment

�pressure� � 	x			�			�

�viscosity� � 	x		�				�

�luminance� � 	x		�				�

�humidity� � 	x		�				�

�flow� � 	x		�				�

�hardness� � 	x	�					�

�roughness� � 	x	�					�

�mass� � 	x	�					�

�geometry� � 	x	�						�

�topology� � 	x	�						�

�shape� � 	x	�						�

�pattern� � 	x	�						�

�material� � 	x�							�

�kinematics� � 	x�							�

�� where does this info belong#

�link�length� � 	x�								�

�link�twist� � 	x�								�

�link�offset� � 	x�								�

�link�mass� � 	x�								�

�link�encoder�ticks� � 	x�									�

�if 	

�� Not supported from hereon in

�elasticity�

�spring�constant��

�illumination��

�pitch��

�loudness��

�intensity��

�amplitude��

�frequency

�count��

�period��

�phase��

�endif

� Attribute�t�

��

�� State Modifier of Attribute

��

typedef enum �

all � ���

translational � 	x				��

rotational � 	x				��

�� sensing modifiers � more get oriented

actual � 	x		�		�

desired � 	x		�		�

max � 	x		�		�

min � 	x		�		�

last � 	x	�			�

�� positiong modifier � more set oriented

�� absolute � 	x	�			�

�� relative � 	x	�			�

�� incremental � 	x	�			�

�� jog � 	x�				�

� Modifier�t�

��

�� Generic Attribute Data Storage

��

�include $sys�types�h�

��

UTAP�WD Standard Interface Environment

struct generic�value�a �

public�

union �

char c�

short s�

int i�

long l�

u�char uc�

u�short us�

u�int ui�

u�long ul�

float f�

double d�

void " heap� �� variable data follow in heap format

� value� min� max�

��

��

�� ROUTE � struct to define read or get query routing destination

��

struct ROUTE �

enum � �STATUS � �� �� post response to questioner

�WRITE�TO�OK � �� �� posting response values to cental obj knowl

�READ�FROM�OK � �� �� get next values from obj knowl

�DELTA�OFFSET � �� �� use data as delta offset

�ALTER � �� �� to alter cmd dx�dy�dz�rx�ry�rz

� type� �� Bitmask to indicate destination for response

int times� �� 	 means continuous� �� one read����

TIME update�period� �� frequency of update

int offset� �� optional delta offset position

��

��

�� General Purpose

��

�define US�POST�ID �	

struct us�post�id�msg�t �

int msgid�

int id�

��

�define US�GET�OBJECT�ID ��

struct us�get�object�id�msg�t �

int msgid�

char name������

��

�define US�USE�OBJECT ��

struct us�use�object��msg�t �

int msgid�

int id�

��

�define US�GET�FEATURE ��

struct us�get�feature��msg�t �

int msgid�

char name������

ROUTE r�

��

�define US�USE�FEATURE ��

struct us�use�feature�msg�t �

int msgid�

int id�

��

�	

UTAP�WD Standard Interface Environment

�define US�GET�VALUE ��

struct us�get�value�msg�t �

int msgid�

ROUTE r�

Attribute�t items�

Modifier�t modifiers�

��

�define US�POST�VALUE ��

struct us�post�value�msg�t �

int msgid�

int id�

Attribute�t item�

Modifier�t modifier�

Representation�units�type rep�

Measurement�units�type units�

generic�value�a value�

��

�define US�GET�LIST ��

struct us�get�list�msg�t �

int msgid�

ROUTE r�

Attribute�t items�

Modifier�t modifiers�

��

�define US�POST�LIST ��

struct us�post�list�msg�t �

int msgid�

Attribute�t items�

Modifier�t modifiers�

generic�value�a "values�

��

��

��

�� Object Knowledge Specific Attribute Messages

��

��

�define US�ATTRIBUTE�POST�RESPONSE ��		

struct us�attribute�post�response�msg�t �

int msgid�

int id�

Attribute�t item�

Modifier�t modifier�

int size�

Representation�units�type rep�

Measurement�units�type units�

generic�value�a value�

��

�define US�ATTRIBUTE�GET�TIME ��	�

struct us�attribute�get�time�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units�

��

�define US�ATTRIBUTE�GET�POSITION ��	�

struct us�attribute�get�position�msg�t �

int msgid�

��

UTAP�WD Standard Interface Environment

int id�

ROUTE r�

Modifier�t modifier�

Representation�units�type rep � double�t�

Measurement�units�type units � meters�u�

��

�define US�ATTRIBUTE�GET�ORIENTATION ��	�

struct us�attribute�get�orientation�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units � radians�u�

��

�define US�ATTRIBUTE�GET�POSE ��	�

struct us�attribute�get�pose�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�pos�units�

Measurement�units�type desired�rot�units�

��

�define US�ATTRIBUTE�GET�VELOCITY ��	�

struct us�attribute�get�velocity�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units � meters�u�

��

�define US�ATTRIBUTE�GET�ACCELERATION ��	�

struct us�attribute�get�acceleration�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

enum � time�to�accel�u�

meters�per�sec�per�sec

� desired�units � meters�per�sec�per�sec �

��

�define US�ATTRIBUTE�GET�JERK ��	�

struct us�attribute�get�jerk�msg�t �

int msgid�

int id�

Modifier�t modifier�

enum � meters�per�sec�per�sec � units�

��

�define US�ATTRIBUTE�GET�FORCE ��	�

struct us�attribute�get�force�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units � newtons�u�

��

�define US�ATTRIBUTE�GET�TORQUE ��	�

struct us�attribute�get�torque�msg�t �

int msgid�

��

UTAP�WD Standard Interface Environment

int id�

ROUTE r�

Modifier�t modifier�

enum � newtons�per�meter � desired�units�

��

�define US�ATTRIBUTE�GET�MASS ���	

struct us�attribute�get�mass�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

int size�

Measurement�units�type desired�units � grams�u�

��

�define US�ATTRIBUTE�GET�TEMPERATURE ����

struct us�attribute�get�temperature�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units � celsius�u�

��

�define US�ATTRIBUTE�GET�PRESSURE ����

struct us�attribute�get�pressure�msg�t �

int msgid�

int id�

Modifier�t modifier�

Measurement�units�type desired�units � pascal�u�

��

�define US�ATTRIBUTE�GET�VISCOSITY ����

struct us�attribute�get�viscosity�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

enum � mPa�per�second� desired�units�

��

�define US�ATTRIBUTE�GET�LUMINANCE ����

struct us�attribute�get�luminance�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units � lumin�u�

��

�define US�ATTRIBUTE�GET�HUMIDITY ����

struct us�attribute�get�humidity�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

enum �grams�per�meter�cubed � desired�units�

��

�define US�ATTRIBUTE�GET�FLOW ����

struct us�attribute�get�flow�msg�t �

int msgid�

int id�

ROUTE r�

�

UTAP�WD Standard Interface Environment

Modifier�t modifier�

Measurement�units�type desired�units�

��

�define US�ATTRIBUTE�GET�HARDNESS ����

struct us�attribute�get�hardness�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units�

��

�define US�ATTRIBUTE�GET�ROUGHNESS ����

struct us�attribute�get�roughness�msg�t �

int msgid�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units�

��

�define US�ATTRIBUTE�GET�GEOMETRY ����

struct us�attribute�get�geometry�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

Measurement�units�type desired�units�

��

�define US�ATTRIBUTE�GET�TOPLOGY ���	

struct us�attribute�get�topology�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

��

�define US�ATTRIBUTE�GET�SHAPE ����

struct us�attribute�get�shape�msg�t �

int msgid�

int id�

ROUTE r�

Modifier�t modifier�

��

�define US�ATTRIBUTE�GET�PATTERN ����

struct us�attribute�get�pattern�msg�t �

int msgid�

ROUTE r�

Modifier�t modifier�

��

�define US�ATTRIBUTE�GET�MATERIAL ����

struct us�attribute�get�material�t �

int msgid�

ROUTE r�

Modifier�t modifier�

��

�define US�ATTRIBUTE�GET�KINEMATICS ����

struct us�attribute�get�kinematics�t �

int msgid�

ROUTE r�

Modifier�t modifier�

��

��

UTAP�WD Standard Interface Environment

�endif

H���
 Interfaces

�ifndef UTAP�INTERFACE�DEFINITIONS

�define UTAP�INTERFACE�DEFINITIONS

�include �generic�defs�h�

�include �utap�info�model�h�

�include �utap�data�defs�h�

�� These types must be defined � there are stubbed out for now

�include �undefined�types�h�

�""

This header file defines the interfaces for communication between

modules in the Generic C� Architecture�

Generic Telerobotic Architecture for C�� Industrial Processes

contains modules of which the following have acronyms�

MODULES NAMING�ACRONYMGS�

REMOTE�

RSC � robot servo control

TOOL � tool control

SENSOR� sensor control

PIO � programmable io

TLC � task level control

CLC � closed loop control

DB � data base is part of TLC � CLC

VS � virtual sensor

LOCAL�

TDS � task description and supervision

TK � task knowledge

TRD � trajectory description

PTPS � parent task program sequencer

TPS � task program sequencer

OI � operator interface

OK � object knowledge

OC � object calibration

OM � object modeling

SGD � status graphics displays

SS � subsystem simulators

ADS � analysis and diagnosis

"�

�""

A little table of contents�

GENERIC� �	� � ���

ERROR� ��		 � ��		

ROBOT�SERVO� �		 � ���

TOOL� �		 � ���

SENSOR� �		 � ���

PIO� �		 � ���

TLC� �		 � ���

DB� �		 � ���

VS� �		 � ���

TDS� �			 � �	��

TK� ��		 � ����

TRD� ��		 � ����

PTPS� ��		 � ����

TPS� ��		 � ����

OI� ��		 � ����

��

UTAP�WD Standard Interface Environment

OK ��		 � ����

OC ��		 � ����

OM ��		 � ����

SGD� ��		 � ����

ADS� �			 � �	��

SS� ��		 � ����

"�

��

��

�� Generic US messages to any Module

�� To be verified against RIA Standard R���	������

��

�define GENERIC �		

�� Hardware State�Mode Control

�define US�STARTUP �	� ��hardware powered up into safe state

struct us�startup�msg�t �

int msgid�

��

�define US�SHUTDOWN �	�

struct us�shutdown�msg�t �

int msgid�

��

�define US�RESET �	�

struct us�reset�msg�t �

int msgid�

enum � HW � ��

SW � ��

� type�

long mask� �� bit�map of units to reset

��

�define US�ENABLE �	� �� sensor�effector
s turned on

struct us�enable�msg�t �

int msgid�

int axis�

��

�define US�DISABLE �	� �� sensor�effector
s turned off

struct us�disable�msg�t �

int msgid�

int axis�

��

�define US�ESTOP �	� �� emergency sensor�effector off

struct us�estop�msg�t �

int msgid�

��

�� Software State�Mode Control

�define US�START �	�

struct us�start�msg�t �

int msgid�

��

�define US�STOP �	�

struct us�stop�msg�t �

int msgid�

��

�define US�ABORT �	�

struct us�abort�msg�t �

int msgid�

��

��

UTAP�WD Standard Interface Environment

�define US�HALT ��	

struct us�halt�msg�t �

int msgid�

��

�define US�INIT ���

struct us�init�msg�t �

int msgid�

��

�define US�HOLD ���

struct us�hold�msg�t �

int msgid�

��

�define US�PAUSE ���

struct us�pause�msg�t �

int msgid�

��

�define US�RESUME ���

struct us�resume�msg�t �

int msgid�

��

�define US�ZERO ���

struct us�zero�msg�t �

int msgid�

long mask� �� bit�map of units to zero

��

�define US�BEGIN�SINGLE�STEP ���

struct us�begin�single�step�msg�t �

int msgid�

�� require more explicit info here

��

�define US�NEXT�SINGLE�STEP ���

struct us�next�single�step�msg�t �

int msgid�

�� require more explicit info here

��

�define US�CLEAR�SINGLE�STEP ���

struct us�clear�single�step�msg�t �

int msgid�

��

�� Interface Programming Constructs

�define US�BEGIN�BLOCK ���

struct us�begin�block�msg�t �

int msgid�

��

�define US�END�BLOCK ��	

struct us�end�block�msg�t �

int msgid�

��

�define US�BEGIN�PLAN ���

struct us�begin�plan�msg�t �

int msgid�

char name������

��

��

UTAP�WD Standard Interface Environment

�define US�END�PLAN ���

struct us�end�plan�msg�t �

int msgid�

��

�define US�USE�PLAN ���

struct us�use�plan�msg�t �

int msgid�

��

�define US�BEGIN�MACRO ���

struct us�begin�macro�msg�t �

int msgid�

char name������

��

�define US�END�MACRO ���

struct us�end�macro�msg�t �

int msgid�

��

�define US�USE�MACRO ���

struct us�execute�macro�msg�t �

int msgid�

char name������

��

�define US�BEGIN�EVENT ���

struct us�begin�event�msg�t �

int msgid�

char name������

enum � �FROM�START � ��

�FROM�END � ��

�AT�TIME � ��

�AT�MARK � ��

�WITH�EXCEPTION � ��

� type�

TIME t�

�� require step number in block#

��

�define US�END�EVENT ���

struct us�end�event�msg�t �

int msgid�

��

�define US�MARK�BREAKPOINT ���

struct us�mark�breakpoint�msg�t �

int msgid� �� software pause

��

�define US�MARK�EVENT ��	

struct us�mark�event�msg�t �

int msgid�

char name������ �� place event marker

��

�define US�GET�SELECTION�ID ���

struct us�get�selection�id�msg�t �

int msgid�

char name������ �� if symbolic get device or module numeric id

��

�define US�POST�SELECTION�ID ���

struct us�post�selection�id�msg�t �

��

UTAP�WD Standard Interface Environment

int msgid�

int id�

��

�define US�USE�SELECTION ���

struct us�use�selection�msg�t �

int msgid�

int id� �� which device or module� start with �

��

�define US�USE�AXIS�MASK ���

struct us�use�axis�mask�msg�t �

int msgid�

AxisMask axis�

��

�� New Message EXTension Facility

�define US�USE�EXT�ALGORITHM ���

struct us�use�ext�algorithm�msg�t �

int msgid�

int slot� �� slot holder

��

�define US�LOAD�EXT�PARAMETER ���

struct us�load�ext�parameter�msg�t �

int msgid�

int slot� �� slot id

��

�define US�GET�EXT�DATA�VALUE ���

struct us�get�ext�data�value�msg�t �

int msgid�

int slot� �� slot id

ROUTE r�

��

�define US�POST�EXT�DATA�VALUE ���

struct us�post�ext�data�value�msg�t �

int msgid�

int slot� �� slot id

void " data� �� pointer into heap

��

�define US�SET�EXT�DATA�VALUE ���

struct us�set�ext�data�value�msg�t �

int msgid�

int slot� �� slot id

void " data� �� pointer into heap

��

�� Status

�define US�LOAD�STATUS�TYPE ��	

struct us�load�status�msg�t �

int msgid�

enum � SERVO�

ALIVE�

ACK�NACK�

NONE�

� type�

��

�define US�LOAD�STATUS�PERIOD ���

struct us�load�status�period�msg�t �

int msgid�

double time� �� seconds

��

UTAP�WD Standard Interface Environment

��

�define US�GENERIC�STATUS�REPORT ���

struct us�generic�status�report�t �

int msgid�

STATUS�TYPE status�

double progress� �� percent completion

enum �

exception � ���

failed � ���

incomplete � 	�

succeeded � ��

partial�success � ��

progressing � ��

� type�

enum �

exception�process�lost � �	�

exception�deadlock � ���

exception�resource�unavailable � ���

exception�resource�tip�damaged � ���

exception�insufficient�capacity � ���

� explanation�

void " command�echo�

��

��

�� Errors

�� First �		 are negations of Posix errno�h convention

��

�define ERRORS ��		

�define US�ERROR�COMMAND�NOT�IMPLEMENTED ��		

struct us�error�command�not�implemented�msg�t �

int msgid�

��

�define US�ERROR�COMMAND�ENTRY ��	�

struct us�error�command�entry�msg�t �

int msgid�

int field�num�

��

�define US�ERROR�DUPLICATE�NAME ��	�

struct us�error�duplicate�name�msg�t �

int msgid�

��

�define US�ERROR�BAD�DATA ��	�

struct us�error�command�bad�data�msg�t �

int msgid�

int field�num�

��

�define US�ERROR�NO�DATA�AVAILABLE ��	�

struct us�error�no�data�available�msg�t �

int msgid�

int field�num�

��

�define US�ERROR�SAFETY�VIOLATION ��	�

struct us�error�safety�violation�msg�t �

int msgid�

int field�num�

��

�define US�ERROR�LIMIT�EXCEEDED ��	�

�	

UTAP�WD Standard Interface Environment

struct us�error�limit�exceeded�msg�t �

int msgid�

Attribute�t attr�

��

�define US�ERROR�OVER�SPECIFIED ��	�

struct us�error�over�specified�msg�t �

int msgid�

int axis�number�

��

�define US�ERROR�UNDER�SPECIFIED ��	�

struct us�error�under�specified�msg�t �

int msgid�

��

��

��

�� US messages to ROBOT SERVO "�

��

�define AXIS�SERVO �		

�� Mode Definitions

�define US�AXIS�SERVO�USE�ANGLE�UNITS �	�

struct us�axis�servo�use�angle�units�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�RADIAN�UNITS �	�

struct us�axis�servo�use�radian�units�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�ABS�POSITION�MODE �	�

struct us�axis�servo�use�abs�position�mode�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�REL�POSITION�MODE �	�

struct us�axis�servo�use�rel�position�mode�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�ABS�VELOCITY�MODE �	�

struct us�axis�servo�use�abs�velocity�mode�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�REL�VELOCITY�MODE �	�

struct us�axis�servo�use�rel�velocity�mode�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�PID �	�

struct us�axis�servo�use�pid�msg�t �

int msgid�

int joint�mask�

��

�define US�AXIS�SERVO�USE�FEEDFORWARD�TORQUE �	�

struct us�axis�servo�use�ff�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�CURRENT �	�

��

UTAP�WD Standard Interface Environment

struct us�axis�servo�use�current�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�VOLTAGE ��	

struct us�axis�servo�use�voltage�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�STIFFNESS ���

struct us�axis�servo�use�stiffness�msg�t �

int msgid�

int spSelVect� �� dof of in which to apply springs

double " gains� �� spring gains

double " spMaxVel� �� max velocity due to springs

��

�define US�AXIS�SERVO�USE�COMPLIANCE ���

struct us�axis�servo�use�compliance�msg�t �

int msgid�

��

�define US�AXIS�SERVO�USE�IMPEDANCE ���

struct us�axis�servo�use�impedance�msg�t �

int msgid�

��

�define US�AXIS�SERVO�START�GRAVITY�COMPENSATION ���

struct us�axis�servo�start�gravity�compensation�msg�t �

int msgid�

��

�define US�AXIS�SERVO�STOP�GRAVITY�COMPENSATION ���

struct us�axis�servo�stop�gravity�compensation�msg�t �

int msgid�

��

�define US�AXIS�SERVO�LOAD�DOF ���

struct us�axis�servo�load�dof�msg�t �

int msgid�

int dof�

��

�define US�AXIS�SERVO�LOAD�CYCLE�TIME ���

struct us�axis�servo�load�cycle�time�msg�t �

int msgid�

double time�

��

�define US�AXIS�SERVO�LOAD�PID�GAIN ���

struct us�axis�servo�load�pid�gain�msg�t �

int msgid�

int joint�mask�

double "p� �� load proportional gain

double "i� �� load integral gain

double "d� �� load derivative gain

��

�define US�AXIS�SERVO�LOAD�JOINT�LIMIT ���

struct us�axis�servo�load�joint�limit�msg�t �

int msgid�

int axis�bit�mask�

double "jmaxLimit� �� maximum joint software limits

double "jminLimit� �� minimum joint software limits

��

��

UTAP�WD Standard Interface Environment

�define US�AXIS�SERVO�LOAD�VELOCITY�LIMIT ��	

struct us�axis�servo�load�velocity�limit�msg�t �

int msgid�

int axis�bit�mask�

double "jvelLimit� �� maximum joint velocity limits

��

�define US�AXIS�SERVO�LOAD�GAIN�LIMIT ���

struct us�axis�servo�load�joint�gain�limit�msg�t �

int msgid�

double "jaGain�

��

�define US�AXIS�SERVO�LOAD�DAMPING�VALUES ���

struct us�axis�servo�load�damping�values�msg�t �

int msgid�

double "jaDamp� �� damping values for impedance

��

��

�� Command Data Mode

��

�define US�AXIS�SERVO�HOME ��	

struct us�axis�servo�home�msg�t �

int msgid�

int axis�

��

�define US�AXIS�SERVO�SET�BRAKES ���

struct us�axis�servo�set�brakes�msg�t �

int msgid�

int axis�bit�mask�

��

�define US�AXIS�SERVO�CLEAR�BRAKES ���

struct us�axis�servo�clear�brakes�msg�t �

int msgid�

int axis�bit�mask�

��

�define US�AXIS�SERVO�SET�TORQUE ���

struct us�axis�servo�set�torques�msg�t �

int msgid�

int axis�bit�mask�

double "joint�torques�

��

�define US�AXIS�SERVO�SET�CURRENT ���

struct us�axis�servo�set�current�msg�t �

int msgid�

double "joint�currents�

��

�define US�AXIS�SERVO�SET�VOLTAGE ���

struct us�axis�servo�set�voltage�msg�t �

int msgid�

double "joint�voltages�

��

�define US�AXIS�SERVO�SET�POSITION ���

struct us�axis�servo�set�position�msg�t �

int msgid�

double "joint�position�

��

�define US�AXIS�SERVO�SET�VELOCITY ���

�

UTAP�WD Standard Interface Environment

struct us�axis�servo�set�velocity�msg�t �

int msgid�

double "joint�velocity�

��

�define US�AXIS�SERVO�SET�ACCELERATION ���

struct us�axis�servo�set�acceleration�msg�t �

int msgid�

double "joint�acceleration�

��

�define US�AXIS�SERVO�SET�FORCES ���

struct us�axis�servo�set�force�msg�t �

int msgid�

double "joint�force�

��

�define US�AXIS�SERVO�JOG ��	

struct us�axis�servo�jog�msg�t �

int msgid�

int axis�

double speed�

��

�define US�AXIS�SERVO�JOG�STOP ���

struct us�axis�servo�jog�stop�msg�t �

int msgid�

int axis�

��

��

��

�� US messages to TOOL

��

�define TOOL �		

�� Spindle

�define US�SPINDLE�RETRACT�TRAVERSE ��	

struct us�spindle�retract�traverse�msg�t �

int msgid�

��

�define US�SPINDLE�LOAD�SPEED ���

struct us�load�spindle�speed�msg�t �

int msgid�

double r�

��

�define US�SPINDLE�START�TURNING ���

struct us�start�spindle�msg�t �

int msgid�

enum �CLOCKWISE � ��

COUNTERCLOCKWISE � ��

� direction�

��

�define US�SPINDLE�STOP�TURNING ���

struct us�stop�spindle�turning�msg�t �

int msgid�

��

�define US�SPINDLE�RETRACT ���

struct us�spindle�retract�msg�t �

int msgid�

��

��

UTAP�WD Standard Interface Environment

�define US�SPINDLE�ORIENT ���

struct us�orient�spindle�msg�t �

int msgid�

double orientation�

double direction�

��

�define US�SPINDLE�LOCK�Z ���

struct us�lock�spindle�z�msg�t �

int msgid�

��

�define US�SPINDLE�USE�FORCE ���

struct us�use�spindle�force�msg�t �

int msgid�

��

�define US�SPINDLE�USE�NO�FORCE ���

struct us�use�no�spindle�force�msg�t �

int msgid�

��

�� Flow Control� Mist�Coolant�Abrasive Spray

�define US�FLOW�START�MIST ��	

struct us�flow�start�mist�msg�t �

int msgid�

��

�define US�FLOW�STOP�MIST ���

struct us�flow�stop�mist�msg�t �

int msgid�

��

�define US�FLOW�START�FLOOD ���

struct us�flow�start�flood�msg�t �

int msgid�

��

�define US�FLOW�STOP�FLOOD ���

struct us�flow�stop�flood�msg�t�

int msgid�

��

�define US�FLOW�LOAD�PARAMETERS ���

struct us�flow�load�parameters�msg�t �

int msgid�

enum � none�

flow�rate�

viscosity�

consistency�

thickness�

temperature�

� param�

double value�rate�

enum � beam � 	x��

mist�	x��

spray � 	x��

� flow�

enum � stream�

pulsed�

� action�

��

��

��

UTAP�WD Standard Interface Environment

��

�� SENSOR MODULE

��

�define SENSOR �		

��

�� Sensor Mode Generics

��

�define US�START�TRANSFORM �	�

struct us�start�transform�msg�t �

int msgid�

��

�define US�STOP�TRANSFORM �	�

struct us�stop�transform�msg�t �

int msgid� �� same as loading identity transform

��

�define US�START�FILTER �	�

struct us�start�filter�msg�t �

int msgid�

��

�define US�STOP�FILTER �	�

struct us�stop�filter�msg�t �

int msgid� �� same as loading no filter

��

�define US�SENSOR�USE�MEASUREMENT�UNITS �	�

struct us�sensor�use�measurement�units�msg�t �

int msgid�

Measurement�units�type array�units�

��

��

�� Sensor Parameter Generics

��

�define US�SENSOR�LOAD�SAMPLING�SPEED �	�

struct us�sensor�load�sampling�speed�msg�t �

int msgid�

double value�

��

�define US�SENSOR�LOAD�FREQUENCY �	�

struct us�sensor�load�frequency�msg�t �

int msgid�

double value�

��

�define US�SENSOR�LOAD�TRANSFORM �	�

struct us�sensor�load�transform�msg�t �

int msgid�

double x�y�z�e��e��e�� �� transforms

��

�define US�SENSOR�LOAD�FILTER �	�

struct us�sensor�load�filter�msg�t �

int msgid�

enum � NONE � 	�

LOW�PASS � ��

HI�PASS � ��

� type�

double filter�frequency�

���

UTAP�WD Standard Interface Environment

��

��

�� Generic Commands

��

�define US�SENSOR�GET�READING ��	

struct us�sensor�get�reading�msg�t �

int msgid�

ROUTE r� �� type of values� max� min� avg

�� and where it goes

��

�define US�SENSOR�GET�ATTRIBUTES�READING ���

struct us�sensor�get�attributes�reading�msg�t �

int msgid�

ROUTE r�

Attribute�t attr� �� reading attributes� e�g�� force ! torque

��

�� Not sure we need this

�define US�VECTOR�SENSOR�GET�READING ���

struct us�vector�sensor�get�reading�msg�t �

int msgid�

ROUTE r�

��

�� Force Torque Sensor

�define US�FT�SENSOR�POST�READING ���

struct us�ft�sensor�post�reading�msg�t �

int msgid�

int health�

double "f� �� force vector� based on dof

double "t� �� torque vector� based on dof

��

�� Scalar Probe

�define US�SCALAR�SENSOR�POST�READING ���

struct us�scalar�sensor�post�reading�msg�t �

int msgid�

double upper�limit�

double lower�limit�

��

�� �D Vector Probe

�define US�VECTOR�SENSOR�POST�READING ���

struct us�VECTOR�sensor�post�reading�msg�t �

int msgid�

double "vector�

��

�� Generic �D Interface

�� e�g�� Range or Tactile Array

��

�� Mode Control to Sensor

��

�define US��D�SENSOR�LOAD�ARRAY�PATTERN ���

struct us��D�sensor�load�array�pattern�msg�t �

int msgid�

long array�pattern� �� bit�map of sensors enabled

float period� �� period of sampling

��

�define US��D�SENSOR�USE�ARRAY�TYPE ���

���

UTAP�WD Standard Interface Environment

struct us��D�sensor�use�array�type�msg�t �

int msgid�

enum � ONE�SHOT � ��

FLOOD � ��

� type�

��

��

�� Input Command to �D Sensor

��

�define US��D�SENSOR�GET�READING ���

struct us��D�sensor�get�reading�msg�t �

int msgid�

ROUTE r�

Modifier�t mod�

��

��

�� Output Data from �D Sensor

��

�define US��D�SENSOR�POST�READING ���

struct us��D�sensor�post�reading�msg�t �

int msgid�

int rows�

int cols�

double "array�values� �� array of values

��

�� Specific �D Image Processing Sensor Interface

�define US�IMAGE�USE�FRAME�GRAB�MODE ��	

struct us�image�sensor�use�frame�grab�mode�msg�t �

int msgid�

��

�define US�IMAGE�USE�HISTOGRAM�MODE ���

struct us�image�sensor�use�histogram�mode�msg�t �

int msgid�

��

�define US�IMAGE�USE�CENTROID�MODE ���

struct us�image�sensor�use�centroid�mode�msg�t �

int msgid�

��

�define US�IMAGE�USE�GRAY�LEVEL�MODE ���

struct us�image�sensor�use�gray�level�mode�msg�t �

int msgid�

��

�define US�IMAGE�USE�TRESHOLD�MODE ���

struct us�image�sensor�use�threshold�mode�msg�t �

int msgid�

double "threshold�

��

�define US�IMAGE�COMPUTE�SPATIAL�DERIVATIVES�MODE ���

struct us�image�sensor�compute�spatial�derivatives�msg�t �

int msgid�

��

�define US�IMAGE�COMPUTE�TEMPORAL�DERIVATIVES�MODE ���

struct us�image�sensor�compute�temporal�derivatives�msg�t �

int msgid�

��

�define US�IMAGE�USE�SEGMENTATATION�MODE ���

���

UTAP�WD Standard Interface Environment

struct us�image�sensor�use�segmentation�mode�msg�t �

int msgid�

��

�define US�IMAGE�USE�RECOGNITION�MODE ���

struct us�image�sensor�use�recognition�mode�msg�t �

int msgid�

OBJECT to�recognize�

��

�define US�IMAGE�COMPUTE�RANGE�MODE ���

struct us�image�sensor�compute�range�mode�msg�t �

int msgid�

��

�define US�IMAGE�COMPUTE�FLOW�MODE ��	

struct us�image�sensor�compute�flow�mode�msg�t �

int msgid�

��

�define US�IMAGE�LOAD�CALIBRATION ���

struct us�image�sensor�calibration�msg�t �

int msgid�

int calibration�state�

int cursor�value� �� cursor value

float cx� �� x center of image plane

float cy� �� y center of image plane

float sx� �� uncertainty scale factor

float ncx� �� number of sensor elements in camera x direction

float nfx� �� resolution of image frame � x direction

float dx� �� x sensing area
designated in camera specs� ncx

float dy� �� �"
y sensing area�ncy

float dxp� �� dx
ncx�nfx for camera

float focal�length� �� focal length of camera

float distort� �� distortion factor for camera

��

��

�� Data Mode

��

�define US�IMAGE�SET�POSITION ���

struct us�image�set�sensor�position�msg�t �

int msgid�

float x� �� camera position

float y�

float z�

float pan� �� camera orientation

float tilt�

float zoom�

��

�define US�IMAGE�ADJUST�POSITION ���

struct us�image�adjust�position�msg�t �

int msgid�

�� joint �� ��joint�� ��joint����joint���

enum � X��� �� Cartesian �� ��x� ��y� ��z

Y��� �� depends on mode whether world or tool

Z���

PAN���

TILT���

ZOOM���

� axis� �� note� no data entry

int i� �� ��increment� ���decrement� 	�set

double "value� �� if amount�	� system decides

��

���

UTAP�WD Standard Interface Environment

�define US�IMAGE�ADJUST�FOCUS ���

struct us�image�adjust�focus�msg�t �

int msgid�

int i� �� ��increment� ���decrement� 	�set

double increment� �� if amount�	� system decides

��

�define US�IMAGE�POST�SPECIFICATION ���

struct us�image�post�specification �

int msgid�

STATUS�TYPE status�

int num�of�cameras�

int calibration�state�

int xpixels�

int ypixels�

enum �

STATIONARY�

MOVING�

� type�

TRANSFORM " base�

��

�define US�IMAGE�POST�PIXEL�MAP�READING ���

struct us�image�post�pixel�map�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�HISTOGRAM�READING ���

struct us�image�post�histogram�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�XY�CHAR�READING ���

struct us�image�post�xy�char�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�BYTE�SYMBOLIC�READING ���

struct us�image�post�byte�symbolic�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

��	

UTAP�WD Standard Interface Environment

�define US�IMAGE�POST�TRESHOLD�READING ��	

struct us�image�post�threshold�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�SPATIAL�DERIVATIVE�READING ���

struct us�image�post�spatial�derivative�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�TEMPORAL�DERIVATIVE�READING ���

struct us�image�post�temporal�derivative�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�RECOGNITION�READING ���

struct us�image�post�recognition�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�RANGE�READING ���

struct us�image�post�range�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

�define US�IMAGE�POST�FLOW�READING ���

struct us�image�post�flow�reading �

int msgid�

STATUS�TYPE status�

TIME timestamp� �� reflect image data origin

int num�cameras� �� number of cameras

int rows�

int cols�

int "image�data� �� image data would follow here

��

���

UTAP�WD Standard Interface Environment

��

��

�� PIO� SENSOR� ROBOT AXIS�JOINT� TOOL Programmable Interfaces

��

�define PROGRAMMABLE�IO �		

��

�� Control

��

�define US�PIO�ENABLE �		

struct us�pio�enable�msg�t �

int msgid�

int channel� �� �� for all

��

�define US�PIO�DISABLE �	�

struct us�pio�disable�msg�t �

int msgid�

int channel� �� �� for all

��

�define US�PIO�SET�MODE �	�

struct us�pio�set�mode�msg�t �

int msgid�

enum � INPUT���

OUTPUT���

� direction�

��

�define US�PIO�CONTROL�WRITE �	�

struct us�pio�control�write�msg�t �

int msgid�

�� similar to control�register

�� set control information

enum � UNI���HALF � �� �� unipolar 	 to %��� volts

UNI���HALF�NEG � �� �� unipolar 	 to ���� volts

BI���HALF � �� �� bipolar ���� to ��� volts

UNI�� � �� �� unipolar 	 to %� volts

UNI���NEG � �� �� unipolar 	 to �� volts

BI�� � �� �� bipolar �� to � volts

UNI��	 � �� �� unipolar 	 to %�	 volts

UNI��	�NEG � �� �� unipolar 	 to ��	 volts

BI��	 � �� �� bipolar ��	 to �	 volts

NULL�RANGE � 	� �� Null entry

� info�

int bits�data� �� 	����	��������������	����

enum � FREERUN � ��

NOFREERUN ���

� run�

enum � SINGLE�END � ��

DIFFERENTIAL � ��

NULL�REF � 	�

� ref �

��

�define US�PIO�LOAD�SCALE ���

struct us�pio�scale�msg�t �

int msgid�

int channel�

double m � �� volts to vlaue� scale factor

double b� �� offset value

��

���

UTAP�WD Standard Interface Environment

��

�� Data

��

�define US�PIO�DATA�WRITE �	�

struct us�pio�data�write�msg�t �

int msgid�

enum � SCALE� RAW � type�

union �

double dvalue�

int ivalue�

��

��

�define US�PIO�DATA�READ �	�

struct us�pio�data�read�msg�t �

int msgid�

enum � RAW� SCALE � type�

int channel�

��

�define US�PIO�BIT�READ �	�

struct us�pio�bit�read�msg�t �

int msgid�

int channel�num�

int bit�

��

�define US�PIO�BIT�SET �	�

struct us�pio�bit�set�msg�t �

int msgid�

int channel�num�

int bit�

��

�define US�PIO�TOGGLE�BIT ��	

struct us�pio�toggle�bit�msg�t �

int msgid�

int channel�num�

int bit�

��

�define US�PIO�POST�DATA ���

struct us�pio�input�data�msg�t �

int msgid�

enum � RAW � ��

SCALED � ��

� type�

union �

unsigned long data�register� �� data register read

double value�

��

unsigned long data�mask� �� valid bits

��

��

��

�� TLC � TASK LEVEL CONTROL Manipulation

��

�define TASK�LEVEL�CONTROL �		

��

��

�� Task Level Control

��

��

UTAP�WD Standard Interface Environment

�� Mode Selections for Reference Frames and Coordinate Chains

�define US�TLC�USE�JOINT�REFERENCE�FRAME �	�

struct us�tlc�use�joint�reference�frame�msg�t �

int msgid�

��

�define US�TLC�USE�CARTESIAN�REFERENCE�FRAME �	�

struct us�tlc�use�Cartesian�reference�frame�msg�t �

int msgid�

��

�define US�TLC�USE�REPRESENTATION�UNITS �	�

struct us�tlc�use�representation�units�msg�t �

int msgid�

Measurement�units�type units� �� Euler vs� Matrix Transform

��

�define US�TLC�USE�ABSOLUTE�POSITIONING�MODE �	�

struct us�tlc�use�absolute�positioning�mode�msg�t �

int msgid� �� aka world coordinate frame

��

�define US�TLC�USE�RELATIVE�POSITIONING�MODE �	�

struct us�tlc�relative�positioning�msg�t �

int msgid�

��

�define US�TLC�USE�WRIST�COORDINATE�FRAME �	�

struct us�tlc�use�wrist�positioning�msg�t �

int msgid�

��

�define US�TLC�USE�TOOL�TIP�COORDINATE�FRAME �	�

struct us�tlc�use�tool�positioning�msg�t �

int msgid�

��

�define US�TLC�CHANGE�TOOL �	�

struct us�change�tool�msg�t �

int msgid�

int i� �� tool number

��

�define US�TLC�USE�MODIFIED�TOOL�LENGTH�OFFSETS �	�

struct us�tlc�use�modified�tool�length�offsets�msg�t �

int msgid�

int r�

��

�define US�TLC�USE�NORMAL�TOOL�LENGTH�OFFSETS ��	

struct us�tlc�use�normal�tool�length�offsets�msg�t �

int msgid�

��

�define US�TLC�USE�NO�TOOL�LENGTH�OFFSETS ���

struct us�tlc�use�no�tool�length�offsets�msg�t �

int msgid�

��

�define US�TLC�USE�KINEMATIC�RING�POSITIONING�MODE ���

struct us�tlc�use�kinematic�ring�msg�t �

int msgid�

��

���

UTAP�WD Standard Interface Environment

�� Motion Modes

�define US�TLC�START�MANUAL�MOTION ���

struct us�tlc�start�manual�motion�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�STOP�MANUAL�MOTION ���

struct us�tlc�stop�manual�motion�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�START�AUTOMATIC�MOTION ���

struct us�tlc�start�automatic�motion�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�STOP�AUTOMATIC�MOTION ���

struct us�tlc�stop�automatic��motion�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�START�TRAVERSE�MOTION ���

struct us�tlc�start�traverse�motion�msg�t �

int msgid� �� freespace

��

�define US�TLC�STOP�TRAVERSE�MOTION ���

struct us�tlc�stop�traverse�motion�msg�t �

int msgid�

��

�define US�TLC�START�GUARDED�MOTION ���

struct us�tlc�start�guarded�motion�msg�t �

int msgid� �� obstacle� constraints

��

�define US�TLC�STOP�GUARDED�MOTION ��	

struct us�tlc�stop�guarded�motion�msg�t �

int msgid�

��

�define US�TLC�START�COMPLIANT�MOTION ���

struct us�tlc�start�compliant�msg�t �

int msgid�

AxisMask axis�

double "spring�

��

�define US�TLC�STOP�COMPLIANT�MOTION ���

struct us�tlc�stop�compliant�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�START�FINE�MOTION ���

struct us�tlc�start�fine�msg�t �

int msgid�

AxisMask axis�

double errtolerance� �� amt of tolerated error in motion

int proximity� �� how close do we come to goal point

��

���

UTAP�WD Standard Interface Environment

�define US�TLC�STOP�FINE�MOTION ���

struct us�tlc�stop�fine�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�START�MOVE�UNTIL�MOTION ���

struct us�tlc�start�move�until�msg�t �

int msgid�

AxisMask axis�

double "contact�forces�

��

�define US�TLC�STOP�MOVE�UNTIL�MOTION ���

struct us�tlc�stop�move�until�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�START�STANDOFF�DISTANCE ���

struct us�tlc�start�standoff�msg�t �

int msgid�

AxisMask axis�

double "distance�

��

�define US�TLC�STOP�STANDOFF�DISTANCE ���

struct us�tlc�stop�standoff�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�START�FORCE�POSITIONING�MODE ���

struct us�tlc�start�force�positioning�msg�t �

int msgid� �� for force reflection

��

�define US�TLC�STOP�FORCE�POSITIONING�MODE ��	

struct us�tlc�stop�force�positioning�msg�t �

int msgid� �� for force reflection

��

��

��

�� Parameter Settings

��

�define US�TLC�LOAD�DOF ���

struct us�tlc�use�dof�msg�t �

int msgid�

int dof� �� motion DOF� i�e�� �D vs �D

��

�define US�TLC�LOAD�CYCLE�TIME ���

struct us�load�cycle�time�msg�t �

int msgid�

double time�

��

�define US�TLC�LOAD�REPRESENTATION�UNITS ���

struct us�tlc�load�representation�units�msg�t �

int msgid�

Measurement�units�type units� �� Euler vs� Matrix Transform

��

�define US�TLC�LOAD�LENGTH�UNITS ���

struct us�tlc�load�length�units�msg�t �

���

UTAP�WD Standard Interface Environment

int msgid�

Measurement�units�type units� �� Meters vs� mm vs� inches

��

�define US�TLC�LOAD�RELATIVE�POSITIONING ���

struct us�tlc�load�relative�positioning�msg�t �

int msgid�

TRANSFORM " t�

��

�define US�TLC�ZERO�RELATIVE�POSITIONING ���

struct us�tlc�zero�relative�positioning�msg�t �

int msgid�

��

�define US�TLC�ZERO�PROGRAM�ORIGIN ���

struct us�tlc�zerot�program�origin�msg�t �

int msgid�

TRANSFORM " t�

��

�define US�TLC�LOAD�KINEMATIC�RING�POSITIONING�MODE ���

struct us�tlc�load�kinematic�ring�msg�t �

int msgid�

Measurement�units�type units�

enum � �Base � 	x						��

�TOOL � 	x						��

�SENSOR�FUSION � 	x						��

�� RHS

�DELTA � 	x					�	�

�OBJECT � 	x					�	�

�OBJECTBASE � 	x			�			�

�OBJECTOFFSET� � 	x			�			�

�OBJECTOFFSET� � 	x			�			�

�OBJECTOFFSET� � 	x			�			�

� mask�

��

�define US�TLC�LOAD�BASE�PARAMETERS ���

struct us�tlc�load�base�parameters�msg�t �

int msgid�

TRANSFORM " trBase�

��

�define US�TLC�LOAD�TOOL�PARAMETERS ��	

struct us�tlc�load�tool�parameters�msg�t �

int msgid�

char name������ �� tool name

double dx� dy� dz� �� tooling added translation against edge

double ux� uy� uz� �� Euler angles for tooling angle

double normal�threshold� �� amount of normal force

double tangential�threshold� �� amount of tangential force

ORIENTATION�TYPE heading� �� what is the heading of the tool tip

��

�define US�TLC�LOAD�OBJECT ���

struct us�tlc�load�object�msg�t �

int msgid�

OBJECT obj�id�

TRANSFORM " t�

��

�define US�TLC�LOAD�OBJECT�BASE ���

���

UTAP�WD Standard Interface Environment

struct us�tlc�load�object�base�msg�t �

int msgid�

TRANSFORM " t�

��

�define US�TLC�LOAD�OBJECT�OFFSET ���

struct us�tlc�load�object�offset�msg�t �

int msgid�

int i�

TRANSFORM " t�

��

�define US�TLC�LOAD�DELTA ���

struct us�tlc�load�delta�msg�t �

int msgid�

enum � �SINE�WAVE��

�DITHER��

�NULL��

� delta�

double magnitude�

double frequency�

��

�define US�TLC�LOAD�OBSTACLE�VOLUME ���

struct us�tlc�load�obstacle�volume�msg�t �

int msgid�

int i�

TRANSFORM " t�

��

�� Dynamical Control

�define US�TLC�LOAD�NEIGHBORHOOD ���

struct us�tlc�load�blending�msg�t �

int msgid�

double dist� �� error tolerance

BLEND�TYPE blend� �� what is the blending algorithm

��

�define US�TLC�LOAD�FEED�RATE ���

struct us�tlc�load�feed�rate�msg�t �

int msgid�

double feed�rate�

Measurement�units�type units�

��

�define US�TLC�LOAD�TRAVERSE�RATE ���

struct us�tlc�load�traverse�rate�msg�t �

int msgid�

double traverse�rate�

Measurement�units�type units�

��

�define US�TLC�LOAD�ACCELERATION ���

struct us�tlc�load�acceleration�msg�t �

int msgid�

double accel�

Measurement�units�type units�

��

�define US�TLC�LOAD�JERK ��	

struct us�tlc�load�jerk�msg�t �

int msgid�

double jerk�

Measurement�units�type units�

��

���

UTAP�WD Standard Interface Environment

�define US�TLC�LOAD�PROXIMITY ���

struct us�tlc�load�proximity�msg�t �

int msgid�

AxisMask axis�

double distance�

��

�define US�TLC�LOAD�CONTACT�FORCES ���

struct us�tlc�load�contact�forces�msg�t �

int msgid�

TRANSFORM " tr� �� transform from MERGE frame

�� to FORCE frame

Representation�units�type units� �� transform rep�

int dof� �� degrees of freedom

long cfSelVect� �� hybrid selection vector for

�� FORCE frame

long cfComplyVect� �� selection vector specifying

�� which position DOFs of FORCE

�� frame also have compliance

double "cfFtSetpoints� �� force setpoints in force

�� controlled DOFs of FORCE frame

double "cfFtGains� �� force gains in FORCE frame

double "cfMaxFcVel� �� max velocities in DOF of

�� force frame due to force control

��

�define US�TLC�LOAD�JOINT�LIMIT ���

struct us�tlc�load�joint�limit�msg�t �

int msgid�

AxisMask axis�

double "jtLimit� �� joint space limit

��

�define US�TLC�LOAD�CONTACT�FORCE�LIMIT ���

struct us�tlc�load�contact�force�limit�msg�t �

int msgid�

double "ctFLimit� �� contact force limit

��

�define US�TLC�LOAD�CONTACT�TORQUE�LIMIT ���

struct us�tlc�load�contact�torque�limit�msg�t �

int msgid�

double "ctTLimit� �� contact torque limit

��

�define US�TLC�LOAD�SENSOR�FUSION�POS�LIMIT ���

struct us�tlc�load�sensor�fusion�pos�limit�msg�t �

int msgid�

double "fsPLimit� �� position limit for sensor based motion

��

�define US�TLC�LOAD�SENSOR�FUSION�ORIENT�LIMIT ���

struct us�tlc�load�sensor�fusion�orient�limit�msg�t �

int msgid�

double "fsOLimit� �� orientation limit for sensor based motion

��

�define US�TLC�LOAD�SEGMENT�TIME ���

struct us�tlc�load�segment�time�msg�t �

int msgid�

double time� �� duration of segment

��

�define US�TLC�LOAD�TERMINATION�CONDITION ���

���

UTAP�WD Standard Interface Environment

struct us�tlc�load�termination�condition�msg�t �

int msgid�

enum � time�term � 	x	��

time�max � 	x	��

trans�del � 	x	��

ang�del � 	x	��

force�err � 	x�	�

torque�err � 	x�	�

vel�profile � 	x�	�

� condition�

int select� �� bit mask for termination condition

double testTime� �� time over which to avg ending condition

�� variables

double endTime� �� maximum ending motion time

double endTransDel� �� total translation due to sensor based

�� motion in MERGE frame

double endAngDel� �� total angular motion due sensor based motion

�� motion in MERGE frame

double endTransVel� �� magnitude of rate of change of endTransDel

double endAngVel� �� magnitude of rate of change of endAngDel

double endForceErr� �� contact force error vector magnitude

double endTorqueEff� �� contact torque error vector magnitude

double endForceVel� �� magnitude of raet of change of endForceErr

double endTorqueVel� �� magnitude of raet of change of endTorqueErr

��

�define US�TLC�INCR�VELOCITY ��	

struct us�tlc�incr�velocity�msg�t �

int msgid�

int i� �� ��increment� ���decrement� 	�set

double increment� �� if amount�	� system decides

��

�define US�TLC�INCR�ACCELERATION ���

struct us�tlc�incr�acceleration�msg�t �

int msgid�

int i� �� ��increment� ���decrement� 	�set

double increment� �� if amount�	� system decides

��

��

�� Task Level Control

��

�� Command Data

��

�define US�TLC�SET�GOAL�POSITION ���

struct us�tlc�set�goal�position�msg�t �

int msgid�

double "data�

��

�define US�TLC�GOAL�SEGMENT ���

struct us�tlc�goal�segment�msg�t �

int msgid�

SEGMENT�SELECT "segment� �� segment type � description

��

�define US�TLC�ADJUST�AXIS ���

struct us�tlc�adjust�axis�msg�t �

int msgid�

AxisMask axis�

int i� �� ��increment� ���decrement� 	�set

double "value� �� if amount�	� system decides

��

��	

UTAP�WD Standard Interface Environment

�� Status Data

�define US�TLC�UPDATE�SENSOR�FUSION ���

struct us�tlc�update�sensor�fusion�msg�t �

int msgid�

TRANSFORM " update�

��

��

��

�� TLC�� task level control � cutting�machining

��

�define US�TLC�SELECT�PLANE ���

struct us�tlc�select�plane�msg�t �

int msgid�

AxisMask axis�

��

�define US�TLC�USE�CUTTER�RADIUS�COMPENSATION ���

struct us�tlc�use�cutter�radius�compensation�msg�t �

int msgid�

double radius�

��

�define US�TLC�START�CUTTER�RADIUS�COMPENSATION ���

struct us�tlc�start�cutter�radius�compensation�msg�t �

int msgid�

double side�

��

�define US�TLC�STOP�CUTTER�RADIUS�COMPENSATION ���

struct us�tlc�stop�cutter�radius�compensation�msg�t �

int msgid�

��

�define US�TLC�STRAIGHT�TRAVERSE ��	

struct us�tlc�straight�traverse�msg�t �

int msgid�

double x�

double y�

double z�

��

�define US�TLC�ARC�FEED ���

struct us�tlc�arc�feed�msg�t �

int msgid�

AxisMask first�axis�

AxisMask second�axis�

double rotation�

double axis�end�point�

��

�define US�TLC�STRAIGHT�FEED ���

struct us�tlc�straight�feed�msg�t �

int msgid�

double x�

double y�

double z�

��

�define US�TLC�PARAMETRIC��D�CURVE�FEED ���

struct us�tlc�parametric��d�curve�feed�msg�t �

int msgid�

FUNCTION�PTR f��

���

UTAP�WD Standard Interface Environment

FUNCTION�PTR f��

double start�parameter�value�

double end�parameter�value�

��

�define US�TLC�PARAMETRIC��D�CURVE�FEED ���

struct us�tlc�parametric��d�curve�feed�msg�t �

int msgid�

FUNCTION�PTR xfcn�

FUNCTION�PTR yfcn�

FUNCTION�PTR zfcn�

double start�parameter�value�

double end�parameter�value�

��

�define US�TLC�NURBS�KNOT�VECTOR ���

struct us�tlc�nurbs�knot�vector�msg�t �

int msgid�

int i� �� which element� 	 � first

double k�

��

�define US�TLC�NURBS�CONTROL�POINT ���

struct us�tlc�nurbs�control�point�msg�t �

int msgid�

int i� �� which CP� 	 � first

double x�

double y�

double z�

double w� �� the weight

��

�define US�TLC�NURBS�FEED ���

struct us�tlc�nurbs�feed�msg�t �

int msgid�

double sStart�

double sEnd�

��

�define US�TLC�TELEOP�FORCE�REFLECTION�UPDATE ���

struct us�tlc�teleop�force�reflection�msg�t�

int msgid�

double "data�

��

��

��

��

��

�� L O C A L

��

��

��

�� "" DISCLAIMER II ""

��

���

UTAP�WD Standard Interface Environment

�� The following LOCAL interfaces are preliminary� The LOCAL interfaces

�� are an initial attempt at providing a solution� These interfaces have

�� not undergone the necessary peer�review process� Please do not let the

�� preliminary state of these interfaces reflect too negatively on the

�� overall state of the UTAP interfaces� At some point in the future�

�� these interfaces will undergo the scrutiny of a review panel and will

�� receive the same level of discussion and revision that was given to

�� the LOCAL interfaces� Comments concerning the LOCAL interfaces are

�� welcome� and should be directed to the UTAP interface coordinator�

�� listed on the disclaimer page�

��

�� At some point the feature�based concepts of the APT Part Programming

�� Language will be explicitly incorporated into the LOCAL interfaces�

�� specifically the APT Tool Axis Control Language� and the APT Measure

�� Language� APT contains hooks for Robotics and Vision Commands
Rules ��xx�

��

�� The current emphasis of the LOCAL definitions is to establish the

�� framework in which the operator can make selections and have these

�� selections registered in the control system�

��

��

�� TDS � the task description module commands�controls task

�define TASK�DESCRIPTION �			

�define US�TDS�LOAD�USER �			

struct us�tds�load�user�msg�t�

int msgid�

USER�TYPE user� �� limit programming capabilities

��

�define US�TDS�SELECT�PROGRAM �		�

struct us�tds�select�program�msg�t�

int msgid�

char filename������ �� filename on disk

��

�define US�TDS�EXECUTE�PROGRAM �		�

struct us�tds�execute�program�msg�t�

int msgid�

char filename������ �� filename on disk

��

�define US�TDS�SELECT�OPERATION �		�

struct us�tds�select�operation�msg�t�

int msgid�

enum � �move � ��

�paint � ��

�strip � ��

�finish � ��

�polish � ��

�clean � ��

�deseal � ��

�seal � ��

�inspect � ��

�cut � �	�

� task�

��

�define US�TDS�SELECT�OPMODE �		�

struct us�tds�select�opmode�msg�t�

int msgid�

enum �

TELEOP� �� joystick motion

��

UTAP�WD Standard Interface Environment

SUPERVISED� �� operator supervises actions

AUTONOMOUS� �� controller makes crucial decision

TRADED� �� traded control of motion

SHARED �� control of axis of motion is shared

� type� �� type of operator interaction

AxisMask axis�

��

�define US�TDS�LOAD�SELECTIONS �		�

struct us�tds�load�selections�msg�t�

int msgid�

enum � select�agent�

select�io�

select�object�

select�traj�

�selection�

char name������

��

�define US�TDS�LOAD�REFERENCE�UNITS �		�

struct us�tds�load�reference�units�msg�t�

int msgid�

Measurement�units�type units�

��

�define US�TDS�LOAD�RATE�DEFAULTS �		�

struct us�tds�load�rates�msg�t�

int msgid�

enum �

set�default�feed�rate� �� per second

set�default�traverse�rate� �� per second

set�task�space�acceleration�limit �� per second per second

� selection�

enum � meters�

inches�

millimeters � units�

double rate�

��

�define US�TDS�LOAD�ORIGIN �		�

struct us�tds�load�origin�msg�t�

int msgid�

enum � device�origin� �� use current values of device

relative�origin�

zero�device�

device�view�

� selection�

char name ������ �� device name

��

�define US�TDS�LOAD�SENSING�DEFAULTS �		�

struct us�tds�load�sensing�msg�t�

int msgid�

enum �

set�default�sensor�limit�

set�default�sensor�orientation�

set�sensor�limit�override�

clear�sensor�override

� selection�

char sensor�name������

Attribute�t attr�

double setting�

��

���

UTAP�WD Standard Interface Environment

��

��

�� TK � The current state of the manipulation� end�effecting� and tooling

�� systems is known and stored in the task knowledgebase and trajectory

�� description modules

�define TASK�KNOWLEDGE ��		

�define US�TK�DEFINE�FRAMEWORK ��	�

struct us�task�framework�msg�t �

int msgid�

�� �� indicates that the user must fill in the field

enum � �move�

�paint�

�strip�

�finish�

�polish�

�clean�

�deseal�

�seal�

�inspect�

� task�

int step�number� �� use step number or

char macro�name������ �� task macro name

USER�TYPE user� �� minimum programming capabilities

�� Select Operation Method

enum � TELEOP� �� joystick motion

SUPERVISED� �� operator supervises actions

AUTONOMOUS� �� controller makes crucial decision

TRADED� �� traded control of motion

SHARED� �� control of axis of motion is shared

� type� �� type of operator interaction

AxisMask axis�

int number�of�agents� �� number of agents agents defaults

char agent�class�������		��

char agent�list�������		��

char tool�class������ �� class of potential tools

char tool�name������ �� default tool

char object�class������ �� attribute class of potential objects

char object�name������ �� use selects�defines object

int task�units� �� default units

POSITION program�home�

POSITION program�origin�

POSITION relative�origin�

TRANSFORM " base�frame�

TRANSFORM " tool�frame�

TRANSFORM " zero�axes�force�

TRANSFORM " zero�tool�force�

int default�task�reference�units�

int task�reference�units�

���

UTAP�WD Standard Interface Environment

double set�task�space�acceleration�limit�

double set�task�space�acceleration�time�

double feed�rate�

double feed�rate�units�

double traverse�rate�

int traverse�rate�units�

double default�force�setting�

double guarded�proximity�setting�

double viscosity�setting�

double humidity�setting�

double desired�temperature�

double temperature�limit�

double noise�limit�

��

�define US�TK�MACRO�CREATE ��	�

�define US�TK�MACRO�DELETE ��	�

�define US�TK�MACRO�MODIFY ��	�

struct us�tk�macro�msg�t �

int msgid�

char framework�file ������ �� defines framework

char action�file ������ �� defines stepwise actions

char plan������

��

��

�� PTPS�TPS

�define PARENT�TASK�PROGRAM�SEQUENCING ��		

�define US�PTPS�SELECT�AGENT ��	�

struct us�select�resource�msg�t �

int msgid�

TASK�ID tid�

RESOURCE�SELECT agent�

SUBUSYSTEM�ID ssid�

enum � SOLO�

LH�

RH�

� type�

��

�define US�TPS�SELECT�TOOL ��	�

struct us�select�tool�msg�t �

int msgid�

TASK�ID tid�

END�EFFECTOR�SELECT tool�

SUBUSYSTEM�ID ssid�

��

�define US�PTPS�SELECT�SENSOR ��	�

struct us�select�sensor�msg�t �

int msgid�

TASK�ID tid�

RESOURCE�SELECT agent�

SUBUSYSTEM�ID ssid�

enum � SOLO�

LH�

RH�

� type�

���

UTAP�WD Standard Interface Environment

��

�define US�PTPS�INTERP�RUN�PLAN ��	�

struct us�interp�run�plan�msg�t �

int msgid�

SUBUSYSTEM�ID ssid�

enum � UTAP � ��

RS���D � ��

SIL � ��

GSL � ��

� type �

char plan������

��

�define US�PTPS�INTERP�HALT�PLAN ��	�

struct us�interp�halt�plan�msg�t �

int msgid�

SUBUSYSTEM�ID ssid�

��

�define US�PTPS�INPUT�REQUEST ��	�

struct us�ptps�input�request�msg�t �

int msgid�

SUBUSYSTEM�ID ssblocker�

SUBUSYSTEM�ID ssenabler�

enum � peer�ack � ��

peer�done � ��

shared�resource � ��

� type�

��

�define US�PTPS�OUTPUT�ENABLE�SUBSYSTEM ��	�

struct us�ptps�output�enable�msg�t �

int msgid�

SUBUSYSTEM�ID ssblocker�

SUBUSYSTEM�ID ssenabler�

enum � peer�ack � ��

peer�done � ��

shared�resource � ��

� type�

��

��

�� TPS

�define TASK�PROGRAM�SEQUENCING ��		

�define US�TPS�FREESPACE�MOTION ��	�

struct us�tps�freespace�msg�t �

int msgid�

��

�define US�TPS�GUARDED�MOTION ��	�

struct us�tps�guardede�msg�t �

int msgid�

��

�define US�TPS�CONTACT�MOTION ��	�

struct us�tps�constact�msg�t �

int msgid�

��

�define US�TPS�SET�SUPERVISORY�MODE ��	�

struct us�supervisory�mode�msg�t �

int msgid�

���

UTAP�WD Standard Interface Environment

�� need hybrid parameter stuff here

��

�define US�TPS�SELECT�FEATURE ��	�

struct us�select�feature�msg�t �

int msgid�

FEATURE surface�

double fx�fy�fz� �� world to feature origin translation

double fo��fo��fo�� �� world to feature origin rotation

��

�define US�TPS�SELECT�MATERIAL ��	�

struct us�select�material�msg�t �

int msgid�

MATERIAL�TYPE m� �� type of material

double maxx�maxy�maxz� �� feature to operation max translation

double minx�miny�minz� �� feature to operation min translation

double fo��fo��fo�� �� feature to operation max rotation

double strength� �� maximum material strength

double minforce� �� min amount of surface contact#

double maxforce� �� max amount of surface contact#

��

�define US�LOAD�OBSTACLE ��	�

struct us�load�obstacle�msg�t �

int msgid�

FEATURE obstacle�

��

�define US�LOAD�PATTERN ��	�

struct us�load�pattern�msg�t �

int msgid�

GEOMETRY�PATTERN pattern�

��

�define US�TPS�MARK�EVENT ��	�

struct us�tps�mark�event�msg�t �

int msgid�

enum �

peer�signal � ��

�� coordinate devices�io�sensed motion

� event�

��

�define US�TPS�ENABLE ���	

struct us�ptps�enable�msg�t �

int msgid�

enum � peer�msg � ��

shared�resource � ��

�enable�

��

��

�� OI � Operator Interface Messages

�define OPERATOR�INTERFACE ��		

�define US�BEGIN�FRAMEWORK ��	�

�define US�END�FRAMEWORK ��	�

�define US�CREATE�FRAMEWORK ��	�

�define US�DELETE�FRAMEWORK ��	�

struct us�framework�msg�t�

int msgid�

���

UTAP�WD Standard Interface Environment

char name ������

��

�define US�ADD�SYMBOLIC�ITEM ��	�

�define US�DELETE�SYMBOLIC�ITEM ��	�

struct us�symbolic�item�msg�t�

int msgid�

char name ������

��

�define US�ADD�SYMBOLIC�ITEM�ATTR ��	�

�define US�DELETE�SYMBOLIC�ITEM�ATTR ��	�

�define US�SET�SYMBOLIC�ITEM�ATTR ��	�

struct us�symbolic�item�attribute�msg�t�

int msgid�

char name ������

char attribute�name������

int size� �� e�g� number of joints

int xdim�

int ydim�

Representation�units�type rep�

Measurement�units�type units�

generic�value�a values� �� context�dependent values

��

��

�� OM � object modeling module

�define OBJECT�MODELING ��		

�define US�OM�CREATE ��	�

struct us�om�create�msg�t �

int msgid�

enum � device�origin � ��

relative�origin � ��

zero�device � ��

device�view � ��

workarea � ��

target � ��

obstacle � ��

� type�

char name ������

�� Reference Frame � e�g�� given in VDT relative coordinates

char device������ �� use name for now

GEOMETRY data� �� define shape

��

�define US�OM�DELETE ��	�

struct us�om�delete�msg�t �

int msgid�

enum � device�origin � ��

relative�origin � ��

zero�device � ��

device�view � ��

workarea � ��

target � ��

obstacle � ��

� type�

char name ������

��

�define US�OM�MODIFY ��	�

struct us�om�modify�msg�t �

int msgid�

���

UTAP�WD Standard Interface Environment

enum � device�origin � ��

relative�origin � ��

zero�device � ��

device�view � ��

workarea � ��

target � ��

obstacle � ��

�type�

char name ������

�� Reference Frame � e�g�� given in VDT relative coordinates

char device������ �� use name for now

GEOMETRY data� �� define shape

��

��

�� OC � The object calibration module provides the operator with a means

�� of updating knowledge on the object
s positions and orientations

�define OBJECT�CALIBRATION ��		

�define US�OC�SET�CALIB ��	�

�define US�OC�GET�CALIB ��	�

struct us�oc�calib�msg�t �

int msgid�

enum � device�origin � ��

relative�origin � ��

zero�device � ��

device�view � ��

workarea � ��

target � ��

obstacle � ��

�type�

char name ������

�� Reference Frame � e�g�� given in VDT relative coordinates

char device������ �� use name for now

GEOMETRY data� �� define shape

��

�define US�OC�SET�ATTR ��	�

struct us�oc�set�attr�msg�t �

int msgid�

char name ������ �� device name

Modifier�t modifier�

Attribute�t attributes�

int size�

Representation�units�type rep�

Measurement�units�type units�

generic�value�a value�

��

�define US�OC�GET�ATTR ��	�

struct us�oc�get�attr�msg�t �

int msgid�

char name ������ �� device name

Modifier�t modifier�

Attribute�t attributes�

��

��

�� OK Input

�define OBJECT�KNOWLEDGE ��		

�define US�OK�RECORD ��	�

�define US�OK�PLAYBACK ��	�

��	

UTAP�WD Standard Interface Environment

struct us�ok�record�msg�t �

int msgid�

char name ������

��

�define US�OK�CREATE�OBJ ��	�

struct us�ok�create�msg�t �

int msgid�

char name ������

OBJECT ob�

��

�define US�OK�DELETE�OBJ ��	�

struct us�ok�delete�msg�t �

int msgid�

char name ������

��

�define US�OK�MODIFY ��	�

struct us�ok�modify�msg�t �

int msgid�

int obj�id�

int size�

void " data�

��

�define US�OK�MODIFY�ATTRIBUTE ��	�

struct us�ok�modify�attribute�msg�t �

int msgid�

int obj�id�

Attribute�t attr�

int size�

void " data�

��

�define US�OK�ATTRIBUTE�QUERY ��	�

struct us�ok�attr�query�msg�t �

int msgid�

int obj�id�

Attribute�t attr�

��

�� Output

�define US�OK�OUTPUT�REGISTERED�OBJ�ID ��	�

struct us�registered�id�msg�t �

int msgid�

char name ������

int obj�id�

��

�define US�OK�ATTRIBUTE�RESPONSE ��	�

struct us�ok�attr�response�msg�t �

int msgid�

int obj�id�

Attribute�t attr�

double "values�

��

��

�� TRD � the trajectory description module suports the creation�

�� deletion or modification of a trajectory

�define TRAJECTORY�DESCRIPTION ��		

�define US�TRD�OPEN ��		

struct us�trd�open�msg�t�

int msgid�

���

UTAP�WD Standard Interface Environment

char name������

enum � create � ��

append � ��

readonly � ��

� type�

��

�define US�TRD�ERASE ��	�

�define US�TRD�RECORD ��	�

�define US�TRD�RECORD�ON ��	�

�define US�TRD�RECORD�OFF ��	�

struct us�trd�record�msg�t�

int msgid�

char name������

��

�define US�TRD�FIND ��	�

�define US�TRD�NEXT ��	�

�define US�TRD�PREVIOUS ��	�

�define US�TRD�DELETE ��	�

struct us�trd�positioning�msg�t�

int msgid�

char name������

int num�element� �� �� � current

��

�define US�TRD�NAME�ITEM ��	�

struct us�trd�name�item�msg�t�

int msgid�

char name������

��

�define US�TRD�DELETE�ITEM ���	

struct us�trd�delete�item�msg�t�

int msgid�

int id�

��

�define US�TRD�SET�JOINT�MODE ����

struct us�trd�set�joint�mode�msg�t�

int msgid�

double dof�

��

�define US�TRD�SET�CARTESIAN�MODE ����

struct us�trd�set�Cartesian�mode�msg�t�

int msgid�

double dof�

��

�define US�TRD�MODIFY ����

struct us�trd�modify�msg�t�

int msgid�

char name������

int num�element�

double "data�

��

�define US�TRD�ADD�ELEMENT ����

struct us�trd�add�element�msg�t�

int msgid�

double "data�

��

���

UTAP�WD Standard Interface Environment

��

�� SGD ! ADS � Analysis and Device Simulator Modules� These modules serve

�� a dual purpose� � operator can call the analysis menu� etner state

�� data and end point data� and let the simulator establish the

�� appropriate trajectory�path through teleoperation of the simulation

�� � analyzes the exeuction of the system taks sequence by examining

�� the curernt state of teh system against predetermined constraints�

�� SS � subsystem simulator

�� SGD uses the same messaging as the OI

�� ADS uses the same messaging as the SGD� OI

�define STATUS�GRAPHICS�DISPLAY ��		

�define ANALYSIS�DIAGNOSIS�SYSTEM �			

�define US�ADS�COLLISION�DETECTED �		�

struct us�sgd�error�msg�t �

int msgid�

char name ������

int obj�id��

int obj�id��

double x�y�z� �� collision�spot

��

��

��

�� SS uses the same messaging as the module it is simulating but replace

�� a SS for the module name�

�define SUBSYSTEM�SIMULATION ��		

�endif

H�� Interface API Source

�ifndef UTAP�INTERFACE�DEFINITIONS

�include �generic�defs�h�

�include �utap�info�model�h�

�include �utap�data�defs�h�

�include �undefined�types�h�

�""

This header file defines the interfaces for communication between

modules in the Generic C� Architecture�

Generic Telerobotic Architecture for C�� Industrial Processes

contains modules of which the following have acronyms�

MODULES NAMING�ACRONYMGS�

REMOTE�

RSC � robot servo control

TOOL � tool control

SENSOR� sensor control

PIO � programmable io

TLC � task level control

CLC � closed loop control

DB � data base is part of TLC � CLC

VS � virtual sensor

LOCAL�

TDS � task description and supervision

TK � task knowledge

TRD � trajectory description

PTPS � parent task program sequencer

TPS � task program sequencer

OI � operator interface

��

UTAP�WD Standard Interface Environment

OK � object knowledge

OC � object calibration

OM � object modeling

SGD � status graphics displays

SS � subsystem simulators

ADS � analysis and diagnosis

"�

�""

A little table of contents�

GENERIC� �	� � ���

ERROR� ��		 � ��		

ROBOT�SERVO� �		 � ���

TOOL� �		 � ���

SENSOR� �		 � ���

PIO� �		 � ���

TLC� �		 � ���

DB� �		 � ���

VS� �		 � ���

TDS� �			 � �	��

TK� ��		 � ����

TRD� ��		 � ����

PTPS� ��		 � ����

TPS� ��		 � ����

OI� ��		 � ����

OK ��		 � ����

OC ��		 � ����

OM ��		 � ����

SGD� ��		 � ����

ADS� �			 � �	��

SS� ��		 � ����

"�

us�startup
�

us�shutdown
�

us�reset
 int type�

long mask�

us�enable
 int axis�

us�disable
 int axis�

us�estop
�

us�start
�

us�stop
�

us�abort
�

us�halt
�

us�init
�

us�hold
�

us�pause
�

us�resume
�

us�zero
 long mask�

us�begin�single�step
�

us�next�single�step
�

us�clear�single�step
�

us�begin�block
�

us�end�block
�

us�begin�plan
 char name������

us�end�plan
�

us�use�plan
�

us�begin�macro
 char name������

us�end�macro
�

us�execute�macro
 char name������

us�begin�event
 char name������

int type�

TIME t�

us�end�event
�

us�mark�breakpoint
�

us�mark�event
 char name������

us�get�selection�id
 char name������

us�post�selection�id
�

���

UTAP�WD Standard Interface Environment

us�use�selection
�

us�use�axis�mask
 AxisMask axis�

us�use�ext�algorithm
 int slot�

us�load�ext�parameter
 int slot�

us�get�ext�data�value
 int slot�

ROUTE r�

us�post�ext�data�value
 int slot�

void " data�

us�set�ext�data�value
 int slot�

void " data�

us�load�status
 int type�

us�load�status�period
 double time�

us�generic�status�report�t
 STATUS�TYPE status�

double progress�

int type�

int explanation�

void " command�echo�

us�error�command�not�implemented
�

us�error�command�entry
 int field�num�

us�error�duplicate�name
�

us�error�command�bad�data
 int field�num�

us�error�no�data�available
 int field�num�

us�error�safety�violation
 int field�num�

us�error�limit�exceeded
 Attribute�t attr�

us�error�over�specified
 int axis�number�

us�error�under�specified
�

us�axis�servo�use�angle�units
�

us�axis�servo�use�radian�units
�

us�axis�servo�use�abs�position�mode
�

us�axis�servo�use�rel�position�mode
�

us�axis�servo�use�abs�velocity�mode
�

us�axis�servo�use�rel�velocity�mode
�

us�axis�servo�use�pid
 int joint�mask�

us�axis�servo�use�ff
�

us�axis�servo�use�current
�

us�axis�servo�use�voltage
�

us�axis�servo�use�stiffness
 int spSelVect�

double " gains�

double " spMaxVel�

us�axis�servo�use�compliance
�

us�axis�servo�use�impedance
�

us�axis�servo�start�gravity�compensation
�

us�axis�servo�stop�gravity�compensation
�

us�axis�servo�load�dof
 int dof�

us�axis�servo�load�cycle�time
 double time�

us�axis�servo�load�pid�gain
 int joint�mask�

double "p�

double "i�

double "d�

us�axis�servo�load�joint�limit
 int axis�bit�mask�

double "jmaxLimit�

double "jminLimit�

us�axis�servo�load�velocity�limit
 int axis�bit�mask�

double "jvelLimit�

us�axis�servo�load�joint�gain�limit
 double "jaGain�

us�axis�servo�load�damping�values
 double "jaDamp�

us�axis�servo�home
 int axis�

us�axis�servo�set�brakes
 int axis�bit�mask�

us�axis�servo�clear�brakes
 int axis�bit�mask�

us�axis�servo�set�torques
 int axis�bit�mask�

double "joint�torques�

us�axis�servo�set�current
 double "joint�currents�

us�axis�servo�set�voltage
 double "joint�voltages�

us�axis�servo�set�position
 double "joint�position�

us�axis�servo�set�velocity
 double "joint�velocity�

us�axis�servo�set�acceleration
 double "joint�acceleration�

���

UTAP�WD Standard Interface Environment

us�axis�servo�set�force
 double "joint�force�

us�axis�servo�jog
 int axis�

double speed�

us�axis�servo�jog�stop
 int axis�

us�spindle�retract�traverse
�

us�load�spindle�speed
 double r�

us�start�spindle
 int direction�

us�stop�spindle�turning
�

us�spindle�retract
�

us�orient�spindle
 double orientation�

double direction�

us�lock�spindle�z
�

us�use�spindle�force
�

us�use�no�spindle�force
�

us�flow�start�mist
�

us�flow�stop�mist
�

us�flow�start�flood
�

us�flow�stop�flood
�

us�flow�load�parameters
 int param�

double value�rate�

int flow�

int action�

us�start�transform
�

us�stop�transform
�

us�start�filter
�

us�stop�filter
�

us�sensor�use�measurement�units
 Measurement�units�type array�units�

us�sensor�load�sampling�speed
 double value�

us�sensor�load�frequency
 double value�

us�sensor�load�transform
 double x�

y�

z�

e��

e��

e��

us�sensor�load�filter
 int type�

double filter�frequency�

us�sensor�get�reading
 ROUTE r�

us�sensor�get�attributes�reading
 ROUTE r�

Attribute�t attr�

us�vector�sensor�get�reading
 ROUTE r�

us�ft�sensor�post�reading
 int health�

double "f�

double "t�

us�scalar�sensor�post�reading
 double upper�limit�

double lower�limit�

us�VECTOR�sensor�post�reading
 double "vector�

us��D�sensor�load�array�pattern
 long array�pattern�

float period�

us��D�sensor�use�array�type
 int type�

us��D�sensor�get�reading
 ROUTE r�

Modifier�t mod�

us��D�sensor�post�reading
 int rows�

int cols�

double "array�values�

us�image�sensor�use�frame�grab�mode
�

us�image�sensor�use�histogram�mode
�

us�image�sensor�use�centroid�mode
�

us�image�sensor�use�gray�level�mode
�

us�image�sensor�use�threshold�mode
 double "threshold�

us�image�sensor�compute�spatial�derivatives
�

us�image�sensor�compute�temporal�derivatives
�

us�image�sensor�use�segmentation�mode
�

us�image�sensor�use�recognition�mode
 OBJECT to�recognize�

us�image�sensor�compute�range�mode
�

us�image�sensor�compute�flow�mode
�

���

UTAP�WD Standard Interface Environment

us�image�sensor�calibration
 int calibration�state�

int cursor�value�

float cx�

float cy�

float sx�

float ncx�

float nfx�

float dx�

float dy�

float dxp�

float focal�length�

float distort�

us�image�set�sensor�position
 float x�

float y�

float z�

float pan�

float tilt�

float zoom�

us�image�adjust�position
 int axis�

int i�

double "value�

us�image�adjust�focus
 int i�

double increment�

us�image�post�specification
 STATUS�TYPE status�

int num�of�cameras�

int calibration�state�

int xpixels�

int ypixels�

int type�

TRANSFORM " base�

us�image�post�pixel�map�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�histogram�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�xy�char�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�byte�symbolic�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�threshold�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�spatial�derivative�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

���

UTAP�WD Standard Interface Environment

us�image�post�temporal�derivative�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�recognition�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�range�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�image�post�flow�reading
 STATUS�TYPE status�

TIME timestamp�

int num�cameras�

int rows�

int cols�

int "image�data�

us�pio�enable
 int channel�

us�pio�disable
 int channel�

us�pio�set�mode
 int direction�

us�pio�control�write
 int info�

int bits�data�

int run�

int ref �

us�pio�scale
 int channel�

double m �

double b�

us�pio�data�write
 int type�

union
 double dvalue�

int ivalue�

�

us�pio�data�read
 int type�

int channel�

us�pio�bit�read
 int channel�num�

int bit�

us�pio�bit�set
 int channel�num�

int bit�

us�pio�toggle�bit
 int channel�num�

int bit�

us�pio�input�data
 int type�

union
 unsigned long data�register�

double value�

unsigned long data�mask�

us�tlc�use�joint�reference�frame
�

us�tlc�use�Cartesian�reference�frame
�

us�tlc�use�representation�units
 Measurement�units�type units�

us�tlc�use�absolute�positioning�mode
�

us�tlc�relative�positioning
�

us�tlc�use�wrist�positioning
�

us�tlc�use�tool�positioning
�

us�change�tool
 int i�

us�tlc�use�modified�tool�length�offsets
 int r�

us�tlc�use�normal�tool�length�offsets
�

us�tlc�use�no�tool�length�offsets
�

us�tlc�use�kinematic�ring
�

us�tlc�start�manual�motion
 AxisMask axis�

us�tlc�stop�manual�motion
 AxisMask axis�

us�tlc�start�automatic�motion
 AxisMask axis�

us�tlc�stop�automatic��motion
 AxisMask axis�

���

UTAP�WD Standard Interface Environment

us�tlc�start�traverse�motion
�

us�tlc�stop�traverse�motion
�

us�tlc�start�guarded�motion
�

us�tlc�stop�guarded�motion
�

us�tlc�start�compliant
 AxisMask axis�

double "spring�

us�tlc�stop�compliant
 AxisMask axis�

us�tlc�start�fine
 AxisMask axis�

double errtolerance�

int proximity�

us�tlc�stop�fine
 AxisMask axis�

us�tlc�start�move�until
 AxisMask axis�

double "contact�forces�

us�tlc�stop�move�until
 AxisMask axis�

us�tlc�start�standoff
 AxisMask axis�

double "distance�

us�tlc�stop�standoff
 AxisMask axis�

us�tlc�start�force�positioning
�

us�tlc�stop�force�positioning
�

us�tlc�use�dof
 int dof�

us�load�cycle�time
 double time�

us�tlc�load�representation�units
 Measurement�units�type units�

us�tlc�load�length�units
 Measurement�units�type units�

us�tlc�load�relative�positioning
 TRANSFORM " t�

us�tlc�zero�relative�positioning
�

us�tlc�zerot�program�origin
 TRANSFORM " t�

us�tlc�load�kinematic�ring
 Measurement�units�type units�

int mask�

us�tlc�load�base�parameters
 TRANSFORM " trBase�

us�tlc�load�tool�parameters
 char name������

double dx�

dy�

dz�

double ux�

uy�

uz�

double normal�threshold�

double tangential�threshold�

ORIENTATION�TYPE heading�

us�tlc�load�object
 OBJECT obj�id�

TRANSFORM " t�

us�tlc�load�object�base
 TRANSFORM " t�

us�tlc�load�object�offset
 int i�

TRANSFORM " t�

us�tlc�load�delta
 int delta�

double magnitude�

double frequency�

us�tlc�load�obstacle�volume
 int i�

TRANSFORM " t�

us�tlc�load�blending
 double dist�

BLEND�TYPE blend�

us�tlc�load�feed�rate
 double feed�rate�

Measurement�units�type units�

us�tlc�load�traverse�rate
 double traverse�rate�

Measurement�units�type units�

us�tlc�load�acceleration
 double accel�

Measurement�units�type units�

us�tlc�load�jerk
 double jerk�

Measurement�units�type units�

us�tlc�load�proximity
 AxisMask axis�

double distance�

us�tlc�load�contact�forces
 TRANSFORM " tr�

Representation�units�type units�

int dof�

long cfSelVect�

long cfComplyVect�

���

UTAP�WD Standard Interface Environment

double "cfFtSetpoints�

double "cfFtGains�

double "cfMaxFcVel�

us�tlc�load�joint�limit
 AxisMask axis�

double "jtLimit�

us�tlc�load�contact�force�limit
 double "ctFLimit�

us�tlc�load�contact�torque�limit
 double "ctTLimit�

us�tlc�load�sensor�fusion�pos�limit
 double "fsPLimit�

us�tlc�load�sensor�fusion�orient�limit
 double "fsOLimit�

us�tlc�load�segment�time
 double time�

us�tlc�load�termination�condition
 int condition�

int select�

double testTime�

double endTime�

double endTransDel�

double endAngDel�

double endTransVel�

double endAngVel�

double endForceErr�

double endTorqueEff�

double endForceVel�

double endTorqueVel�

us�tlc�incr�velocity
 int i�

double increment�

us�tlc�incr�acceleration
 int i�

double increment�

us�tlc�set�goal�position
 double "data�

us�tlc�goal�segment
 SEGMENT�SELECT "segment�

us�tlc�adjust�axis
 AxisMask axis�

int i�

double "value�

us�tlc�update�sensor�fusion
 TRANSFORM " update�

us�tlc�select�plane
 AxisMask axis�

us�tlc�use�cutter�radius�compensation
 double radius�

us�tlc�start�cutter�radius�compensation
 double side�

us�tlc�stop�cutter�radius�compensation
�

us�tlc�straight�traverse
 double x�

double y�

double z�

us�tlc�arc�feed
 AxisMask first�axis�

AxisMask second�axis�

double rotation�

double axis�end�point�

us�tlc�straight�feed
 double x�

double y�

double z�

us�tlc�parametric��d�curve�feed
 FUNCTION�PTR f��

FUNCTION�PTR f��

double start�parameter�value�

double end�parameter�value�

us�tlc�parametric��d�curve�feed
 FUNCTION�PTR xfcn�

FUNCTION�PTR yfcn�

FUNCTION�PTR zfcn�

double start�parameter�value�

double end�parameter�value�

us�tlc�nurbs�knot�vector
 int i�

double k�

us�tlc�nurbs�control�point
 int i�

double x�

double y�

double z�

double w�

us�tlc�nurbs�feed
 double sStart�

double sEnd�

us�tlc�teleop�force�reflection
 double "data�

us�tds�load�user
 USER�TYPE user�

��	

UTAP�WD Standard Interface Environment

us�tds�select�program
 char filename������

us�tds�execute�program
 char filename������

us�tds�select�operation
 int task�

us�tds�select�opmode
 int type�

AxisMask axis�

us�tds�load�selections
 int selection�

char name������

us�tds�load�reference�units
 Measurement�units�type units�

us�tds�load�rates
 int selection�

int units�

double rate�

us�tds�load�origin
 int selection�

char name ������

us�tds�load�sensing
 int selection�

char sensor�name������

Attribute�t attr�

double setting�

us�task�framework
 int task�

int step�number�

char macro�name������

USER�TYPE user�

int type�

AxisMask axis�

int number�of�agents�

char agent�class�������		��

char agent�list�������		��

char tool�class������

char tool�name������

char object�class������

char object�name������

int task�units�

POSITION program�home�

POSITION program�origin�

POSITION relative�origin�

TRANSFORM " base�frame�

TRANSFORM " tool�frame�

TRANSFORM " zero�axes�force�

TRANSFORM " zero�tool�force�

int default�task�reference�units�

int task�reference�units�

double set�task�space�acceleration�limit�

double set�task�space�acceleration�time�

double feed�rate�

double feed�rate�units�

double traverse�rate�

int traverse�rate�units�

double default�force�setting�

double guarded�proximity�setting�

double viscosity�setting�

double humidity�setting�

double desired�temperature�

double temperature�limit�

double noise�limit�

us�tk�macro
 char framework�file ������

char action�file ������

char plan������

us�select�resource
 TASK�ID tid�

RESOURCE�SELECT agent�

SUBUSYSTEM�ID ssid�

int type�

us�select�tool
 TASK�ID tid�

END�EFFECTOR�SELECT tool�

SUBUSYSTEM�ID ssid�

us�select�sensor
 TASK�ID tid�

RESOURCE�SELECT agent�

SUBUSYSTEM�ID ssid�

���

UTAP�WD Standard Interface Environment

int type�

us�interp�run�plan
 SUBUSYSTEM�ID ssid�

int type �

char plan������

us�interp�halt�plan
 SUBUSYSTEM�ID ssid�

us�ptps�input�request
 SUBUSYSTEM�ID ssblocker�

SUBUSYSTEM�ID ssenabler�

int type�

us�ptps�output�enable
 SUBUSYSTEM�ID ssblocker�

SUBUSYSTEM�ID ssenabler�

int type�

us�tps�freespace
�

us�tps�guardede
�

us�tps�constact
�

us�supervisory�mode
�

us�select�feature
 FEATURE surface�

double fx�

fy�

fz�

double fo��

fo��

fo��

us�select�material
 MATERIAL�TYPE m�

double maxx�

maxy�

maxz�

double minx�

miny�

minz�

double fo��

fo��

fo��

double strength�

double minforce�

double maxforce�

us�load�obstacle
 FEATURE obstacle�

us�load�pattern
 GEOMETRY�PATTERN pattern�

us�tps�mark�event
 int event�

us�ptps�enable
 int enable�

us�framework
 char name ������

us�symbolic�item
 char name ������

us�symbolic�item�attribute
 char name ������

char attribute�name������

int size�

int xdim�

int ydim�

Representation�units�type rep�

Measurement�units�type units�

generic�value�a values�

us�om�create
 int type�

char name ������

char device������

GEOMETRY data�

us�om�delete
 int type�

char name ������

us�om�modify
 int type�

char name ������

char device������

GEOMETRY data�

us�oc�calib
 int type�

char name ������

char device������

GEOMETRY data�

us�oc�set�attr
 char name ������

Modifier�t modifier�

Attribute�t attributes�

���

UTAP�WD Standard Interface Environment

int size�

Representation�units�type rep�

Measurement�units�type units�

generic�value�a value�

us�oc�get�attr
 char name ������

Modifier�t modifier�

Attribute�t attributes�

us�ok�record
 char name ������

us�ok�create
 char name ������

OBJECT ob�

us�ok�delete
 char name ������

us�ok�modify
 int size�

void " data�

us�ok�modify�attribute
 Attribute�t attr�

int size�

void " data�

us�ok�attr�query
 Attribute�t attr�

us�registered�id
 char name ������

us�ok�attr�response
 Attribute�t attr�

double "values�

us�trd�open
 char name������

int type�

us�trd�record
 char name������

us�trd�positioning
 char name������

int num�element�

us�trd�name�item
 char name������

us�trd�delete�item
�

us�trd�set�joint�mode
 double dof�

us�trd�set�Cartesian�mode
 double dof�

us�trd�modify
 char name������

int num�element�

double "data�

us�trd�add�element
 double "data�

us�sgd�error
 char name ������

int obj�id��

int obj�id��

double x�

y�

z�

�endif

��

