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Abstract

Traditional optical flow algorithms assume local image translational
motion and apply simple image filtering. Recent studies have taken two
separate approaches toward improving the accuracy of computed flow: the
application of spatio-temporal filtering schemes and the use of generalized
motion models such as the affine model. Each has achieved some
improvement over traditional algorithms in specialized situations. In this
paper, we analyze the interdependency between them and propose a unified
approach. The general motion model we adopt characterizes arbitrary 3-D
steady motion. Under perspective projection, we derive an image motion
equation that describes the spatio-temporal relation of gray-scale intensity
in an image sequence, thus making the utilization of 3-D filtering possible.
However, to accommodate this complex motion, we need to extend the filter
design to derive additional motion constraint equations. Using Hermite
polynomials, we design differentiation filters, whose orthogonality and
Gaussian derivative properties insure numerical stability. The resulting
algorithm produces accurate optical flow and other useful motion
parameters. It is evaluated quantitatively using the scheme established by
Barron, et al.[4]  and qualitatively with real images.

1. Introduction

This paper describes an algorithm and supporting experimental results for acc
optical flow and motion estimation.

Research in the field of optical flow, starting from Gibson[12] , has spawned m
algorithms in the past two decades, and at the same time has led to numerous applic
To name a few, optical flow can be used to compute three-dimensional motion
structure[2] [43] ; to locate the focus of expansion [15] or a moving observer’s directio
heading; to segment independently moving objects[2] [28] ; to detect motion[9] ; to s
lize images[6] ; to perform obstacle detection and avoidance[33] [45] [46] [47] ; an
 1



hese
flow
ery

tical
cisely

this,
thms,

f error:
by opti-
hang-
ecular

l chal-
g tech-
g the
ulties

tion
ts to
curacy
use of
aling
ibing

is the
gener-
e two
ir indi-

port.
g, and
poral
l differ-
been

com-
ering
on as

within
otion
analyze medical video (2D echocardiographic images) to assist in diagnosis[8] . All of t
applications use optical flow data in a quantitative way. Although it is true that the optical
field is not necessarily equal to the motion field[38] , relative accuracy in optical flow is v
important in obtaining qualitative properties of motion. For example, discontinuities in op
flow are useful qualitative properties that can be used to locate motion boundaries more pre
if the flow is more accurate.

Evidently, the importance of accurate optical flow can not be overemphasized. In view of
Barron, Fleet, and Beauchemin[4] developed a scheme for evaluating optical flow algori
highlighting the current endeavor to achieve greater accuracy.

However, attempts to obtain accurate motion estimates are impeded by three sources o
sensor noise, brightness change over time, and quantization error. Sensor noise is caused
cal or electronic irregularities. Brightness change can occur in many situations, including c
ing light sources, shadowing, camera aperture adjustment, or shading of a Lambertian or sp
surface. Quantization error is inherent in digital images. These factors represent physica
lenges that cannot be overcome by image processing alone but can be mitigated by filterin
niques. In addition to dealing with these physical errors, are there other ways of improvin
current best optical flow algorithm? To answer this, we need to review other systematic diffic
that have been facing us.

The first difficulty is the aperture problem or the ill-posed nature of the flow computa
problem. Traditional optical flow algorithms have worked on finding reasonable constrain
solve this problem [3,20,27,32,34,37]. Although many ideas were proposed, the desired ac
was not achieved due to two factors: lack of attention to better filtering schemes and the
simple assumption of uniform translational motion. A good filtering scheme is essential in de
with the aforementioned sources of error, and uniform translation is insufficient for descr
general 3-D motion.

Recent studies have taken two separate approaches to improving accuracy. The first
application of spatio-temporal filtering schemes [11,19,25,35,41]. The second is the use of
alized motion models [5,7,8,17,31,35,39,42] such as the affine model. The fact that thes
approaches are actually complementary to each other will become clear as we analyze the
vidual advantages and disadvantages.

An intuitive idea for achieving better accuracy when applying a filter is to increase its sup
A large support alleviates the aperture problem, smooths out more noise, avoids aliasin
reduces quantization error and truncation error of the filter. For example, to estimate tem
derivatives, recent research has used multiple frames instead of simple successive tempora
ences. In fact, more sophisticated spatio-temporal filters, i.e., 3-D filters (Fig 1.2), have
developed to estimate image properties.

However, careless increase in filter support is not adequate due to the second difficulty
monly experienced: lack of a good motion model. Since traditional algorithms use simple filt
schemes and small filter supports, they can safely assume uniform translational moti
described in the image motion equation

. (1)

Once the spatio-temporal filters are applied and the support increases, the motion
becomes more complicated. Moreover, if we consider perspective projection of the 3-D m

I x y t, ,( ) F x u– t y v– t,( )=
 2
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onto the 2-D image plane, the problem gets worse. For example, a forward moving observe

a diverging scene in which a patch can undergo both translation and expansion* (Fig 2). Gener-

ally, divergence, curl, and deformation as well as translation exist in 2-D image motion. U
the motion model accommodates all these motion parameters, there is a limit to the usefu
support. Recent research has proposed the affine motion model to cope with this difficulty.
ever, once the general motion model is derived, one realizes that it may not necessarily im
accuracy because of the new demand of obtaining additional parameters. Even more sophis
filtering techniques are required to compute additional image properties, for example, one
use higher order derivatives to compute divergence, curl, and deformation [24] .

The above two approaches (spatio-temporal filtering and generalized motion model)
achieved a certain degree of improvement over traditional algorithms. Interested readers ma
to Section 5 for more details about these approaches and for comparisons. Nonetheless, th
dependencies between them still set a limit to their accuracy. To answer the question pose
lier: Yes, we can improve on the current optical flow algorithms by unifying a general mo
model and a spatio-temporal filtering scheme.

A general image motion model based on 3-D relative motion has been studied [26] . How
we need to extend theinstantaneousmotion model so as to describecontinuousmotion because
of the intrinsic requirement of spatio-temporal filtering. The continuous motion model is actu
a 4-D model that involves . An image motion equation based on this model is not tr
ble, especially considering the non-linearity imposed by perspective projection, unless we m
small motion approximation. It is then clear that we need a potent spatio-temporal filter des
solve the problem.

* A patch centered at the focus of expansion has expansion only.

Fig 1. 1 Traditional filtering approach

2-D Sobel operator or
other simple operators

Fig 1.2 Spatio-temporal filtering approach

3-D filter kernel

Temporal difference or correlation 3-D convolution (filtering)

Fig 2. 1 Translation only Fig 2. 2 Translation plus expansion

X Y Z t, , ,
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The spatio-temporal filtering scheme we use is based on 3-D Hermite polynomial differe
tion filters [18] [25] , which possess several advantages: the orthogonality and Gaussian der
properties of the filters insure numerical stability; the approach is generalizable to the higher
derivatives we desire; these two properties make possible the coherent application of multip
ters. Numerous physiological models[14,48] also support the theory that the visual receptiv
can be modeled by Gaussian derivatives of various widths.

The pursuit of higher accuracy is not complete until we overcome the third difficulty: oc
sion or motion boundary effects. That is where accretion or deletion occurs[29] , and the info
tion available to solve the problem is reduced. This difficulty is also common to other vi
problems such as stereo matching. However, this issue is beyond the scope of this paper a
be investigated in a future study.

The ultimate goal of this research is to develop a flexible set of algorithms that deals with
trary 3-D relative motion and computes accurate optical flow for such applications as obs
detection or motion segmentation. Our method is not only capable of unifying the two appro
attempted by recent research but also results in algorithms whose output is adequate fo
motion applications. Its competitive performance is demonstrated using the evaluation fram
established by Barron, et al.[4] .

The remainder of the paper is organized as follows: In Section 2, we present a general m
model for arbitrary 3-D motion and derive an image motion equation. Section 3 introduces a
tio-temporal filtering scheme using 3-D Hermite polynomial differentiation filters, and app
them to the motion estimation problem based on the image motion equation derived previ
Section 4 provides implementation details with attention to numerical stability and algorithm
ibility. Comparisons to previous work and specific contributions of this paper are summariz
Section 5. Section 6 details the results of quantitative evaluation of our algorithm in compa
with existing algorithms cited in Barron, et al. [4] . It also includes noise sensitivity analy
which was not addressed by Barron, et al. In Section 7 we present a qualitative evaluation
results of our algorithm using real images in a real motion application. Section 8 conclude
paper.

2. The General Motion Model

In this section, we describe how the local optical flow pattern reflects arbitrary 3-D mo
and use this knowledge to derive a general motion model and an image motion equation.
than consideringinstantaneousvelocity[26] , we consider velocity over time for the sake of sp

tio-temporal filtering. Let a 3-D point * undergo steady small rotation

and translation per unit time. Previous research that deals with g

eralizing the motion model has used a two-frame strategy as in [10] , which may be formula

, where  and . (2)

* In an observer-centered coordinate frame;  is the axis along the line of sight.

P X Y Z, ,( )T
=

Z

ΩX ΩY ΩZ, ,( ) TX TY TZ, ,( )

X'

Y'
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R
X

Y

Z

T+= R

1 ΩZ– ΩY
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ΩY– ΩX 1

= T
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=
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Equivalently, we write

, where  is the 3-D motion transformation matrix. (

The locus of a 3-D point  can then be described by

. (4)

is a polynomial of matrices. If were diagonalizable, would be easily compute

[21] , where is the diagonal matrix composed of the eigenvalues of and is

matrix of column eigenvectors. However, has two identical eigenvalues and is not diago

able. Fortunately, has aJordan Canonical Form [36] from which can be computed

as , where  has the analytical form [21]

 where  and . (5)

Hence,  when . (6)

The assumption of small rotation, , is also used in [10] and most other later stu
Then,

. (7)

where each of is a function of all of . The last equali
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=

aX aY aZ, , ΩX ΩY ΩZ TX TY TZ, , , , ,( )
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approximation in (6) and should be eliminated here. We may regard as translatio

the presence of rotation per unit time.

The locus projects to a point in the 2-D image plan

, where

, where  is the focal length. Let . Then (8

. (9)

Note that an instantaneous velocity derived in [26] is a special case of our formula
namely, the velocity  at :

. (10)

Note that the flow is generally quadratic. Computing optical flow based on the uniform tr
lation model is far from adequate, and the affine motion model is only valid when there is no
tion in the  and  directions.

To derive an image motion equation in the form of (1), we start with the brightness const
equation:

. (11)

Without loss of generality, let . It suffices to find in terms o

, which will be denoted by for simplicity. The resulting solution is extreme
complicated, but assuming small rotation and small 3-D translation relative to distance, na

, we have

. (12)

M
0

I= bX bY bZ,,

aX aY aZ, ,

P t( ) X t( ) Y t( ) Z t( ), ,( )T
=

x t( ) y t( ),( )
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---------------------------------------------------------------------------------= =
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v
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Z
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X Y
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Equation (12) can be further simplified by using the approximation , as

lows:

, (13)

(14)

The above approximation is justified by the following facts. First, the value of in pixel u

is usually large. For example, for a 256x256 image with a field of view of 45 degrees, is
pixels. Second, since we are concerned with motion in a relatively small image local neig
hood, so-called pointwise analysis, are small. Third, a small rotation in the and d
tion in 3-D space can be approximated in the 2-D image plane as a simple translation. Sin
are interested in finding optical flow rather than 3-D motion and structure, we do not lose m
accuracy here. The error from this approximation will be absorbed by the translation param

, thus offsetting the optical flow error. Inherent 3-D motion ambiguities related to this w

described in [1] [44] . We will also use the above arguments for further simplification in our a
rithm development (Section 4.2).

Now the image motion equation is, from (11) and (14),

, (15)

where . (16)

We need to develop a filtering scheme to relate all the above motion parameters to the 3
ter output and then solve them in order to estimate the optical flow, which is

from (10) and (16). Note that these motion parameters are closely related to
motion.

To demonstrate the behavior of the image motion equation, consider the following
motion patterns:

1. When there is no rotation, and no translation in the direction, th

(16), and there is uniform image translational motion,
assumed by traditional algorithms. (Fig 2.1)

1. When there is no rotation, , hence the image motion is affine with

t
f
---ΩYx

t
f
---ΩXy, 1«

x0 x t
aZ

Z
-----x ΩZy f

aX

Z
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  1
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f
--- ΩYx ΩXy–( )– 

 ≈

x0 x t
aZ

Z
-----x ΩZy f

aX

Z
------ ΩY+ 

 –+ 
  t

f
--- ΩYx

2 ΩXxy–( )–+≈

y0 y t Ω– Zx
aZ

Z
-----y+ f

aY

Z
------ ΩX– 

 – 
  t

f
--- ΩYxy ΩXy

2
–( )–+≈

f

f

x y t, , X Y

aX aY,

I x y t, ,( ) F x t α γx ρy δx
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2
+ + +( )+,( )=

α f
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Z
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f
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1. When there is no translation in the Z direction, and no rotation in the an

direction, , the image undergoes translation and rotation. (Fig 3.1)

1. When there is no rotation in the and direction, , the image underg
affine motion without deformation, i.e. only with translation, expansion and rotat
(Fig 3.2)

1. An arbitrary 3-D motion generates an image motion like Fig. 4.

Note that the images shown are merely enlarged local neighborhoods to reveal their par
behaviors under motion.

In summary, the image motion equation is based on expedient and reasonable approxim
It is applicable not only to the algorithm developed here, but also to other motion algorit
although the extent of improvement depends on the particular algorithm. For the gradient-
method, the filtering process is the decisive factor as far as performance is concerned. We
late the theory of Hermite polynomial differentiation filters in the next section.

3. Hermite Polynomial Filters

3.1 Hermite polynomials

Thenth Hermite polynomial  is a solution of

γ 0= X Y

δ ε 0= =

X Y δ ε 0= =

Fig 3.1 Translation and rotation

x

y

x

y

Fig 3.2 Affine motion without deformation

Fig 4. General image motion for arbitrary 3-D motion
x

y

Hn x( )
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The  are derived by Rodrigues’ formula [18]

. (18)

The computation of  is especially easy using the following recursive relations:

(19)

By substituting (with variance ) for in (18), we generalize to Hermite polyn

mials with respect to the Gaussian function. Let these Hermite polynomials be denoted by

(20)

Note that  differs from  by a scaling product:

(21)

The scalar product of two functions and the L2-norm of a function with as a weight func-
tion are defined as follows:

 and

The orthogonality of { } can be expressed in the following way[18] :

, (22)

The 3D case of Hermite polynomials is especially simple because they are separable. Th
polynomial with ordern = i + j + k  is

(23)

3.2 Derivation of gradient constraint equations

One of the most important properties of Hermite polynomials is the property of Gaussian d

x
2

2

d

d Hn 2x
xd

dHn– 2nHn+ 0=

Hn x( )

Hn x( ) 1–( )n
e

x2

x
n

n

d

d
e

x2–
=

Hn x( )

Hn 1+ x( ) 2xHn x( ) 2nHn 1– x( )–=

H0 x( ) 1=

H1 x( ) 2x=

G x( ) σ2
e

x– 2

Hn x( )

Hn x( ) 1–( )n
G

1–
x( )

x
n

n

d

d
G x( )( )=

Hn x( ) Hn x( )

Hn x( ) 1

2
1 2⁄ σ

-------------- 
  n

Hn
x

2
1 2⁄ σ

-------------- 
 =

G x( )

a b,〈 〉 G x( )a x( )b x( )dx

∞–

∞

∫≡ a a a,〈 〉1 2⁄≡

Hn x( )

Hm Hn,〈 〉 σ 2n–
n!δmn=

Hijk x y t, ,( ) Hi x( ) H j y( ) Hk t( )⋅ ⋅=
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atives. It is with the aid of this property that we are able to establish gradient constraint equa
This property is manifested in the following theorem.

Theorem 1: A one dimensional signalI(x) can be expanded in terms of Hermite polynomials

Then  where  and . (24)

The proof is given in Appendix A. This theorem states that the th order Gaussian deriv

of the image is the inner product of the image and the th order Hermite polynomial
Note that the theorem is true only for unnormalized Hermite polynomials. This fact is used w
we assign weights to motion constraint equations of different orders in equation (35).

Recall our image motion equation (15),

.

Expand both sides with Hermite polynomials,

 then (25)

Equating  to  and using Theorem 1, we derive

(26)

We make the above approximation because equations (9) and (16) allow us to derive

. (27)

Since and the inner product is Gaussian weighted,

error is not significant. Besides, without the approximation, the eventual constraint equ

would be non-linear and very difficult to solve. The analysis is similar for . Therefore,

I x( ) I k
Hk x( )
Hk

2
---------------

k 0=

∞

∑=

I k I H k,〈 〉 I
k( )

H0,〈 〉= = H0 x( ) 1= I k( )
xk

k

d
d I=

k

k Hk x( )

I x y t, ,( ) F x t α γx ρy δx
2 εxy+ + + +( )+ y t β ρx– γy δxy εy

2
+ + +( )+,( )=

I ijk
Hijk

Hijk
2

-----------------
k 0=

∞

∑
j 0=

∞

∑
i 0=

∞

∑ Fijk
Hijk

Hijk
2

-----------------
k 0=

∞

∑
j 0=

∞

∑
i 0=

∞

∑= I ijk I H ijk,〈 〉 Fijk F Hijk,〈 〉= = =

I ij 1 Fij 1

I ij 1 Fij 1 F Hij 1,〈 〉
t∂

∂F
Hij 0,〈 〉== =

α γx ρy δx
2 εxy+ + + +( )

x0∂
∂F β ρx– γy δxy εy

2
+ + +( )

y0∂
∂F

+ Hij 0,〈 〉=

α γx λρ δx
2 εxy+ + + +( )

x∂
∂I

Hij 0,〈 〉 β ρx– γy δxy εy
2

+ + +( )
y∂

∂I
Hij 0,〈 〉+≈

x0∂
∂F

x∂
∂I

x0∂
∂x

y∂
∂I

x0∂
∂y

+
x∂

∂I
1 δfxt–( )

y∂
∂I ρt δfyt–( )+= =

x0∂
∂F

x 0 y, 0 t, 0= = = x∂
∂I

x 0 y, 0 t, 0= = =
=

y0∂
∂F
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(29)

To simplify (29), we derive from (19) and (21) the following equation

. Hence (30)

(31)

Using Theorem 1, we simplify (31) to

(32)

As stated in the introduction, this is a fundamental element resulting in a coherent spatio
poral filtering scheme to compute optical flow. This capability stems from two nice propertie
(32). The first is the linearity of the equation in terms of the motion parameters as defined in
the second is its extensibility to higher orders, i.e., the values of can be as large as requi
the number of parameters. Thus to solve for the motion parameters and then for optical flo
derive a system of linear equations with coefficients computed from spatio-temporal filters

These result in excellent numerical stability due to the orthogonality of the Hermite polyno
differentiation filters and their inherent Gaussian smoothing. Although (32) appears to be co
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cated, it in fact suggests a simple, local, and parallel algorithm, which involves only convolu
and solving a linear system, as presented in the next section.

4. Algorithms for Computing Optical Flow

Equation (32) gives rise to not a specific algorithm but a set of algorithms, due to its ext
bility. We can derive the same number of equations as unknowns and solve a linear system
may incorporate more equations of higher order and solve a linear least square problem.
other hand, if we possess knowledge about the input image sequence, for example, that th
no rotations around certain directions, the number of motion unknowns can be reduced. W
make other expedient choices based on numerical considerations and experimental findin
these options are explored in the following subsections.

4.1 The general algorithm

According to (32), we derive six equations up to the third order. Within a 3-D local wind

we estimate { } with the discrete approximation { }, that is, the 3-D convolution

thesampledHermite polynomial filters with the image sequence, and write the equations in
trix vector form:

, where  where⊕ means concatenation, and (33

(34)

I ijk Î ijk x y t, ,( )

M6s c= M6 M4 M2⊕( )=

s

α
β
γ
ρ
δ
ε

= c

Î 001

Î 101

Î 011

Î 201

Î 111

Î 021

= M4

Î 100 Î 010 σ2
Î 200 Î 020+( ) 0

Î 200 Î 110 σ2
Î 300 Î 120+( ) Î 100+ Î 010–

Î 110 Î 020 σ2
Î 210 Î 030+( ) Î 010+ Î 100

Î 300 Î 210 σ2
Î 400 Î 220+( ) 2Î 200+ 2Î 110–

Î 210 Î 120 σ2
Î 310 Î 130+( ) 2Î 110+ Î 200 Î 020–

Î 120 Î 030 σ2
Î 220 Î 040+( ) 2Î 020+ 2Î 110

=, ,

M2

σ4
Î 300 Î 120+( ) σ2

Î 100+ σ4
Î 210 Î 030+( ) σ2

Î 010+

σ4
Î 400 Î 220+( ) σ2

3Î 200 Î 020+( ) 2Î 000+ + σ4
Î 310 Î 130+( ) σ2

2Î 110+

σ4
Î 310 Î 130+( ) σ2

2Î 110+ σ4
Î 220 Î 040+( ) σ2

3Î 020 Î 200+( ) 2Î 000+ +

σ4
Î 500 Î 320+( ) σ2

5Î 300 2Î 120+( ) 6Î 100+ + σ4
Î 410 Î 230+( ) σ2

3Î 210+

σ4
Î 410 Î 230+( ) σ2

4Î 210 Î 030+( ) 3Î 010+ + σ4
Î 320 Î 140+( ) σ2

4Î 120 Î 300+( ) 3Î 100+ +

σ4
Î 320 Î 050+( ) σ2

3Î 120+ σ4
Î 230 Î 050+( ) σ2

5Î 030 2Î 210+( ) 6Î 010+ +

=
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Note that filter outputs of up to fifth order are used. can be solved exactly by (33) fo

center pixel of the 3-D window and optical flow at the center of the local window is

4.2 Specialized algorithms

The algorithm presented in the previous subsection, i.e., solving a full-rank linear syste
often an overkill for many image sequences. There are several disadvantages in using it for
motion: First, it requires the use of higher order filters, whose orthogonality is always distort
a limited local support; and the use of a large local support is undermined by its susceptibi
motion boundary effects. Second, the linear system is often highly ill-conditioned, since the
umns of the matrix are of different orders of magnitude. Third is the higher demand in com
tion.

Let the focal length be large enough and/or the rotation in the direction small enoug

 and  to be negligible. Then  and we have a linear least square problem:

where , , and .(35)

is the diagonal weight matrix for the motion constraint equations. According to (25)
use

Note that this formulation reduces the highest order filter to fourth order. In addition, a
square solution is more stable than a full-rank linear system. The applicability of the weigh
trix is another nice feature. We suggest solving (35) by QR decomposition:

, and , whereQ is unitary. (36)

can be denoted by , where is an upper triangular matrix; and is , co

spondingly. Equation (36) then becomes

 if  is not singular. (37)

The solution  is computed from (38

For all practical purposes, the above algorithm is adequate for computing optical flow. N
theless, for many synthetic images or synthesized real images [4] , there is still room to sim
the algorithms and improve the stability of the linear system. For example, in image sequ
where , we get  and (35) reduces to

, (39)

s

α– β–,( )

X Y,
δ ε M2 0=

E min A4s4 b–= A4 WM4= b Wc= W Diag w1 w2 w3 w4 w5 w6, , , , ,[ ]=

W

w1 H001
2–

w2, H101
2–

w3 H011
2–

w4 H201
2–

= w5 H111
2–

w6 H021
2–

=,=, ,=,= =

A4 QR= E min QRs b+ min Rs Q
H

b+= =

R
Rs

0
Rs Q

H
b

bs

br

E min Rss bs+ br+( )=

br r= = Rs

s Rss bs+ 0=

ΩZ 0= ρ 0=

E min A3s3 b–=
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where  and  are the first three columns and elements of  and , respectively.

Furthermore, the third column in involves higher order terms plus a lower order te

Experiments suggest that the lower order term is always dominant and more accurate. Neg
the higher order terms does not necessarily degrade the accuracy but does save a great
computing time. This finding is very crucial especially for real-time implementations.

In terms of computing efficiency, our algorithm is excellent due to the separability of the
Hermite polynomial filter design. Let the 3-D filter size be and image size be

The complexity of the computation is , instead o

, where is the constant factor associated with solving the linear sys

In addition, the above process can run on all image pixels in a parallel fashion. It can ac
maximum speedup running on a CREW (Concurrent Read Exclusive Write) parallel ma
[22] .

The advantages of the QR decomposition are the availability of the matrix and the re

al. The behavior of and the residual reveal plenty of information about the underlying im

and motions. There are certain situations where the optical flow cannot be reliably computed
local information due to, for example, the aperture problem. Therefore, and the res

should be investigated for its possible link to the reliability of the computed optical flow. We
vote the next subsection to the discussion of the optic flow errors and confidence measure

4.3 Confidence measures

Our algorithm provides ample information about the behavior of the system equations.
cludes the residual , the condition number and the determinant of . They can be shown [2
signify certain image phenomena, e.g., occlusion, the aperture problem, etc., which presen
culties for optical flow computation. Therefore, they can be utilized to locate high error area
suggest subsequent improvement methods. For the sake of the evaluation in Section 6, we
use them as confidence measures or threshold values to extract more accurate data, notwi
ing the fact that they can be used for qualitative image analysis.

4.3.1 Residual

The residual of our algorithm is orr (=E) (37). The residual of an overdetermine

linear system indicates the degree to which the equations disagree with one another. The

for the existence of the residual lies in the approximation error of { }. A high appro

mation error may indicate one of three problems:

1. The assumption of the motion model is violated in the 3-D windowV. It is possible
that the window covers more than one moving object. Occlusion or multiple inde
dently moving objects in a window can cause this problem.

1. The assumption of constant image brightness is violated. It is not unusual fo
brightness of an object to change when the viewing angle changes due to re

A3 s3 A4 s4

A3

Wx Wy Wt×× S

O Wx Wy Wt C+ + +( )S( )

O WxWyWt C+( )S( ) C

Rs

Rs

Rs

r Rs

Ansn b+

Î ijk x y t, ,( )
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motion. In addition, the observing camera may adjust the brightness gain for diffe
scenes, resulting in a change of object brightness. Similar effects can be caus
the shadow of another object.

1. Quantization and truncation errors. Quantization errors result from sampling Her
polynomial filters. Truncation errors are introduced when we use limited spatial

port to compute { }. Within a small window, the Hermite polynomials a

no longer orthogonal and the derivatives computed are not accurate. This situat

worse for higher order differentiation filters. For example, (22)

0.93 when  and 0.999945 when  for a window size of 21.

We can model the above errors as perturbations to the linear system [25] :

, whereN and∆b denote errors and . (40

We prove in Appendix B the following analytical results:

(41)

(42)

Note that the expressions for both optical flow error∆s (41) and residual (42) are propor

tional to the size of the noise vector *. It is evident that locations with high residua
reflect large errors and inaccurate optical flow values.

Note that the three problems mentioned above suggest contradictory choices for the w
size. With larger windows, problems 1 and 2 may be aggravated; with smaller windows, pro
3 becomes worse.

4.3.2 Condition Number and Determinant

The condition number of , denoted by , is defined as and can be shown t

be , where the ’s are eigenvalues or diagonal elements of .

A condition number measures the extent to which a linear system maps an input error in
output error, or in brief, the numerical instability of the system. Ifs contains errors magnified by
an ill-conditioned from errors in , it is not reliable. Since matrix is concerned with

image texture only and not with motion, we find correspondences between a high condition
ber and the following two image neighborhood situations:

1. when there is a steep edge in thex(y) direction (Fig 5.1), so that the derivatives ar

* It may be deceptive to claim that the residual is proportional to the optical flow error because the error vec

tor is mapped by different matrices ( , ), so the error also depends on the

orientation of the noise with respect to the matrices.

Î ijk x y t, ,( )

Hn Hn,〈 〉 σ 2n–
n!⁄

n 5= n 1=

Ẽ min An N+( )s̃ b ∆b+( )+= n 6<

∆s s̃ s– An
T

An( )–
1–
An

T
Ns ∆b+( )≈=

r̃ Ẽ I An An
T

An( )
1–
An

T
–( ) Ns ∆b+( )≈=

r̃

Ns ∆b+( )

An
T

An( )
1–
An

T
I An An

T
An( )

1–
An

T
–
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-------------- λ Rs
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1. when there is a lack of texture in a direction (the direction in Fig 5.2), so that
derivatives in thex direction are approximately proportional to the derivatives in thy
direction, i.e. .

The above two situations can easily be confirmed by inspecting the QR decomposition
cess.

The determinant of is the product of all its eigenvalues. In solving (38) or

the determinant plays an important role in the matrix inverse. Since we use the QR decompo
method,Q is unitary (orthonormal projection) so the behavior of is similar to the original

A small determinant of  indicates one of the following two situations:

1. The three columns of are close to being linearly dependent. This is the same

second situation in the above discussion of condition number. In fact, a small d
minant due to linear dependency also causes a high condition number.

1. All the elements of are very small. This corresponds to a uniform brightness

e.g. a cloudless sky.

If there is motion in the area where one of these two situations dominates, then it corres
to what is known as the aperture problem. As noted before, the above situation corresponds
general case of the aperture problem. It is interesting to note that Barron, Fleet, and Beauc
[4] recognize empirically that the determinant is a better confidence measure in the applicat
the Uras, et al. [37] optical flow algorithm than the condition number used in the original pa
Our analysis agrees with their empirical finding.

4.3.3 Integration of confidence measures

Based on the above analysis, we choose a combination of confidence measures acco
the nature of a given image sequence.

If the image sequence contains numerous moving objects or the brightness changes
cantly, residuals should be used as the confidence measure, as they capture the three probl
ed in Section 4.3.1. No other confidence measure is effective for these cases.

The condition number and determinant have something in common although they may ca
different situations. Together they signify the relationship between numerical instability an
aperture problem. Empirical findings suggest that they be used as a multiplicative combinati

x y+

I x y,( ) I kx y+( )≈

Fig 5.1 Smoothed steep edge. Fig 5.2 Lack of texture in x+y direction.

Rs s R– s
1– bs⋅=

Rs An

Rs

An

An
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similarly, in the form of [25] . This has been proposed by Girosi et al.[13] in a similar c

text and was used in Barron’s implementation [4] of Lucas and Kanade’s optical flow algori
In our algorithm, simply indicates the existence of the necessary texture. We shall us

capture the aperture problem and to avoid numerical instability.

All the above mentioned problems are not unique to our algorithm; they are common to
optical flow algorithms as well.

5. Previous Work and Our Contributions

Recent research in the field of optical flow seems to converge on two ideas to be discus
this section. They are spatio-temporal filtering and generalized motion models.

An earlier method based on these two ideas has appeared in [35] by Srinivasan. I
approach to a generalized gradient method for optical flow, the author concentrated on gen
ing spatio-temporal filtering. He demonstrated his algorithms on various types of motion. H
ever, the algorithms did not deal with motion that simultaneously contained transla
expansion, and rotation. In fact, it is stated that “erroneous results can occur if a trans
motion is superimposed upon the rotation or expansion”. Nonetheless, [35] is one of the
efforts in generalizing the optical flow algorithms.

Later, Workhoven and Koenderink [42] introduced the idea of theaffineflow field (43) to esti-
mate optical flow:

 where  and . (43)

A series of algorithms [5,7,8,31,39] using this more comprehensive flow field followed.

Based on an infinitesimal affine flow field, both Workhoven and Koenderink [42] and N
[31] used Taylor series expansion and 2-D Gaussian derivative filters to derive motion cons
equations. These equations are organized in a linear system in a similar way in both studies
work can be regarded as an extension of Horn and Schunck’s work [20] . Our work is inspire
Workhoven and Koenderink’s algorithm because an extensible motion constraint equation s
to (32) was developed in [42] , though only in 2-D. However, the affine model is not based o
pointwise 3-D motion analysis so their motion equation fails to recognize the dependencies
first order motion parameters, i.e., and . This causes numerical in

bility. Hence their approach does not offer an algorithm with competitive experimental resul
fact, our implementation of their algorithm shows that it is not reliable.

Campani and Verri [7] , Bergen et al. [5] , and Wang and Adelson [39] used local flow fi
coherence rather than the Taylor expansion to compute flow. Their work can be regarded
extension of Lucas and Kanade’s work [27] . They do not demand high-order gradients but
to perform patchwise computation. Patchwise computation is accurate when the motion ha
segmented but inaccurate otherwise due to its strong susceptibility to the aperture problem

Chou [8] modeled the error in the affine flow field as independent Gaussian noise and
Maximum a Priori (MAP) estimation to minimize the error and compute optical flow. We h

λ min

λ min

V x( ) T Ax+= T
u0

v0

= A
ux uy

vx vy

=

γ ux vy= = ρ uy vx= =
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shown in (10) that the error modeled in [8] consists of exactly the quadratic terms. It is act
systematic and dependent on motion. Therefore, this noise model is not adequate.

Prior to the affine flow model, Hartley [17] had proposed a quadratic flow field model
used pyramid linking to estimate and segment flow simultaneously. This is the first use o
“correct” motion model in an algorithm. The integration of estimation and segmentation is a
able lesson for future research, but the lack of temporal or even spatial filtering to deal with
is its weakness.

We realize that modeling a flow field is essentially a 2-D process, whereas modeling mot
a 3-D process, which is relatively difficult. However we can impose temporal smoothing i
integrated theoretical framework based on Hermite polynomials.

Heeger [19] , Fleet and Jepson [11] , and Weber and Malik [41] also achieved success
spatio-temporal filters. However, they all used a uniform translational motion model and
improvements are limited by this assumption. Among them, Fleet and Jepson attempted t
with non-translational motion in [11] . They showed that the phase response, instead of the a
tude response, of the velocity-tuned filters is robust to image affine transformations and pho
ric deformation. Their algorithm is based on constant phase contours and tends to produc
accurate but sparse flow fields.

If the above methods could take advantage of the image motion equation (15), which
with arbitrary 3-D motion, greater improvements might be achieved. However, these me
might have difficulties with the spatial nonlinearity (specifically, quadratic) and the numbe
parameters involved. Hermite polynomial filters, on the other hand, have proved to be capa
overcoming these difficulties.

From a theoretical point of view, the image motion corresponding to arbitrary 3-D motion
been studied by Longuet-Higgins and Prazdny[26] and Fang and Huang [10] . We have p
the effort forward not only by integrating temporally continuous analysis but also by explo
numerical implementations. The figure below summarizes the thread of work leading to our
rithm. An arrow in the figure represents an idea extracted, extended or used similarly.

At the application level, our algorithm generates a set of confidence measures that we
reflect physical phenomena about the image and motion. These measures can then be u
subsequent qualitative processing. In experiments, our algorithm generates accurate anddense
results, which are very useful for such tasks as motion segmentation and obstacle detectio

In summary, the contributions of this work are a general motion model that lends itself to
with any good spatio-temporal filtering methods for estimating accurate optical flow, and a p
Hermite polynomial theory for motion analysis.

6. Experiments

Based on the work of Barron, Fleet, and Beauchemin[4] , we conducted extensive com
sons between our algorithm and traditional optical flow algorithms, including those by Horn
Schunck[20] , Lucas and Kanade[27] , Uras et al. [37] , Nagel[32] , Anandan[3] , Singh[
Heeger[19] , Waxman et al. [40] , and Fleet and Jepson[11] . The synthetic image sequenc
used for comparison are Sinusoid, Translating tree, Diverging tree, Yosemite fly-by (provide
Barron), and Moon landing.

If the image sequences used contain only translational (Sinusoid) and diverging m
 18
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(Translating tree, Diverging tree, and Yosemite fly-by), we use the algorithm in (39); if the im
motion also contains rotation (Moon landing), we use the algorithm in (35).

The error statistic utilized is the angle error between the computed optical flow time-spa
rection and the ground truth flow time-space direction averaged over

whole image. Refer to [4] for more details. In order to make extensive comparisons, we im
mented our algorithm in such a way that a certain density of output flow can be extracte
thresholding on a chosen confidence measure. Error statistics in the following subsections a
played in tables. For a single technique with multiple entities in these tables, different thre
values are used in the algorithm to produce multiple densities of output. For the actual thre
values of the comparison algorithms, refer to Barron et al.[4] . The error statistics and asso
density for the comparison algorithms were obtained directly from [4] .

6.1 Sinusoid

This is a synthetic image sequence (Fig 6) of a spatial sinusoidal wave traversing towa
upper right side. For our method we chose a window size large enough (17x17x7 forx,y,t) to pre-
vent aliasing. was used as the confidence measure. Fig 7.1 shows the true optical flow
Fig 7.2 shows the flow computed with our method. Our algorithm performs better than all o
other algorithms except Fleet and Jepson’s (Table 2).

Longuet-Higgins &
Prazdny [26]

Fang & Huang

Horn & Schunck [20] Lucas & Kanade [27]

Workhoven &
Koenderink [42]

Nagel [31]

Heeger [19]

Fleet & Jepson [11]

Weber & Malik[41]

Campani & Verri [7]

Bergen et al. [5]

Wang & Adelson[39]Our algorithm

Pointwise gradient
based method

Patchwise
gradient
based
method

Affine
motion
model

Spatio-
temporal
filters

3-D
motion
model

Srinivasan [35]

Generalized
gradient based
approach

ue ve 1, ,( ) uc vc 1, ,( )

1 r⁄
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6.2 Translating tree and Diverging tree

The translating and diverging tree sequences are two realistic synthetic sequences sim
the motion of simple translation (Fig 8.1) and expansion (Fig 8.2), respectively, of a poster
window size used in our method is 19x19x11 for the translating tree and 17x17x9 for the di
ing tree. Due to the lack of texture in some background areas, we used as the confi

Table 2: Summary of Sinusoid error statistics

Density
Our Algorithm Other Algorithms

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

Technique by

100% 0.63˚ 0.06˚ 4.19˚ 0.50˚ Horn & Schunck (original unthresholded)

2.55˚ 0.59˚ Horn & Schunck (modified unthresholded)

2.47˚ 0.16˚ Lucas and Kanade (unthresholded)

2.59˚ 0.71˚ Uras et al. (unthresholded)

2.55˚ 0.93˚ Nagel

30.80˚ 5.45˚ Anandan

2.24˚ 0.02˚ Singh (step 1 unthresholded)

0.03˚ 0.01˚ Fleet and Jepson

12.8% 0.63˚ 0.06˚ 64.26˚ 26.14˚ Waxman et al.

Fig 6. Traversing sinusoid

Fig 7.1True optical flow for sinusoid Fig 7.2 Computed optical flow (100%)

λ min
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measure. Fig 9 and Fig 10 show the results. Only Uras’ and Fleet and Jepson’s algorithm
form better than ours for the translating tree sequence (Table 3). For the diverging tree seq
our results are second only to Fleet and Jepson’s (Table 4).

Fig 8.1 Translating tree Fig 8.2 Diverging tree

Fig 9.1 True flow for Translating tree Fig 9.2 True flow for Diverging tree

Fig 10.1 Computed flow for Translating tree Fig 10.2 Computed flow for Diverging tree
 21



Table 3: Summary of Translating tree error statistics

Density
Our Algorithm Other Algorithms

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

Technique by

100% 0.92˚ 0.94˚ 38.72˚ 27.67˚ Horn & Schunck (original unthresholded)

2.02˚ 2.27˚ Horn & Schunck (modified unthresholded)

0.62˚ 0.52˚ Uras et al. (unthresholded)

2.44˚ 3.06˚ Nagel

4.54˚ 3.10˚ Anandan

1.64˚ 2.44˚ Singh (step 1 unthresholded)

1.25˚ 3.29˚ Singh (step 2 unthresholded)

99.6% 0.91˚ 0.92˚ 1.11˚ 0.89˚ Singh (step 2)

74.5% 0.69˚ 0.51˚ 0.32˚ 0.38˚ Fleet and Jepson

53-57% 0.59˚ 0.39˚ 32.66˚ 24.50˚ Horn & Schunck (original)

5.63˚ 2.78˚ Heeger (level 1)

1.89˚ 2.40˚ Horn & Schunck (modified)

49.7% 0.57˚ 0.37˚ 0.23˚ 0.19˚ Fleet and Jepson

44.2% 0.55˚ 0.34˚ 8.50˚ 13.50˚ Heeger (level 0)

40-42% 0.53˚ 0.33˚ 0.46˚ 0.35˚ Uras et al.

0.72˚ 0.75˚ Singh (step 1)

0.66˚ 0.67˚ Lucas and Kanade

26.8% 0.48˚ 0.28˚ 0.25˚ 0.21˚ Fleet and Jepson

13.1% 0.42˚ 0.24˚ 0.56˚ 0.58˚ Lucas and Kanade

1.9% 0.35˚ 0.19˚ 6.66˚ 10.72˚ Waxman et al.

Table 4: Summary of Diverging tree error statistics

Density
Our Algorithm Other Algorithm

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

Technique by

100% 1.84˚ 1.33˚ 12.02˚ 11.72˚ Horn & Schunck (original unthresholded)

2.55˚ 3.67˚ Horn & Schunck (modified unthresholded)

4.64˚ 3.48˚ Uras et al. (unthresholded)

2.94˚ 3.23˚ Nagel

7.64˚ 4.96˚ Anandan

17.66˚ 14.25˚ Singh (step 1 unthresholded)

8.60˚ 4.78˚ Singh (step 2 unthresholded)

99% 1.82˚ 1.28˚ 8.40˚ 4.78˚ Singh (step 2)

73.8% 1.59˚ 1.12˚ 4.95˚ 3.09˚ Heeger (combined)

60-61% 1.49˚ 1.02˚ 0.99˚ 0.78˚ Fleet and Jepson

8.93˚ 7.79˚ Horn & Schunck (original)

3.83˚ 2.19˚ Uras et al.

46-48% 1.40˚ 0.92˚ 2.50˚ 3.89˚ Horn & Schunck (modified)

0.80˚ 0.73˚ Fleet and Jepson

1.94˚ 2.06˚ Lucas and Kanade

28.2% 1.28˚ 0.79˚ 0.73˚ 0.46˚ Fleet and Jepson
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6.3  Yosemite fly-by

The Yosemite Fly-by sequence is a realistic synthetic image sequence (Fig 11). The
scene is simulated using actual aerial photos and digital terrain maps, with artificial sky
clouds. Since the clouds in the sky change brightness over time, it poses difficulties for all
rithms. Based on our previous analysis, we used as the confidence measure to eli
points that lie in a large blank area in the sky and on motion boundaries in. Fig 12.2. shows t
sults. Since the motion is rather fast in some areas, we used a larger window (21x21x7). Err
tistics are shown in Table 5. Again, the clouds account for the large magnitude error.
algorithm performs better than all others.

24.3% 1.24˚ 0.77˚ 1.65˚ 1.48˚ Lucas and Kanade

3.9-4.9% 1.09˚ 0.66˚ 13.69˚ 11.83˚ Waxman et al.

5.62˚ 6.16˚ Singh (step 1)

Table 5: Summary of Yosemite fly-by error statistics

Density
Our Algorithm Other Algorithms

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

Technique by

100% 7.13˚ 13.19˚ 31.69˚ 31.18˚ Horn & Schunck (original unthresholded)

9.78˚ 16.19˚ Horn & Schunck (modified unthresholded)

8.94˚ 15.61˚ Uras et al. (unthresholded)

10.22˚ 16.51˚ Nagel

13.36˚ 15.64˚ Anandan

15.28˚ 19.61˚ Singh (step 1 unthresholded)

10.44˚ 13.94˚ Singh (step 2 unthresholded)

97.7% 6.39˚ 6.39˚ 10.03˚ 13.13˚ Singh (step 2)

64.2% 2.99˚ 4.54˚ 22.82˚ 35.28˚ Heeger (level 0)

59.6% 2.85˚ 4.15˚ 25.33˚ 28.51˚ Horn & Schunck (original)

44.8% 2.57˚ 3.50˚ 15.93˚ 23.16˚ Heeger (combined)

33-35% 2.41˚ 3.32˚ 4.28˚ 11.41˚ Lucas and Kanade

4.63˚ 13.42˚ Fleet and Jepson

5.59˚ 11.52˚ Horn & Schunck (modified)

6.06˚ 12.02˚ Nagel

30.6% 2.38˚ 3.24˚ 5.28˚ 14.34˚ Fleet and Jepson

15% 2.21˚ 3.06˚ 9.87˚ 14.74˚ Heeger (level 1)

7.55˚ 19.64˚ Uras et al.

8.7% 2.16˚ 3.05˚ 3.22˚ 8.92˚ Lucas and Kanade

7.4% 2.14˚ 3.03˚ 20.05˚ 23.23˚ Waxman et al.

2.4% 1.91˚ 2.12˚ 12.93˚ 15.36˚ Heeger (level 2)

Table 4: Summary of Diverging tree error statistics

Density
Our Algorithm Other Algorithm

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

Technique by

1 r⁄
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6.4 Moon landing

The Moon landing sequence (Fig 13) is generated by gradually rotating and expanding* a pic-
ture of the surface of the moon. Visually, it is a bird’s-eye view of the moon from a spiral land
spaceship. The purpose of this sequence is to demonstrate our algorithm’s capability to
complex motion, specifically, expansion plus rotation. Our algorithm used a 21x21x7 window

as the confidence measure since there is no motion boundary. Table 6 shows th

results are better than Fleet and Jepson’s and Lucas & Kanade’s. It also reveals the am

* Rotation and expansion are done using Khoros 1.5 vrotate and vresize functions, respectively.

Fig 11. Yosemite fly-by image

Fig 12.1 True optical flow field for Yosemite fly-by Fig 12.2 Computed optical flow for Yosemite fly-by

λ min
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Fig 13. Moon landing sequence

Fig 14.1 Moon landing ground truth flow

Fig 14.3 Lucas & Kanade’s flow field (33.3%) Fig 14.4 Fleet & Jepson’s flow field (31.1%)

Fig 14.2 Our algorithm’s flow field (100%)
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improvement (10%-16%) of a generalized motion model over a uniform translation motion m
in our algorithm.

6.5 Noise sensitivity

We created noisy images from the synthetic sequences used above and tested the sens
the algorithms to such noise.

The sensitivity analysis is motivated by simple experiments such as the following: On a
time image processing machine, run a temporal differencing algorithm at video rate on succ
frames while keeping the camera and the scene stationary. Instead of getting a uniform ou
zero, the actual output always contains random spots of non-zero values. This kind of senso
violates brightness constancy and degrades the accuracy of any optical flow algorithm.

In the following tables, we used additive Gaussian noise of zero mean and increasing var
In order to conduct a fair comparison, the threshold on the confidence measure is fine-tu
every single run so that the output density is always 50%. We chose two of the best algorith
[4] , Lucas & Kanade and Fleet & Jepson, for comparison. For the noisy Diverging tree sequ
the noise sensitivity is summarized in Table 5.

Our algorithm, as well as Lucas & Kanade’s has an approximately linear error increase
noise while Fleet & Jepson’s has quadratic or even exponential error increase (Fig 15). Des

Table 6: Summary of Moon landing error statistics

Density
Algorithms

Average
Error

Standard
Deviation

Technique by

100% 1.73˚ 0.87˚ Our algorithm (Translation + Rotation +Expansion model)

1.91˚ 0.89˚ Our algorithm (Translation model)

33.3% 3.91˚ 3.80˚ Lucas and Kanade

1.37˚ 0.71˚ Our algorithm (Translation + Rotation +Expansion model)

1.69˚ 0.83˚ Our algorithm (Translation model)

31.1% 2.47˚ 1.71˚ Fleet and Jepson

1.36˚ 0.70˚ Our algorithm (Translation + Rotation +Expansion model)

1.68˚ 0.82˚ Our algorithm (Translation model)

Table 7: Summary of Diverging tree noise sensitivity statistics

Noise
Standard
Deviation

Our Algorithm Fleet & Jepson Lucas & Kanade

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

Average
Error

Standard
Deviation

0 1.41˚ 0.94˚ 1.09˚ 0.52˚ 3.04˚ 2.53˚

3 1.64˚ 1.08˚ 1.18˚ 0.61˚ 3.28˚ 2.77˚

6 2.03˚ 1.37˚ 1.51˚ 0.93˚ 3.62˚ 3.06˚

9 2.53˚ 2.17˚ 2.15˚ 1.78˚ 4.32˚ 3.79˚

12 3.28˚ 2.78˚ 3.83˚ 5.48˚ 5.17˚ 4.69˚

15 3.87˚ 3.15˚ 9.23˚ 12.04˚ 5.93˚ 5.41˚
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excellent accuracy for noise-free data, Fleet & Jepson’s algorithm is outperformed by the
two when the image sequence becomes noisy. We also conducted a similar experiment w
Yosemite fly-by sequence. Unfortunately, Fleet & Jepson’s algorithm does not generate
enough density data when the sequence becomes noisy. However, we can once again con
linear error with respect to noise for Lucas & Kanade’s and our algorithm (Fig 16).

Robustness to noise is a very crucial quality for a good optical flow algorithm. We hope
experiment prompts more research in this area. Our algorithm achieved robustness by inte
spatio-temporal smoothing in the 3-D Hermite polynomial differentiation filter theory.

7. Real Images Demonstration

Current optical flow algorithms often have difficulty with real image sequences. Our a
rithm performs best on the Yosemite and Moon landing sequences because these sequence
real 3-D motion and are complicated enough to reveal the virtues of our algorithm. We ther
expect it to perform well on real images. Here we demonstrate our algorithm with two real im
sequences, HMMWV and NASA. The HMMWV sequence was taken in an outdoor environm
with a camera mounted on a forward moving HMMWV (High Mobility Multipurpose Wheel
Vehicle). It was later stabilized to eliminate unsteady motion. The NASA sequence is an in
diverging scene obtained from Barron [4] . The flow outputs for our algorithm as well as Luc
Kanade’s and Fleet & Jepson’s are displayed in Fig 17 and Fig 18. For our algorithm, the o
has undergone thresholding based on two confidence measures,  and.

Fig 15. Noise sensitivity plot for Diverging tree

Fig 16. Noisy Yosemite fly-by

1 r⁄ λ min
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In the HMMWV sequence*, visual inspection shows that Lucas & Kanade’s flow output (F
17.3) is very noisy because of random velocity change in a small neighborhood. Fleet & Jep
flow output (Fig 17.4) shows no indication of the flow field divergence. It is probable that the
ticular implementations (provided by Barron) of these two algorithms are not tuned to the
tively large flow existing in this sequence. Our algorithm, on the other hand, produces cohe
diverging flow field (Fig 17.2) except in the area of the sky.

In the NASA sequence†, both our flow (Fig 18.2) and Fleet & Jepson’s flow outputs (Fig 18
are very good, while Lucas & Kanade’s algorithm produces a noisy flow field (Fig 18.3). N
that our output density is twice that of Fleet & Jepson’s but it achieves approximately the sam
curacy visually. If Fleet & Jepson were to generate the same density, it might not look as acc

*  is used for both algorithms because only 10 image frames are available. The filter size of our
algorithm is 21x21x7.
†  is used for both algorithms. The filter size of our algorithm is 21x21x7.

σ 0.8=

Fig 17.1 HMMWV sequence Fig 17.2 Our algorithm’s flow field (64% density)

Fig 17.3 Lucas & Kanade’s flow field (48%) Fig 17.4 Fleet & Jepson’s flow field (34%)

σ 2.0=
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Finally we apply the NASA flow field outputs from these three algorithms to an obstacle
tection algorithm developed by Young, et al.[45] [46] [47] . This algorithm discriminates betw
obstacle and non-obstacle regions in the image using only the perpendicular component of
arbitrarily chosen image lines. In the following figures, a protrusion or a depression represe
obstacle detected by the algorithm.

For the first set of data, we select the horizontal lines from 220 to 260 (Fig 19.2). Over
lines, there is a vertical long metal plate with a hole in the left end of the image strip. We sh
expect two depressions at the locations of the plate. The detection results from all lines are
aged and then displayed in Fig 20. In Fig 20.1, Lucas & Kanade’s flow does not detect the

Fig 18.1 NASA sequence Fig 18.2 Our algorithm’s flow field (75% density)

Fig 18.3 Lucas & Kanade’s flow field (48% density) Fig 18.4 Fleet & Jepson’s flow field (37% density)
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plate clearly; in Fig 20.2, Fleet & Jepson’s flow detects the metal plate but its shape is hardl
ognizable; in Fig 20.3, our algorithm not only detects the plate but also shows its shape as s
be expected.

For the second set of data, we select horizontal lines 45 to 90 (Fig 19.1). Over these
there is a pole on each end of the image strip and a coke can at the center. In Fig 21.1, Lu
Kanade’s flow does not make out meaningful objects. In Fig 21.2, Fleet & Jepson’s flow b
detects the coke can and the right pole, and does not detect the left pole. In Fig 21.3, ou
clearly detects all three objects. Note that for this particular image strip we used dense (1
flow for our algorithm.

Line 220
Line 260

Line 45
Line 90

Fig 19.2 NASA image lines 220 to 260

Fig 19.1 NASA image lines 45 to 90

Fig 20.1 Lucas & Kanade’s results Fig 20.2 Fleet & Jepson’s results Fig 20.3 Our algorithm’s results

plate

hole

Fig 21.1 Lucas & Kanade’s results Fig 21.2 Fleet & Jepson’s results Fig 21.3 Our algorithm’s results

coke can polepole
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8. Conclusion

Motion estimation is difficult and ill-posed. The past two decades of research have led to
tio-temporal filtering techniques to overcome sensor noise, brightness change over time
quantization error. The aperture problem is mitigated by increased filter support or other g
techniques, while other approaches attempt to use an affine motion model to pursue bette
racy in the optical flow. We have learned from these results and have developed an inte
approach that combines a general motion model and 3-D Hermite polynomial differentiatio
ters. The general model for arbitrary 3-D motion is useful for all motion algorithms, but be
numerical techniques are required to make good use of the model. We have found that H
polynomial theory provides necessary advantages for this purpose. It possesses many
properties, including orthogonality, extensibility, Gaussian smoothing, etc. Contrary to ge
belief, the behaviors of these high order differentiation filters are quite insensitive to noise.
observation is supported by the good results in our noise sensitivity analysis. Simplicity add
another dimension to the strength of this algorithm, making real-time implementation fea
Although we are focusing on presenting accurate optical flow results, our algorithm also
putes all the motion parameters, including 3-D translation and rotation, along with the flow. T
motion parameters can be directly utilized for other motion applications, for example, comp
time-to-contact with , or performing derotation (stabilization) with (16). These applicatio
however, are limited by inherent ambiguities due to image noise[1] ,[44] ; on the other ha
scheme of integrating or propagating motion information globally is restricted by occlusion
motion boundary effects. Our future studies will investigate this problem; hopefully, the re
can be integrated into the current work. In summary, this work has generalized and unified s
previous successful theoretical approaches and has resulted in a versatile and flexible algo
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Appendix. A

We prove Theorem 1 as follows:

Proof: The first equality comes from the orthogonality of { }. We now prove the seco

equality, which claims that the scalar product of a function and thekth Hermite polynomial is equal
to the scalar product of thekth derivative of the function and 1.

γ ρ

Hn x( )
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❑

Appendix. B

Let  andb, defined in (34), contain no noise and let the noise be modelled as in (40). 

 and . (44)

Let the new optical flow be and the new residual be , and assume that and

elementwise. Then

, and (45)

, so (46)

Using (44), this can be simplified as follows:

 and .

For the residual, substituting  into (40), and using (44), we have

I H k,〈 〉 G x( )I x( )Hk x( )dx

∞–

∞

∫=

G x( )I x( ) 1–( )kG 1– x( )dkG x( )
dxk

------------------dx

∞–

∞

∫=

1–( )k I x( )dkG x( )
dxk

------------------dx

∞–

∞

∫=

1–( )kI x( )dk 1– G x( )
dxk 1–

-------------------------
∞–

∞

1–( )k 1– dI x( )
dx

-------------dk 1– G x( )
dxk 1–

-------------------------dx

∞–

∞

∫+=

I
1( )

x( ) 1–( )k 1– dk 1– G x( )
dxk 1–

-------------------------dx

∞–

∞

∫=

I
1( )

Hk 1–,〈 〉=

…

I
k( )

H0,〈 〉=

An

E Ans b+ 0= = s An
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An
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s̃ Ẽ N An« ∆b b«
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To understand  better, we analyze the matrix , denoted by .

It is easy to verify that the only nontrivial eigenvalues of matrix is/are 1, which means

it maps any vector to only the directions specified by the eigenvectors correspon
to the nontrivial eigenvalues.
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