To be presented as an Invited Paper for the IEEE International Industrial Automation and Control

Conference’95, Taipei, Taiwan, May 1995.

AN OPEN ARCHITECTURE BASED FRAMEWORK FOR AUTOMATION AND
INTELLIGENT SYSTEM CONTROL

Hui-Min Huang
John Michaloski
Nicholas Tarnoff

‘Marilyn Nashman

National Institute of Standards and Technology
Gaithersburg, MD 20899
U.S.A.
{huang, michaloski, tarnoff, or nashman }@cme.nist.gov

Abstract

This paper conceptualizes a framework that features
multiple dimensions for modeling the multiple aspects of
complex automation systems. This framework facilitates
open and scalable system architecture. Its well-defined
structures facilitate efficient processing of system
intelligence. Several automation models are used to
illustrate the validity of this framework. This work is
supported jointly by the National Institute of Standards
and Technology (NIST) Systems Integration for
Manufacturing Applications (SIMA) Joint Architecture
project and the NIST Intelligent Systems Division (ISD)
Tools project.

1. Introduction

The major US automotive manufacturers have issued a
white paper citing open and modular architecture
controllers as resulting in benefits including reduced
initiative and lifecycle costs, maximized machine up
time, easy maintenance, easy integration, and efficient
incorporation of new technologies [1]. In a workshop
on advanced machine tool research directions sponsored
by the Manufacturing Engineering Laboratory of the
NIST, industrial participants expressed their desire for
complex and advanced control capabilities that are agile
and portable [2]. Sweet et al. [3] identified that large
scale, real-time, and distributed are among the key
software technologies for the Aerospace Industries
Association (AIA). Software is a predominant factor in
determining the success and performance of complex
control systems, Meanwhile, the fundamental and
generic principles of handling software and systems
engineering processes are still being searched for
within the global engineering community. Large scale
automation and intelligent systems impose another
layer of difficulty due to their often mission critical and
real-time nature. Recent efforts in the areas of
computer-aided software engineering environments and

level of authority
spatial and temporal resolutions

problem |

elementary

primitive

architectures include a modular architecture for
autonomous robots [4] and a Task Control Architecture
(TCA) [5]. However, scalability might be a problem for
these architectures as they are not intended to model
multiple cooperating agents. Object oriented paradigms
[6, 8] are popular for handling the representation problems
of software systems. However, literatures [7, 8] have
pointed out that these paradigms are not necessary for all
the problems.

Researchers in the Intelligent Systems Division (ISD) of
Manufacturing Engineering Laboratory of the National
Institute of Standards and Technology (NIST) have been
developing and applying a particular approach, called Real-
time Control Systems (RCS) [9], to this automation and
intelligent control problem. RCS covers most of the
major critical issues demanded by the manufacturing,
control, and software engineering industries. The
remainder of the paper attempts to illustrate several of

A machine
controller

application
PLJA, EX'

trajectory

machine
generator

controller
BG,SP,
. WM,VJ,

domain

group

application
controller
task

move

servo
reference

model application

inheritance

* See section 3.

Figure 1:

A Multiple Dimensional Reference Model
Architecture for Intelligent Systems

these critical issues. Our ultimate goal is for RCS to
evolve into a unified solution paradigm to the large scale
automation and intelligent control problem. In an earlier
paper, Huang [10] outlines RCS as a multiple
dimensional reference model architecture (Figure 1). This
paper further extends this concept, especially toward
manufacturing application domains. Several projects that
have been developed using different versions of RCS are
briefly discussed in terms of how they can fit into this
model.

2. Multiple dimensional reference model
architecture

The NIST Hierarchical Real-time Control (RCS) is a
reference model architecture, under development and being
applied since two decades ago. Research results obtained
(11, 12, 13] have demonstrated that the concept of
reference model architecture is extremely useful since it
provides a unified approach and common execution
behavior across classes of problems. The RCS architecture
prescribes a canonical form based on a generic intelligent
machine system model (see section 3). This facilitates the
architecture’s openness and scalability. RCS is rich
because it applies multiple but integrated representation
paradigms to model the necessary perspectives of a
system. Rich representations are important. Literature
has revealed that applying a simplistic modeling paradigm
has failed for large systems [8].

The term hierarchy can mean different things to different
people. In an object oriented paradigm, a hierarchy can
mean a tree describing class derivation. In a functional
decomposition paradigm, a hierarchy can mean layers of
subfunctions representing a
system. Booch [6] describes
these two perspectives. In
previous research efforts, NIST
ISD has successfully explored
the task, or level of authority,
based hierarchy (see section 4)

systems. These features characterize RCS. At the origin
of the coordinate system is a reference model built up
using a generic controller node. Sections 3 through 5
describe these aspects. Section 6 provides an integrated
view. Booch [6] describes two perspectives of a system:
algorithmic decomposition and object-oriented
decomposition, with the latter being the driving
perspective. These perspectives correspond to the
functional decomposition and inheritance perspectives of
the reference model architecture that this paper describes.
The most significant difference in our concept is that the
level of authority perspective drives the system design
while adhering to the generic reference model.

3. The functional/processing
decomposition dimension--an intelligent
machine model

As described earlier, a generic controller node resides at the
origin of the coordinate system and is functionally
described by an intelligent machine model [9]. The
functional decomposition notion means that a node is
decomposed into finer and finer functions extending farther
along this axis.

In Figure 2, the origin of the axis shows a controller node
as a whole. It permits interaction from an operator. At
the second unit, a node is represented by sensory
processing (SP), world modeling (WM), behavior
generation (BG), and value judgment (VJ) functions, as
described below:

The sensory processing (SP) function samples sensory
data, filters and integrates sensory information over space

data
acquisition

and a functional view of RCS :

(see section 3). NIST ISD has trajectory
also been developing generic generator
software templates and libraries .

that can be inherited by new d Isqrete

RCS applications. As logic
described in [10], a multiple control
dimensional framework

representing the following three ! : . I -
paradigms: level of authority, node node functions node node sub
functional decomposition, and subfunctions subfunctions

inheritance (Figure 1) can be
used to model intelligent

Figure 2: Functional/processing decomposition of a controller node

and time, recognizes patterns, and detects events. In other
words, as illustrated at the third unit of Figure 2, SP is
decomposed into subfunctions including data acquisition
and data integration. The following paragraph provides an
example: .
Next Generation Inspection System (NGIS)
Project: ISD is involved in a manufacturing inspection
system project [14] sponsored by the NGIS consortium,
which itself is organized by the National Center for
Manufacturing Sciences. In the project, the SP includes
the integration of vision and touch probe data. This
intends to overcome deficiencies in current coordinate
measurement machines (CMM) which must be pre-
programmed for each part being measured (a time
consuming process), and which can not distinguish areas
of interest (edges, holes, grooves, etc.) from less
interesting areas (flat surfaces).

The world model (WM) function conceptually models the
state space of the system, which includes maintaining the
knowledge base for a node in real-time. The following is
a set of state variables that a node WM maintains:

* The plan information: the set of plans (see section
4.2.2) that a node is capable of performing, the name of
the plan that is being executed, and the current state of
execution, '

* The node status: typical status values are Reset,
Executing, Done, Waiting, Error, and Emergency stop.
* The error code: typical errors are mismatch of
command or status between senders and receivers,
correspondent nodes not responding, time out, efc.

* The performance indices: Timing and frequency of
occurrence.

* The data to be shared by other nodes: object position,
map with proper resolutions, etc.

The WM also stores system parameters such as inertia
matrices and forward and inverse kinematic transformation.

Within an application, the node WMs are distributed
throughout the system.

The value judgment (VJ) module computes the costs based
on determined criteria (safety, schedule, etc.) for the
planning activities (see the Planner below).

The behavior generation (BG) function is responsible for
planning and executing the tasks that a node receives from
its superior node at the higher authoritative level (see
section 4). The output tasks are sent to its subordinate
nodes at the lower level as input commands.

The third unit along the axis describes that the above node
major functions can be decomposed into subfunctions.

BG contains the following subfunctions: the planner (PL),
the executor (EX), and the job assigner (JA).

Planning typically involves hypothesizing actions,
requesting WM to predict the results of these actions,
requesting VJ to compute the costs of the actions, and
selecting the best plan. The plan is then executed by EX
through servoing the control variables and computing
output commands for the next level nodes. JA partitions
the output commands generated by EX and sends them to
the lower level nodes.

As shown in Figure 2, the fourth unit along the axis
yields another layer of functional decomposition. The
following paragraph illustrates a decomposition of PL:

Technologies Enabling Agile Manufacturing
(TEAM) research effort: The ISD TEAM research
effort describes multiple planning functions [15]. A
trajectory generator is responsible for the coordinated
control of multiple continuous-valued devices -- as
opposed to the discrete logic control which is responsible
for the coordinated control of discrete-valued devices. The
amount of planning sophistication depends on the
coordination and the synchronization between the two
types of state variables.

A node is subject to operator interaction (OI). An
operator may send commands to the BG or request WM
data for display.

For detailed descriptions of the node functions, see [9, 12].

4. The level of authority dimension--
hierarchical levels

In a complex automation system, multiple controller
nodes, as described above, are distributed and are
authoritatively connected to form a hierarchical
architecture. The dimension described in this section
shows how the authority chain is formed.

4.1 levels of authority

RCS predefines the following hierarchical levels as the
guidelines for partitioning a hierarchical system:

Level 6 -- problem domain level, also called facility or
mission level. This is the highest level. The controller
receives overall commands, from the user, for the entire
control system. The BG function of this node decomposes
these’commands and outputs the results to the responsible
next level controllers.

Level 5 -- group level. Multiple groups of
equipment (see level 4) may exist and they
must be coordinated at this level. For

problem domain

I facility I

example, a manufacturing production line ! shop
may have multiple workstations. A

workstation may have multiple pieces of L
equipment. The group level, therefore, group
contains these workstation controllers. | cel

Level 4 -- equipment, or task level. A node
at this level typically models a major |
physical entity, for example, a submarine. |
Tasks received by the controllers at this
level concem how each piece of equipment I

workstation

| machining shop I I assembly shopl

l [
| milling Vﬁ_l I inspection W.S.I

is expected to perform to accomplish a

| robot | | miling machine | [part butter |

system goal. equipment
Level 3 -- elementary move (emove) level.

The emove level is the kinematic control

level. Any task is decomposed into a series emove

of subtasks that are free of kinematic limits,

singularities, and obstacles. Sensor data
submitted from the primitive level (see
below) may be combined to produce surface
features, feature distance and relative
orientation, etc.

Level 2 -- primitive (prim) level. The primitive level is
the dynamic control level. The kinematically sound tasks
are computed for sub tasks that are dynamically smooth.
The SP function integrates and fuses data gathered from
individual sensors and produces linear features for objects.

Level 1 -- actuator level. The controller nodes at this
level interact with the environment. The BG generates
electrical, hydraulic, or mechanical commands to activate
the actuators. The SP function for this level is to receive
signals from each individual sensor and to process them.

4.2 Tenets of this dimension

4.2.1 Canonical form

The controller nodes repeat and extend themselves in the
context of the intelligent machine model to a level
sufficiently high to describe a system. A unified
execution behavior is exhibited across all the controller
nodes at all the levels.

This canonical form also implies the flexibility of the
number of nodes at the levels and the number of sublevels
within a level. Each level can have none or multiple
nodes except for the highest level where there is one node.
Some problems may require only on-off types of control

Figure 3: The AMRF Hierarchical Level of Authority Model

and may not require a dynamic (prim) level. When the
tasks are complex enough to warrant another level of
decomposition between a pair of predefined parent and
child levels, multiple sublevels may be needed. The
following illustrates this fact:

The NIST Automated Manufacturing Research
Facility (AMREF) [16]: As seen in Figure 3, a
manufacturing facility contains multiple shops. A shop
may contain multiple cells. A cell may have multiple
workstations. A workstation may have multiple pieces of
equipment. There are three sub levels within the group
level.

4.2.2 Execution of system goals via task
decomposition

The behavior generation (BG) function of the node(s) at
each level receives the commands (tasks) from the level
above, decomposes them, and outputs the results to the
responsible next level controllers. In other words,
controllers at a particular level coordinate the execution of
the next lower level controllers. The following project
illustrates this activity:

Submarine Automation [17]): See Figure 4. A
submarine is encountering a problem while transiting
undersea and needs to rise to its periscope depth. The
Run_Mission_5 command is given to the command
controller (CC). This command is decomposed into
Prep_Emergency_Vent, Submerged_Transit,
Submerged_Vent, and Emergency_Vent commands. The
exact behavior involving these four commands is shown
in the state diagram, called a plan in the RCS
architecture. Through a series of task decompositions
such as this down the hierarchy, each controller receives
commands and executes its plans. Actuator control
signals are issued at the lowest level to control the
turbine, clutches, sail and stern planes, etc.

4.2.3 Resolution, temporal span, and spatial
span

Higher levels deal with tasks and data that have less
resolution but longer time and wider spatial span. Lower
levels deal with tasks and data that have more resolution
but shorter time and narrower spatial span.

5. The inheritance dimension--reference
model to application

As shown in Figure 5, along this axis, the desired
functionality of models at the left of the axis is inherited
by models at the right. Kramer et al., [18] introduced a
similar concept called multiple tiers of architectures.
RCS, being a reference model architecture, implies that
the properties of the intelligent machine model, described
in section 3, is inherited by any class of problems using
the architecture. Manufacturing control systems is one
class of problems. Any discrete parts manufacturing
control system RCS inherits properties developed for the
manufacturing control system RCS. This inheritance
relationship can extend to many layers. Each layer can
contribute commonly useful software library sets. This
fact makes this architectural implementation process
efficient and makes the RCS development environment

l fire reported

SM prep. emerg. vent

HL

obtain next waypoint
SM submerged

SM done & EC done

SM done
&EC done

by EC done
. SW prep. submg.
transtEC submrg. vent
smoke or gas
high &SM
done

EC emerg. vent

LEGEND:
: dent
R ® -
maneuverEC: " eventverlicati

Figure 4: Task Decomposition and Behavior Description

AutoBody Consortium Project: A series of
command classes are derived in the object oriented notion.
As seen in Figure 6, emove command classes for a
Robotics Research Corp.! (RRC) robot are developed and
common features are inherited [19].

generic nodes nodes for
in reference manufacturing
model systems

nodes for discrete
parts manufacturing
systems

L]

\j

generic

specific

Figure 5: The Inheritance Dimension

rich. The following paragraph illustrates this:

! References to company or product names are for
identification only and do not imply NIST endorsement.

task structure serve as the references for the
organization of the node task knowledge.

The projects concerned with issues related to
an integrated framework include:

Systems Integration for

comman emove RRC RRC RRC
d frame robot robot emove
emove emove trace
inspect
| |] |]
reference robotic application application application
model derivation- derivation-

Figure 6: RRC robot emove command classes

6. The Integrated Framework

The described multiple dimensional framework provides an
open mechanism and canonical form that are scalable from
multiple perspectives. Automation and intelligent control
systems of any size can be represented on the framework.
The inheritance feature facilitates software reuse. The use
of a reference model expedites system development.
Therefore, we anticipate that this framework shortens
development cycles of the manufacturing systems. Figure
7 illustrates these features. An RCS architectural
implementation can be viewed as a hierarchy tree rooted
on a notch on the inheritance axis and growing in parallel
with the authority axis. The tree leaves represent
controller nodes, which can be decomposed along the
functional axis.

tasks

probilem[— — —
domain
level |
= |
[
Q |
f =
2 |
INHERITANCE AMRF,
NGIS,
AutoBody

Figure 7: The Integrated Framework

The knowledge base, or world model (WM), of an entire
implementation system is formed by the integration of
each individual node WM. The controller hierarchy and

Manufacturing Applications (SIMA)

Joint Architecture project [18]: The

goal of this project is to incorporate

manufacturing process planning, control,
information management, and communication aspects to
obtain, in detail, a generic architecture for discrete parts
manufacturing facilities. This project also emphasizes the
inheritance aspect.

The NIST ISD Tools Project: A specification for a
RCS computer-aided control system development
(CACSD) tool is being investigated. The goal is an
automated environment facilitating the development of
intelligent and automation systems covering the very early
conceptualization stages through the final critical mission
real-time operation stages.

7. Summary and Future Directions

We have presented a multiple dimensional reference model
architecture called RCS to facilitate manufacturing system
automation and intelligent system control. RCS has the
following advantages:

* An open architecture with rich representations.

* A distributed and efficient structure for integrating and
organizing system knowledge.

* A framework facilitating information sharing and
software reuse.

We expect to continue exploring this framework. We
have demonstrated that various advanced projects possess
various features of the framework. Sharing and inheriting
common knowledge among projects can be expedited once
their relationships on the coordinate system are
established. The projects described in this paper are part
of NIST's on-going collaborative effort with government,
industry, and academia to pursue open-architecture
controllers. The objective is to alleviate the problems
associated with incorporating proprietary technologies in
industrial applications and to reduce product costs.

Architecture concerns additional hardware and software
issues that are not covered in this paper, for example, the
use of industrial de facto software and hardware standards
for the control architecture. We expect to experiment with
these additional issues under this framework. Our goal is

a fully described open and scalable architecture that will
benefit the manufacturing industry and research and
development community.

8. Acknowledgment

Dr. James Albus of NIST and Dr. Anthony Barbera of the
Advanced Technology Corporation have been leading the
research and application of RCS since they originated it at
NIST two decades ago. Harry Scott reviewed the
manuscript and provided technical insights.

This article was prepared by United States Government
employees as part of their official duties and therefore is a
work of the U.S. Government and not subject to U.S.
copyright protection.

9. References

1 Requirements of Open, Modular Architecture Controllers for
Applications in the Automotive Industry, ver. 1.1, a white
paper issued by Chrysler, Ford, and GM Corporations,
December, 1994.

2 Workshop on Advanced Machine Tool Structures: Research
Directions, a workshop report published by the
Manufacturing Engineering Laboratory of NIST,
Gaithersburg, MD, April, 1994.

3 Sweet, W, et al., Recommendations from the AIA/SEI
Workshop on Research Advances Required for Real-Time
Software Systems in the 1990s, Special Report SEI-89-SR-
18, Cargenie-Mellon University Software Engineering
Institute, Pittsburgh, PA, September, 1989:

4 Fleury S., et al., "Design of a Modular Architecture for
Autonomous Robot,” International Conference on
Robotics and Automation, San Diego, CA, May 94.

5 Simmons, R., et al., "Autonomous Task Control for Mobile
Robots,” Proceedings of the Fifth International
Symposium on Intelligent Control, Philadelphia, PA,
September, 1990.

6 Booch, G., Object-Oriented Analysis and Design with
Applications, 2nd Edition, The Benjamin/Cumming
Publishing Company, Inc., Redwood City, California,
1994,

7 Kogut, P. and Clements P., “The Software Architecture
Renaissance,” Cross Talk--the Monthly Technical Report
of the United States Air Force Software Technology
Support Center, Hill AFB, Utah, November, 1994.

8 Coad, P. and Yourdon, E., Object Oriented Analysis,
Yourdon Press Computing Series, Prentince Hall, Inc.,
Englewood Cliffs, New Jersey, 1991,

9 Albus, J.S., “Outline for a Theory of Intelligence,” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 21,
No. 3, May/June 1991

10 Huang, H-M, “Outline of a Multiple Dimensional
Reference Model Architecture and a Knowledge Engineering
Methodology for Intelligent System Control,” Submitted
to IEEE Expert Special Track on Intelligent Control,
February, 1995.

11 Albus, 1.S., McCain, H.G., and Lumia, R., "NASA/NBS
Standard Reference Model for Telerobot Control System
Architecture (NASREM),"” NBS Technical Note 1235,
National Bureau of Standards, U. S. Department of
Commerce, April, 1989

12 Huang, H., Quintero, R., and Albus, J.S., "A Reference
Model, Design Approach, and Development Illustration
toward Hierarchical Real-Time System Control for Coal
Mining Operations,"” Book Chapter in Control and
Dynamic Systems, Advances in Theory and Applications,
Volume 46, Academic Press, 1991.

13 Albus, .., Juberts, M., Szabo, S., "RCS: A Reference
Model Architecture for Intelligent Vehicle and Highway
Systems,” ISATA 92, Florence, Italy, June 1992.

14 Nashrhan, N., et al., “An Integrated Vision Touch-Probe
System for Dimensional Inspection Tasks,,” Submitted for
the Workshop for Robot Vision, August 1995.

15 Michaloski, J., Technologies Enabling Agile
Manufacturing (TEAM) Document: Application
Programming Interfaces (API); Draft NISTIR, Gaithersburg,
MD, January, 1995.

16 Albus, I.S., et al,, “A Control System for an Automated
Manufacturing Research Facility,” Robots 8 Conference
and Exposition, Detroit, MI, June, 1984.

17 Huang, H., Hira, R., and Quintero, R., "A Submarine
Maneuvering System Demonstration Based On The NIST
Real-Time Control System Reference Model,” Proceedings
of The 8th IEEE International Symposium on Intelligent
Control, Chicago, Illinois, 1993.

18 Kramer, T. R., et al., “A Reference Architecture for Control
of Mechanical Systems;” in proceedings 1994 Tutorial and
Workshop on Systems Engineering of Computer-Based
Systems; Harold W. Lawson, editor; IEEE Computer
Society Press; 1994; pp. 104 - 110.

19 Tarnoff, N, et al., “A Visually Intensive Lifecycle
Framework for Robotic Applications,” The First World
Congress on Intelligent Manufacturing Process and
Systems, Puerto Rico, February, 1995.

