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Abstract
This paper presents a new visual motion cue, we call the Visual Threat Cue (VTC)
that provides some measure for a relative change in range as well as clearance between a
3D surface and a fixated observer in motion. We define the VTC, derive a theoretical
model for it and show the visual field related to it. This cue is independent of the 3D
environment, needs almost no a-priori knowledge about it, is rotation independent, and is
measured in [time‘l] units.

A practical method to extract the VTC from a sequence of images of a 3D textured
surface obtained by a fixated, fixed-focus monocular camera in motion is also presented.
A global dissimilarity measure is extracted directly from the raw data of the gray level of
textured images from which the VTC is obtained. This approach of extracting the VTC is
independent of the 3D surface texture and needs no optical flow information, 3D
reconstruction, segmentation, feature tracking or pre-processing. It needs almost no
camera calibration. This algorithm to extract the VTC was applied to a set of twelve
different texture patterns (of 3D scenes) from the Brodatz's album, where we observed a

similar behavior for all the textures.
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1 Introduction

When dealing with a moving camera-based autonomous navigation system, a huge
amount of visual data is captured. For vision-based navigation tasks like obstacle
avoidance, maintaining safe clearance, etc., relevant visual information needs to be
extracted from this visual data and used in real-time closed-loop perception-action control
system. In order to accomplish safe visual navigation several questions needs to be
answered, including:

1. What is the relevant visual information to be extracted from a sequence of images?

2. How does one extract this information from a sequence of 2D images?

3. How to generate control commands to the vehicle based on the visual information
extracted?

This paper is focused on the first two of the above mentioned questions.

Usually the process of driving or flying in a 3D environment involves a human
operator. The operator acts in part as a sensory feedback in the perception-action closed-
loop control systems to avoid obstacles, maintain clearance, etc. to ensure safe navigation
in real time. It becomes a difficult problem to replace the human operator by a vision-
based system to achieve similar tasks for the following reasons: In outdoor navigation the
environment is usually unknown and unstructured, and the same 3D scene may result in
many different images due to changes in illumination conditions, relative distances,
orientation of the camera, choice of fixation point, etc., as well as various camera
parameters such as zoom, resolution, focus, etc. There is a need for an approach, to obtain
relevant visual information about relative proximity in the presence of the above
mentioned factors.

The problem of automating vision-based navigation is a challenging one and has drawn
the attention of several researchers over the past few years (see for example [1-14]).

Usually identifying the surrounding object is not important for such tasks, i.e., is it a tree,



mountain or another vehicle; what is more important is whether a particular object is an
obstacle or not, i.e., is the camera on a collision course with it, is there enough clearance,
etc.? For navigation tasks recovering 3D scene and its attributes may not be necessary as
it may contain information which is not relevant for the task at hand. Visual cues such as
time-to-contact, looming carry important information about the relative proximity. These
cues do not need any reconstruction process which is usually computationally intense and
in many cases are sufficient for safe navigation.

It is well established in the literature (computer vision as well as psychology) that
optical flow plays an important role in the control of human motion behavior in the
environment [15-19]. Several researchers have addressed the use of optical flow as a
feedback signal for vision based autonomous navigation (see for example [3,6-10]). An
optical flow based theory of how a driver visually controls the braking of an automobile is
presented in [12]. In [12] it is also shown that it is possible to control the braking of a
vehicle using visual information without measuring the absolute distance, speed or
acceleration/deceleration. The looming effect which is the result of retinal expansion of
objects has shown to cause defensive reaction in several animals as well as babies [20, 21].
A detailed qualitative as well as quantitative approach to the concept of looming is
presented in [10] where several methods to extract looming is also discussed. Application
of certain measures of flow field divergence as a qualitative cue for the task of obstacle
avoidance is presented in [7]. In [9] the optical flow field is transformed by using a log-
polar transformation to extract visual information about time-to-contact [19]. In [3, 8] the
variations in peripheral optical flow are employed to guide a mobile robot through
obstacles.

The extraction of the local optical flow employs a constraint equation between the
local brightness gradients and the two components of the optical flow. Additional
constraints are needed to evaluate the complete flow field [22-24]. In addition, the
extraction of optical flow from a sequence of images needs pre-processing like spatio-
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temporal smoothing which may be computationally expensive. Alternatives to optical flow
information as sensory feedback for obstacle avoidance include geometrical properties like
size, shape, contour and area of image entities, imaged texture, focus, etc.

In [25] a frequency based texture operator is employed to classify the characteristics of
the Fourier transforms of local image windows, to compute the gradients of texture in the
image in order to get depth information. A differential invariant of the image field based
visual information about time-to-collision is presented in [14]. Variations in image
statistics are employed to extract the four components of an affine transformation are
presented in [26]. A qualitative view of the use of these components as sensory feedback
information for collision avoidance is also presented [26]. In [27] it is shown that the
relative changes in edges of visible texture in a unit area to be equal to looming described
in [10]. This approach of using edge density in an image is an alternative to the use of flow
based approach to extract looming which is very sensitive to noise.

This paper presents a new visual motion cue, we call the Visual Threat Cue (VTC)
that provides some measure for relative change in range as well as clearance between a
3D surface and a fixated observer in motion. In this paper we define the VTC, derive a
theoretical model for it and present a robust practical way to extract it from a sequence of
images. This cue is independent of the 3D environment and needs no a-priori knowledge
about it. It is rotation independent, and is measured in [time-1] units. It is also scale
independent but we do not show it here.

The VTC corresponds to a visual field surrounding a moving observer, i.e., there are
imaginary 3D surfaces attached to the observer that are moving with it, each of which
corresponds to a value of the VTC. The points that lie on a relatively smaller imaginary
equal VTC surface correspond to a relatively larger value of the VTC, indicating a
relatively higher threat of collision. Value of the VTC is infinity when the radial clearance
between the surface and the observer is equal to the minimum clearance desired, which
gives an indication of absolute range between the observer and the surface. A positive
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value of the VTC corresponds to the region in front of the observer and a negative value
corresponds to the region in back of the observer. By measuring the VIC of surfaces a
measure of threat is obtained from which a control command can be generated.

A practical method to extract the VTC from a sequence of images of a 3D textured
surface obtained by a fixated, fixed-focus monocular camera in motion is also presented.
For each image in such a 2D image sequence of a textured surface, a global variable we
call the Image Quality Measure (IQM) is obtained directly from the raw data of the gray
level images. The VTC is obtained by calculating relative temporal changes in the IQM.
This approach of extracting the VTC is independent of the 3D surface texture and needs
no optical flow information, 3D reconstruction, segmentation, feature tracking, pre-
processing and can be extracted directly from the raw gray level data of images. The
process of extraction can be seen as a sensory fusion of focus, texture and motion at the
raw data level and needs almost no camera calibration. This algorithm works better on
images obtained from natural scenes including fractal-like images, where more details of
the 3D scene are visible in the images as the range shrinks and also can be implemented in
parallel hardware. This algorithm to extract the VTC was applied to a set of 12 different
textures from the Brodatz's album, where we observed that the relative temporal
variations in the IQM behaves in a similar fashion and its value is approximately equal for
most of the textures employed. A comparison of the theoretical VIC and the VTC
extracted from the images is presented.

This paper is organized as follows: In section 2 we define the VTC and its relation to
several other visual cues like time-to-contact, looming and also derive a theoretical model
for it. In section 3 we describe the procedure to extract the IQM and the VIC from a

sequence of images and in section 4 experimental results and the analysis are presented.



2 The Visual Threat Cue (VTC)

In this section we define the VTC, present the equal VTC surfaces, explain its
significance as a sensory feedback signal and also derive a relation between the VIC and

the radius of the blur circle

2.1 Definition
Mathematically we define the VTC, for R > R as follows
d
—(R)
VIC = R,—dL—— 6
R(R-R,)

Where R is the range between the observer and a point on the 3D surface, d(R)/dt is
the differentiation of R with respect to time and R is the desired minimum clearance and
has the same units as R. We explain the significance of Ry in later sections. Note that the

units of the VTC are [time‘l].

2.2 The VTC in Vector Form
Instantaneops \° P ;
[ﬁ%tatlon f},Egg}}e
ector
Camera t
Instantaneous
Trawlauonal
ector

Figure 1: Motion Parameters
Assume a moving observer in a stationary environment. Let the instantaneous vector

from the observer to a stationary point P be R, the instantaneous translational velocity



vector of the camera be t and the angular velocity vector of the camera be ® in camera
coordinates as shown in Figure(1).

Since
d _VeR

aP= |RP

where V is the velocity vector of the point P in the camera coordinate system, i.e.,
V=—t-wXxXR

Equation (1) can be written as follows:

VTC:__RO(-t-(zoxR)oR 2
|RI"|R - Ry|
since (wxR)e R =0, Equation (2) reduces to
(-t)eR
VIC = R, 422 3)
|RIR- |

Note that the VTC in Equation (3) is a scalar and is dependent only on the observer's
translational velocity, but is independent of its rotational component. In a later section we
describe a practical way to extract this VTC from a sequence of monocular images.

The same holds when both the camera and the 3D point are in motion since any
relative motion can be represented as motion of the camera relative to a stationary

environment.

2.3 Equal VTC surfaces

In this section we provide simulation results to show the location of points beyond the
desired minimum clearance Rq) in 3D space around an observer in motion, that have the
same value of the VTC for any motion of the camera. The VTC corresponds to a visual
field surrounding the moving observer, i.e., there are imaginary 3D surfaces attached to

the observer that are moving with it, each of which corresponds to a value of the VIC.



The points that lie on a relatively smaller surface corresponds to a relatively larger value of
VTC, indicating a relatively higher threat of collision. The VTC on the minimum clearance
sphere of Rq centered at the location of the observer is the maximum which is infinity,
indicating that the absolute distance between the observer and the camera is the minimum
clearance. A positive value of VTC corresponds to the region in front of the observer and
a negative value corresponds to the region in back of the observer. A section of this visual
field is shown in Figures (2). Note that this field is not a a sphere in 3D. However it is

symmetric about the instantaneous translational vector t.

vli>v2>v3

Figure (2): Cross section of the VTC, t is the instantaneous translational vector

2.4 The VTC and 3D Space

As mentioned in sections 2.1 and 2.2, the size of equal VTC surfaces is a function of
time (i.e., measured as [time-1] units) and are not measured in distance units. This means
that different surfaces in 3D may result in the same VTC value for different translational
velocities. For a given direction, a point located at a greater distance with a relatively

larger value of the relative translational velocity vector may have the same value of the



VTC as a point at a closer distance with relatively smaller value of translational velocity

vector.

2.5 The VTC as a Sensory Feedback Signal

The VTC divides the 3D space around the observer in motion into 3D regions. Points
in front of the observer correspond to positive values of the VTC and points in the back of
the observer correspond to negative values of the cue. Points that lie on a smaller VIC
surface correspond to a larger value in the cue and vice versa. Based on this knowledge
about the cue, one can demarcate the region around an observer into safe and danger
zones (Figure 3a) or safe, high risk, and safety zones (Figure 3b). A positive value
indicates a decrease in the relative range, and if this value exceeds the threshold for a safe
zone then appropriate control action has to be taken based on the actual value to

accomplish the tasks such as collision avoidance, maintenance of clearance, etc.

Equal
VTC

Surface

Clearance

Relative

Instantaneous Observer
Translational Safety
Vector Zone

Figure 3(a): Qualitative VTC
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Figure 3(b): Qualitative VTC

2.6 The VTC and The Time-to-Contact

The VTC is related to the concept of time-to-contact presented in [12]. According to
[12] any point that lies on a plane which is perpendicular to the instantaneous translational
motion direction of the camera, will produce the same value of "time-to-contact" Tc
(assuming that the optical axis coincides with the direction of motion). This means that the
time-to-contact deals with depth. The derivation in [12] is valid only for rectilinear motion
(with no rotation) of the camera.

One problem with the time-to-contact approach is that points which lie on a single
perpendicular plane but located far away from, or close to, the camera produce the same
values of time-to-contact even though they are not equally relevant to making vision-based
behavioral decisions. In addition, it is rotation dependent. An advantage of the VTC
derived in the previous section is that it is related to range rather than depth, i.e., deals
with more relevant information. As mentioned earlier the VTC is rotation independent and

deals with clearance as well.
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Figure (4a): The VTC and Time-to-Contact
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Figure (4b): The VTC and Time-to-Contact
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Figures (5a) and (5b) illustrate the main difference between the time-to-contact value
of a point, and its VTC. All points that lic on a vertical plane will have the same time-to-
contact value. However the points that lie on an equal VTC surface produce the same
VTC value. In Figure (5b) points 1, 2 and 3 have the same VTC value but different time-
to-contact values. Points 2 and 4 have the same time-to-contact value but different VIC

values. Points 4 and 5 have the same time-to-contact values and the same VTC values.

2.7 The VTC and The Looming

The VTC described in this paper is related to the concept of visual looming presented
in [10]. The visual looming effect is the result of the expansion of object's size in the retina
of the observer. In [10] a detailed qualitative and quantitative analysis of looming is
presented. The visual fields associated with looming are shown in [10] to be imaginary
spheres attached to the observer, whose centers lie on the relative instantaneous
translational velocity vector and are moving with the observer (see Figure (5)). One
difference between the VTC field and looming field is that the imaginary surfaces in the
case of looming are spheres and in the case of the VTC they are not spheres. The equal
looming spheres and the equal VTC surfaces are symmetrical about the instantaneous
translational velocity vector. In addition the VTC is defined beyond a certain minimum
desired clearance from the observer and practically allows to maintain a desired clearance
without measuring it. The definition of looming is valid at any point in space and can not
maintain a desired absolute clearance. Both the visual looming and the VTC are
dependent on the relative translational motion and are independent of the rotation. Both
these cues can be used to increase the reliability of visual sensing for vision based

autonomous navigation.
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Figure 5 : Qualitative Looming

2.8 Relation between the VTC and the radius of the blur circle
For a given camera, the focal number f, focal length F are constants and for a fixed
focus setting the distance between the lens and the image plane v( is also constant (see
Appendix A). With these constants the following relation can be derived from Equation
(A4) from appendix A:
d d
—(0) —(R)
e~ _, _dt
o " R(R-u,)

4

where o is the radius of the blur circle, R is the range between the camera and the
fixation point on the object, ug) is the distance to which the camera is focused initially and
the d(.)/dt represents differentiation with respect to time.

The entity on the right hand side of Equation(4) is similar to the VTC described in the
previous section and has the units of [time‘I]. If Rq is set to be ug which is the distance to
which the camera is focused initially, then it becomes the VTC i.e., the desired minimum

clearance will be the distance to which the camera is initially focused to. Based on

4R

Equation (4) in order to measure (E(dhuo) from a sequence of images, we need to
~U
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measure ¢ and d(c)/dt. This has been shown to be practically difficult [28-30]. In later

d
—(R)
sections we present an alternate way to measure (E(dRL—)—uO) in a robust manner with
— Uy

out measuring ¢ and d(c)/dt.

3 Extraction of the VTC from a sequence of Images
In this section we present a practical way to extract the VTC described in Equations
(1) and (4) from a sequence of images, using temporal variations of the IQM. It is

extracted directly from the raw gray level data without measuring ¢ and d(c)/dt.

3.1 Image Quality Measure (IQM)

Local spatial gray tone variations in an image give rise to a visual pattern in the image
known as texture. These spatial gray level variations are due to the visual characteristics of
the 3D scene being imaged, the illumination, the range between the scene and the
observer, as well as due to camera parameters like zoom, aperture, resolution, focus, etc.
When there is a relative motion between a textured surface and a fixated, fixed-focus
moving observer, the perceived texture in the 2D image varies. For instance, consider the
case of a camera that is initially focused to a 3D surface at a very short distance and
gradually moves away from this surface. As a result, the perceived 2D image texture
varies from one image to another, mainly due to focus, i.e., the image of the scene in
perfect focus is very sharp and has many details, then as the camera moves away from the
scene, fine details gradually get smeared and eventually disappear (see Figure 8). When
the image is in perfect focus, the dissimilarity, i.e., spatial gray level variations is very high,
and as the details get smeared the dissimilarity gets smaller and smaller. We describe an
IQM to measure the dissimilarity of the image. Using the relative temporal variations in

this IQM we extract the VTC. Next we present a brief overview of several possible
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approaches to extract the dissimilarity of images, and describe a practical way to extract
the VTC from variations in the IQM.

The area of texture classification has drawn the attention of researchers in the area of
computer vision over the past two decades (see for example [31-39]). One of the earliest
areas of interest in the texture analysis was texture segmentation and scene analysis. These
approaches may be broadly classified as statistical approaches and approaches based on
structural properties. The statistical approaches usually employ features that measure the
coarseness and the directionality of textures in terms of the averages over a windowed
portion of the image. While structural methods on the other hand describe the geometrical
properties like size, shape, area, etc. of the objects in the scene. Structural analysis is
suitable for structured environments and also needs some a-priori knowledge about the
scene. The statistical methods that are in use are mainly classified into the following
categories:

1. Spatial gray level dependence methods [31, 33, 34]

2. Spatial frequency based methods [33, 35]

3. Stochastic model based features [36, 37]

4. Heuristic approaches [38, 39]

The most popular being the spatial gray-level dependence and the stochastic model-
based approaches. Usually spatial gray level based approaches are probabilistic, dependent
on the number of gray levels in the image and computationally expensive. Stochastic
model approaches are dependent on the model of the texture. Among several possible
approaches to describe the quality of texture in an image, we extended an approach
presented in [40] to describe the dissimilarity of images using IQM. The advantages of
using this approach over the other approaches are:

1. It gives a global measure of quality of the image, i.e., one number which

characterizes the image dissimilarity is obtained.
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2. It does not need any preprocessing, i.e., it works directly on the raw gray level data
without any spatial or temporal smoothing.

3. It does not need a model of the texture and is suitable for many textures.

4. Tt is simple and can be implemented in real time on parallel hardware.

5 It is non-probabilistic and is independent of the number of gray levels used in the
image

Mathematically, the IQM is defined as follows (see Appendix B):

oy oy L L
IQM=ﬁi2(Z ZII(x,y)—I(x+p,y+q)|) 5)

x=x, y=y\ p=-L. q=-L,
where I(x,y) is the intensity at pixel (x,y) and x; and xg are the initial and final x-
coordinates of the window respectively ; y; and yf are the initial and final y-coordinates of
the window in the image respectively and Lc and Lr are positive integer constants; and D
is a number defined as D=(2L +1)x(2L +1)X(x; —x;)X( y; = y; ). One can see from
Equation (5) the IQM is a measure for the dissimilarity of gray level intensity in the image.
In our experiments we arbitrarily chose a window of size 50 X 50 pixels in the center of

the image and Lc =5 and Lr =4.

3.2 Extraction of the VTC from relative variations of the IQM

The IQM described in Equation (5) was applied to a set of 12 different textures from
Brodatz's album [42]. The experimental details are provided in the following section.
Based on our experimental results, we observed that the IQM mentioned above is almost a
constant when the range between the surface and the camera is very large and it increases
non linearly as the camera approached the distance to which it is focused to. We observed
that the radius of the blur circle varies inversely with the IQM, i.e., when the texture

details are sharp, IQM is very high and the radius of blur circle is almost zero, and vice-
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versa. Hence for ranges greater than the initial distance to which the camera is focused to,

we modeled the radius of the blur circle in terms of IQM as follows:

IOM o 1 6)
(o)
or:
oM =20 7)
0)

where o() is some proportionality constant and 6 is the radius of the blur circle.
From Equation (7):

d d

—(c) —(IOM

dt( ) _ dt( OM)

6 IoM ®

By combining Equation (4) with Equation (8), using ug = Rq, we obtain the following

relation
di(IQM) 4 (R)
— = Ry 4t O)
10M R(R-R,)

The VTC obtained by using Equation (9) does not need knowledge about the camera
parameters like the focal number f or the focal length F and is independent of the
magnitude of the IQM.

4 Experimental Details
Several experiments were performed to study the variations in the IQM of image
sequences in order to extract the VIC. The system used in the experiments include a
Coordinate Measuring Machine (CMM), a CCD video camera, a 486 based personal
computer, ITEX PC-VISION PLUS image processing system and several texture plates

from Brodatz's album [42]. A block diagram of the connections is shown in Figure (6a).
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4.1 Procedure

Camera <4—Texture

- CMM

Image : 486 Based

Processor I Personal Computer] TV Monitor

—

Figure (6a): Block diagram of the Experimental setup

Figure (6b): CMM Set up

A CCD camera is attached to the CMM and the texture surface is placed in front of
the camera as shown in the Figure (6b). The maximum distance between the surface and

the camera is 900 mm and the minimum distance being 200 mm. The camera is focused to
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the closest possible distance which in the case of the camera used is 200 mm, i.e., texture
details are sharp when the distance between the camera and the surface is 200 mm. The
error in the initial setting is about 1 mm. Once this is set, the measurements in relative
ranges (for obtaining the ground truth values) were as accurate as the CMM. With this
focus setting, the distance between the camera and the surface is varied from 900 mm to
200 mm in steps of 10 mm.

The CCD camera attached to the CMM as shown in Figure (6a) and Figure (6b)
captures the images of the texture. These images are then digitized by the PC-based image
processor PC-VISION PLUS. These digitized images are then processed by a 486-based
personal computer, to extract the IQM and the VTC. For a given texture, we computed
these measures at 71 different distances and this was repeated for 12 different textures
(shown in Figure (7)) from Brodatz's album [42]. Figure (8) shows an imaged texture
(D18 from [42]) as a function of range for 20 different ranges. This set of images shows
intuitively the evolution of details in the image as a function of range for a fixed focus
camera. The experimental results along with the textures used are presented in the
following section.

We have also performed a few experiments to study the variations in the IQM for
various initial focus settings. We present the cases for which the initial focus setting was
250 mm, 300 mm and 350 mm. When the initial focus is set to 250 mm, the maximum
distance between the camera and the surface is 1060 mm and the minimum distance is 250
mm. When the initial focus setting is 300 mm, the maximum distance between the camera
and the surface is 1110 mm and the minimum being 300 mm and in the case where the
initial setting is 350 mm the maximum distance between the camera and the surface is

1160 mm and the minimum distance is 350 mm.
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D12 Bark of tree

D13 Bark of tree

D20 French Canvas

D74 Coffee Beans

D98 Crushed Rose

quartz

D9 Grass Lawn

D18 Raffia Weave

D25 Ceramic-coated

brick wall

D110 Handmade paper

Figure (7): Various texture patterns used in the experiments
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d

270 mm

d=28m d=2mm

d =350 mm d =375 mm d =400 mm

d=475 mm d =550 mm d=725mm d = 900 mm
Figure (8): Sequence of images depicting the evolution of details in the image a
decrease in the relative range, d is the range between surface (D18) and the camera
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4.2 Results and Analysis

The IQM described in Equation (7) is extracted according to the procedure described
in the section 3.1, and the VTC is extracted from the relative temporal variations of the
IQM.

For each of the texture patterns employed, we present the following:

1. Five sample images (out of a total 71 images) relative ranges 200 mm, 280 mm,
400 mm, 550 mm, 900 mm (Figures 9(a)-20(a)).

2. The normalized measured IQM as function of the distance between the camera and
the surface (It is normalized since the extraction of the VTC is independent of the absolute
magnitude of the IQM. Figures 9b-20b).

3. A plot depicting the theoretical VTC and the VTC extracted from the images
(Figures 9c-20c).

Note that At = 1 s in the computation of the VTC, and there is no spatial smoothing
on the images or temporal smoothing in the IQM or the VTC.

In Figure (21) , (22) and (23) we show the effect of the desired minimum clearance Rq
on the relation between the IQM and the VTC as a function of distance between the
camera and the surface. Note that behavior as a function of the relative range is similar for

all clearance values
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Relative Range = 9 mm Relaveange = 550 mm

elativ ge = OO mm Relative Rg = 28 mm

Relative Range = 200 mm
Figure (9a): Image sequence for texture D110
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Figure (9b): Normalized IQM versus the distance between the Surface and the Camera

for texture D110
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e ane 900 mm Relative Range = 550 mm

Relative ange =280 mm

Relative Range =400 m

Figure (10a): Image sequence for Texture D9
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Figure (10b): Normalized IQM versus the distance between the Surface and the

Camera for texture D9
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Relative Range = 900 mm Relative Range = 550 mm

Relative Range = 400 mm Relative Range = 280 mm

Relative ange = 2 mm
Figure (11a): Image sequence for Texture D12
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Relative Range = 900 mm Relative Range = 550 mm

Relative Range = 400 mm Relave Range =280 mm

Relative Range = 200 mm
Figure (12a): Image Sequence for Texture D4
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Relative Range = 200 mm
Figure (13a): Image Sequence for Texture D18
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Figure (13b): Normalized IQM versus the distance between the Surface and the

Camera for texture D18

900

———VTC [;rom Images

0.25

retical VIC

|||||||||

400 500 600 700 800

Distance between the Surface and the Camera in mm

300

The VIC

Figure (13c): The VTC versus the distance between the Surface and the Camera for

texture D18
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Relative Range = 900 mm Relative Range = 550 mm

Relative Range = 400 mm Relative Range = 280 mm

Relative ge = 200 mm
Figure (14a): Image Sequence for Texture D13
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Relative Range = 900 mm Relative Range = 550 mm

Relative Range = 400 mm . Relative Range = 280 mm

Relative Range = 2 mm .‘
Figure (15a): Image Sequence for Texture D98
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Relative Range = 900 mm Relative Range = 550mm

Relative Range = 400 mm

Relative Rane =200 m
Figure (16a): Image Sequence for Texture D5
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Relative Range = 900 mm Relave Range = 550 mm

Relative Range = 400 mm Relative Range = 280 mm |

| Relative Range = 00 mm |
Figure (17a): Image Sequence for Texture D25
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Figure (17b): Normalized IQM versus the distance between the Surface and the
Camera for texture D25
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Relative Range = 0 mm

Relative Range = 900 mm

Relative Range =400 mm " Relative Ran ge =280 mm

éiﬁé Range =200 mm
Figure (18a): Image Sequence for Texture D74
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Relative Range = 900 mm Relative Range = 550 mm

Relative Range = 400 mm Relative Range = 280 mm

| Relative Range = 200 mm
Figure (19a): Image Sequence for Texture D23

43



- . = = e e

T
'
'

300

S
A =

S U -

[ L] 1] 8

| e
A R L
1] 1] 1] e
: _ . g
1] [} L] w
mm
: S g
[ L] ' M
” o Y
1 ] n
] t &
' ' m
! ! 2
. 3
“ g
; A

081

0.7

0.5

Normalized
oM

Figure (19b): Normalized IQM versus the Distance between the Surface and the

Camera for texture D23

Images

— Theoretical VTC

- - = = = -

om

VTC fr

- = = = m m meemee = == % . % emmemem === o= o= e = e = w

800

700

600

500

400

Distance between the surface and the Camera in mm

- - -

0.08§

Figure (19¢): The VTC versus the Distance between the Surface and the Camera for

texture D23



euve ange =900 mm Relative Range = 550 mm

Relative Réngé =200 m
Figure (20a) : Image Sequence for Texture D20
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6 Conclusions and Future Work

In this paper we present a new visual motion cue, we call the Visual Threat Cue
(VTC) that provides a measure for some relative change in range between a 3D surface
and a fixated observer in motion. A mathematical definition, a theoretical model as well as
a robust practical way to extract it from a sequence of images are presented. This cue is
independent of the 3D environment and needs no a-priori knowledge about it. It is time-
based, rotation independent and does not need 3D reconstruction. This cue can be
extracted directly from the raw gray level data of images and does not need optical flow
information, segmentation, feature tracking and pre-processing. In IQM based extraction
of the VTC we can control the minimum clearance Rq by changing the initial focus
adjustments.

The results presented in this paper are for the case where the direction of motion of
the observer is perpendicular to the textured surface. Currently we are working on the
extension of the above approach for the cases where the direction of motion is not
perpendicular to the surface. For the results presented in this paper there is no spatial
smoothing on the texture or temporal smoothing on the IQM or the VTC. Adding some
temporal smoothing to the IQM will significantly improve the results of the VTC. The
VTC described in a previous section is good only in the region beyond the minimum
clearance Rg. Currently we are investigating the nature of visual fields for points whose
ranges are less than R(. We are also working on the implementation of the VTC as a
sensory feedback signal in action-perception closed-loop control system of a 6-DOF
mobile robot in outdoor environments to maintain a desired safe clearance from textured

surfaces.
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Appendix A: The Imaging System
The amount of blur in an image is characterized by the radius (refer to Figure (A1)) of
the blur circle [28-30]. The expression for the radius of the blur circle, for a camera

focused to a short distance ug, can be derived as follows [30].

Image Plane
N
sl N
7
L
v u -~
Figure A1: Imaging System
In Figure (A1) :

v( = distance between the image plane and the lens

ug = distance between the lens and the scene for which the image is in focus.
o = radius of the blur circle (for u > v)

r = radius of the lens

F = Focal length of the lens

f = focal number of the lens

For objects in perfect focus the following Gaussian lens formula holds
1 1 1
+

= Al
W F (Al)
From Figure (A1) we also get the following relation
(o}
.r.. = (A2)
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By combining Equation (A2) with Equation (A1) and replacing u by R we have the

following relation
From which the following relation is obtained:
G= _Fﬂl(_l___l_ ) (Ad)
f R R

where R is the distance between the object and the lens and Ry is the distance to

which the camera is focused to initially.
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Appendix B: The Image Quality Measure

Let (x,y) be the spatial coordinates of an arbitrary pixel in the image, where x, y are
integers and I(x,y) be the intensity at (x, y). The inter-pixel distance is denoted by 6 and is
defined as follows.

3 = (Ax, Ay) (B1)
where Ax = difference between the corresponding x coordinates of two pixels; Ay =
difference between the corresponding y coordinates of two pixels.

The dissimilarity between the image intensities of pixels separated by the inter-pixel
distance defined in Equation (B1) is characterized by the measure &dissimilarity, which is
defined as [40]:

8 — dissimilarity = {|I(x, y) = I(x + Ax, y+ Ay b} (B2)
where I(x,y) = intensity at pixel (x,y); I(x+Ax, y+Ay) = intensity at pixel (x+AX,
y+Ay).

Several other dissimilarity measures may be used instead of the one employed in
Equation (B2). A detailed description of these measures is presented in [41].

Each pixel (x,y) in an image can be characterized by a matrix known dissimilarity
matrix, which is basically a matrix of numbers that characterizes the dissimilarity of pixel
intensities in the neighborhood of the pixel. For instance, if the texture is smooth, the
dissimilarity is very low, hence the mean value of the dissimilarity matrix is low. This
dissimilarity matrix is a (2Lr+1)X(2Lc+1), where Lc, Lr are positive integer constants.
The (i,j) element of this matrix is the d-dissimilarity matrix as defined in Equation (B2), i=
-Le, ...,-1,0,1,...Lc and j = -Lr,...,-1,0,1,...,.Lr. The (0,0) element of the dissimilarity matrix
is zero since {II(x,y)-I(x+0,y+0)}| = 0. A matrix of numbers can be generated for any
pixel.

This dissimilarity matrix can be used to generate a global image variable to indicate the
smoothness of texture details in an image. Next we show how to generate a global

measure which indicates the texture smoothness.
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We select an arbitrary window in the image plane. Let x; and xf be the initial and final
coordinates of the window along the x-direction respectively and y; and yr be the initial
and final coordinates of the window along the y-direction respectively. For each pixel in
the window selected we compute the mean value of the dissimilarity matrix described
above. Thus there are (xg-xi)X(yj-yp) means for the window selected. We compute a global
measure for the image smoothness by taking the mean value of the average of the

dissimilarity of each pixel, i.e., mathematically it is described as follows.

1QM=—115§“ yﬁ( i ill(x,y)—l(x+p,y+q)|)

x=x;y=y\ p=—L; ¢=-L,
Where I(x,y) is the intensity at pixel (x,y) and x; and xf are the initial and final x-
coordinates of the window respectively ; yj and yr are the initial and final y-coordinates of

the window in the image respectively and Lc and Lr are positive integer constants; and D
is a number defined as follows D = (2L, + 1) X (2L, + 1) X (x; — ;) X(yr = ¥)-
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