
REFERENCE ARCHITECTURE FOR

MACHINE CONTROL SYSTEMS INTEGRATION:

INTERIM REPORT

M. K. Senehi

Thomas R. Kramer

John Michaloski

Richard Quintero

Steven R. Ray

William G. Rippey

Sarah Wallace

NISTIR 5517

October 20, 1994

Reference Architecture Interim Report

ii

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied.

Acknowledgements
Partial funding for the work described in this paper was provided to Catholic University
by the National Institute of Standards and Technology under cooperative agreement
Number 70NANB2H1213.

iii

Reference Architecture Interim Report

CONTENTS

1.0 Background.. 1

1.1 Project ...1

1.2 Feasibility Report ..2

1.3 This Report ..2

2.0 Introduction to the Proposed Joint Architecture................................. 3

2.1 Preliminary Definitions and Architectural Framework Overview3

2.1.1 First Concepts ...3
2.1.2 Elements of Architectural Definition ..3
2.1.3 Tiers of Architectural Definition ..4

2.2 Developing the Architecture ...5

3.0 Proposed Joint Architecture .. 6

3.1 Fundamental Principles of the Joint Architecture ...6

3.2 The Joint Architecture ...7

3.2.1 Scope and Purpose ..7
3.2.2 Methodology For Architectural Development7
3.2.3 Domain Analyses ..8

3.2.3.1 Description of a Manufacturing Shop
3.2.3.2 Operation of a Manufacturing Shop
3.2.3.3 Controllers in a Manufacturing Shop

3.2.4 Architectural Specification ...11
3.2.4.1 Shop Information
3.2.4.2 Levels of Control
3.2.4.3 Communications

3.3 Framework for the Joint Architecture and Description via the Framework ...24

3.3.1 Textual Description Methods ..24
3.3.2 Framework Overview ...25
3.3.3 Model Overview ...25

3.3.3.1 Information_Specifications
3.3.3.2 Communication_Specifications
3.3.3.3 Functional_Specifications

3.3.4 Generic_Control_Architecture ..30
3.3.4.1 Control_Architecture
3.3.4.2 Tier_of_Architectural_Definition
3.3.4.3 Element_of_Architectural_Definition
3.3.4.4 Architectural_Unit

3.3.5 Tier One: Hierarchical Control ...44
3.3.5.1 J_Scope_One
3.3.5.2 J_Purpose_One

Reference Architecture Interim Report

iv

3.3.5.3 Architectural_Specifications
3.3.6 Tier Two: Discrete Parts ...46

3.3.6.1 J_Scope_Two
3.3.6.2 Architectural_Specifications

4.0 Completing the Architecture.. 49

4.1 Technical Approach to Completing the Architecture49

4.1.1 Resolve Issues ...49
4.1.2 Define Scenarios ...50
4.1.3 Define Schedule Negotiation Protocol ..50
4.1.4 Complete Information Models ..51
4.1.5 Complete Formal Model ...51
4.1.6 Check RCS and MSI ...51
4.1.7 Implement ...51

4.2 Programmatic Approach to Completing the Architecture51

References ...53

Appendix A - Glossary.. 56

Appendix B - EXPRESS Definition of Joint Architecture 62

Reference Architecture Interim Report

v

FIGURES

Figure 1. Sample Permitted Configurations for the Joint Architecture16
Figure 2. EXPRESS Model of Joint Architecture - Overall Form ..26
Figure 3. Planning and Control in EXPRESS Model of Joint Architecture29
Figure 4. Elements of Architectural Definition in EXPRESS Model of Joint Architecture32
Figure 5. Tree of Tiers (hypothetical example) ...50

Reference Architecture Interim Report

vi

Reference Architecture Interim Report

1

1 Background
This is a report on an emerging reference architecture for machine control systems
integration. The architecture is not yet complete, and work on the architecture is
continuing. This first section gives a brief description of the project which is developing
the architecture, a summary of the report which was prepared as the first step in
developing the architecture, and an overview of the current report.

1.1 Project

For over sixteen years, the Manufacturing Engineering Laboratory (MEL) at the
National Institute of Standards and Technology (NIST) has been conducting research
on control of mechanical systems for use in such diverse fields as discrete part
manufacturing, coal mining, under-ice submarining, and space exploration. The
Automated Manufacturing Research Facility (AMRF) control architecture was
developed in MEL [Simpson], [McLean]. Within MEL, the Robot Systems Division
(RSD) and the Factory Automation Systems Division (FASD) have been engaged in
researching architectures for control systems. RSD has developed the Real-Time
Control System (RCS) architecture [Albus1]. FASD has developed the Manufacturing
Systems Integration (MSI) architecture [Wallace].

Presently, RSD and FASD are engaged in a joint project to formulate a reference
architecture for the integration of machine control systems by combining the RCS and
MSI architectures. Prior to attempting to construct the architecture, a feasibility study
was carried out by a team comprised of one staff member from each division. A report,
Feasibility Study: Reference Architecture for Machine Control Systems Integration,
was written which contains not only the rationale for the conclusion that a joint
architecture combining features of RCS and MSI is feasible, but also fundamental
background to be used in the formulation of the architecture. The report is described
briefly in Section 1.2.

In the first phase of the formulation of the architecture, a larger team, comprised of the
authors of this report, was assembled using the original two staff members as team
leaders and adding two more team members from each division. The proposed
architecture was more fully developed by the team. Since the project is an inter-
divisional project, the architecture under development will be called the “joint
architecture” in this report.

Future development of the architecture is planned. When the architecture is technically
complete, it will be documented and implementations will be made. If other divisions
of NIST participate in completing the architecture, the scope and purpose of the
architecture may be broadened as a result.

Reference Architecture Interim Report

2

1.2 Feasibility Report

The report from the first phase this project, Feasibility Study: Reference Architecture
for Machine Control Systems Integration [Kramer], presents and analyzes previous
work, both within and external to NIST, and proposes, in general terms, the basic
features of a single reference architecture applicable in both RSD and FASD. We will
abbreviate the title here to Feasibility Study.

The Feasibility Study first sets out a vocabulary and a framework for examining
architectures. A number of elements which are normally present in a fully defined
architecture are given in Section 3 of the Feasibility Study. In this report, we will
summarize these elements and use them to discuss the joint architecture.

Sections 4 and 5 of the Feasibility Study identify a number of issues, both for general
architectures and for control architectures which a complete architecture must address.
Section 7 describes the RCS architecture from RSD, the MSI architecture from FASD,
and assesses the compatibility of RCS and MSI using the previously developed
framework for architectures. A detailed comparison of the two architectures on each of
the architectural and control issues is given in Appendix C of the Feasibility Study.
Based on the comparison, Section 8 outlines a proposed single reference architecture.

To put the current work in perspective, Section 6 discusses classifications of
architectures and describes several architectures other than RCS and MSI to illustrate
each type. The Feasibility Study contains an extensive annotated bibliography.

Section 9 gives conclusions regarding the comparison of architectures and the
formulation of reference architectures.

1.3 This Report

This report extends the proposed single reference architecture presented in the
Feasibility Study. The report is intended to provide an initial version of the architecture
for further comment and development by a team of developers from the various MEL
divisions; it is not technically complete. Furthermore, because of the lack of maturity
of the architecture, it is discussed primarily in terms of the architectures from which it
is built, namely RCS and MSI. In the future, the architecture will be written up
independently from its predecessors.

Section 2 of this report presents preliminary definitions, an overview of the
architectural framework for the proposed joint architecture, and a description of our
approach to developing the joint architecture.

Section 3 presents the joint architecture, as currently defined. A discussion of key
aspects of the functioning of the architecture and a tier-by-tier presentation of the
architecture are both given.

Section 4 discusses what is required to complete the joint architecture.

Appendix B contains a formal model of the architecture written in EXPRESS [Spiby].

Reference Architecture Interim Report

3

2 Introduction to the Proposed Joint Architecture
This section presents preliminary definitions, an overview of the architectural
framework for the proposed joint architecture, and a description of our approach to
developing the joint architecture.

2.1 Preliminary Definitions and Architectural Framework Overview

This report uses the terminology and framework for an architecture that were developed
in the Feasibility Study. While a brief description of the terms and framework is
presented in this section, the reader is referred to the Feasibility Study for a detailed
discussion (Section 2, “Preliminary Definitions”, and Section 3, “Definition of an
Architecture” are particularly relevant). With a few exceptions, the glossary of this
report is the same as that of the Feasibility Study.

2.1.1 First Concepts

An architecture gives the design and structure of a system. The class of situations in
which an architecture is intended to be used is termed its domain. For example, an
architecture might apply to the manufacture of discrete parts. An application is subset
of one or more situations in the domain of an architecture having similar characteristics.
A particular shop, with a specific set of equipment and configuration is an example of
an application consisting of a single situation. The class of 3-axis milling machines is
an example of an application encompassing several situations. The realization of an
architecture in hardware and software for an application will be called an
implementation of the architecture.

A reference architecture is defined to be a generic architecture for a domain which is
broader than a single situation.

2.1.2 Elements of Architectural Definition

A complete definition of an architecture requires a number of elements of architectural
definition. Elements of architectural definition are conceptual entities, which may or
may not have any physical realization. These are:

(1) statement of scope and purpose

(2) domain analyses

(3) architectural specification

(4) methodology for architectural development

(5) conformance criteria

An architecture which is completely defined addresses all elements of architectural
definition in a balanced fashion.

The statement of scope of an architecture describes the range of areas (domain) to
which the architecture is intended to be applied. A statement of purpose identifies what
the objectives of an architecture are within the given scope.

Reference Architecture Interim Report

4

Analyses of the target domain that reveal its essential characteristics are domain
analyses.

An architectural specification is a prescription of what the pieces (software, languages,
execution models, controller models, communications models, computer hardware,
machinery, etc.) of an architecture are, how they are connected (logically and
physically), and how they interact. The pieces of an architecture described above have
specific meaning within the architecture and will be referred to as architectural units.
Architectural units are frequently defined by giving each one distinct functional
characteristics, although this is not the only mode of definition. We shall refer to the
realization of an architectural unit in an implementation as a component of the
implementation.

A set of procedures for refining and implementing an architecture is called a
methodology for architectural development for the architecture.

Conformance criteria are standards which specify how an architectural unit at one tier
(see next section) of an architecture conforms to the architectural specifications of a
higher tier, or how a process for building part of an architecture conforms to the
development methodology given by the architecture for building that part.

2.1.3 Tiers of Architectural Definition

An architecture consists of architectural units, each of which is more or less concrete in
nature. Often, two architectural units are related by having the second be a
specialization of the first - conversely, the first is a generalization of the second. Two
architectural units connected in this way are said to have an abstraction relation.
Abstraction relationships may connect an entire chain of architectural units. For
example: at an abstract level, one might define templates for information models, at a
somewhat more concrete level, a set of information models conforming to the templates
might be defined for a particular application, and at an even more concrete level,
database software might be designed implementing the information models.

It is useful to be able to define an architecture at different levels of abstraction. To do
this, we divide the architectural units of an architecture into groups. Each group is
called a tier of architectural definition, or simply tier. Every architectural unit of an
architecture is assigned to one tier or another. Whenever two architectural units are
related by an abstraction relation, the more abstract one should be in a higher tier or the
same tier as the more concrete one. Thus, the tiers of an architecture form cross-sections
of the architecture, with higher tiers being, generally, more abstract than lower ones.
Note that any two arbitrary architectural units need not be related by an abstraction
relation.

It would be appealing to require that all architectural units in a tier be of similar
concreteness (and the Feasibility Study defined tiers that way). There are several
shortcomings to making this requirement, however. First, while the abstraction
relationship provides a partial ordering, there is no absolute scale for measuring
abstraction and no commonly agreed upon method for assigning an absolute measure

Reference Architecture Interim Report

5

of abstraction to an architectural unit. Secondly, any two chains of architectural units
formed by abstraction relations may be different lengths, so tiers cannot be constructed
by putting all the first links in the first tier, all the second links in the second tier, and
so on. Third, it may be more convenient for defining an architecture to define some
items concretely even at a high tier, while keeping others more abstract at lower tiers.

On figures showing architectures, the lower tiers appear lower on the chart. In the
numbering system for tiers used here, however, the tier at the top is tier 1, the next lower
tier is tier 2, and so on.

2.2 Developing the Architecture

Following the recommendation of the Feasibility Study, which concluded that the
strengths of the MSI and RCS architectures were complementary, it was decided that
the joint architecture should combine the features of the MSI and RCS architectures.
The RCS and MSI architectures have, therefore, been the primary sources of concepts
and methodologies for constructing the joint architecture.

The architecture was developed by consciously using an explicit methodology. First,
the architectural framework which had been developed in the Feasibility Study was
formalized, extended, and filled in. Second, a description of how the architecture would
perform in various scenarios was developed. These two tasks were developed in
parallel, and then the results were harmonized.

The paradigm for future architectural development is discussed in Section 4.

Reference Architecture Interim Report

6

3 Proposed Joint Architecture
This section describes the joint architecture in its current, incomplete form. The
description of the architecture reflects the two core tasks mentioned in Section 2.2 by
which the architecture was developed: building on the framework given in the
Feasibility Study (Section 3.1 and Section 3.2) and describing how the architecture
would perform in various scenarios (Section 3.3). The two presentations of the
architecture overlap, but it is useful to take both views to understand the architecture.

Section 3.1 presents some fundamental principles of the joint architecture at a high
level of abstraction.

Section 3.2 presents a high-level description of the joint architecture as it would apply
to a manufacturing environment during nominal operation. The discussion centers
around the integrated operation of a factory and focuses on the aspects of the
architecture required to achieve it.

Section 3.3 describes the architectural framework as enhanced from the Feasibility
Study, locates the parts of the architectural description presented in Section 3.2 with
respect to the framework and identifies missing pieces of the architecture. An
EXPRESS modeling language version of the filled-in framework is presented in
Appendix B.

As stated earlier, the architecture is still being developed. This section is a snapshot of
a work in progress, not a brief description of a finished work. Much of the architecture
is still malleable and may be changed as the architecture is completed.

3.1 Fundamental Principles of the Joint Architecture

The joint architecture has explicit tiers of architectural definition and includes all five
elements of architectural definition at each tier.

The joint architecture uses hierarchical control. The controllers interact via a command
and status protocol. At any time, each controller must have one superior (except the
controller at the top of the hierarchy, which has none) and may have zero to many
subordinates. The decision to use hierarchical control was made for both technical
reasons (it works) and programmatic reasons (both RCS and MSI use hierarchical
control).

Separate architectural units have been defined for separate functions or concepts where
possible (as opposed to letting single architectural units have several functions or
embody several concepts). This allows modular construction of lower tiers of the
architecture. In particular:

• information, control, and communications are separated,
• within communications, the logical definition of messages is separated

from the encoding of the messages (i.e. defining the mapping of the
definition into a string of bits) and separated from the communication
method by which bits are moved from one place to another.

Reference Architecture Interim Report

7

3.2 The Joint Architecture

As previously remarked, we will discuss the joint architecture in two different ways,
reflecting the process by which the architecture was constructed. The description of the
architecture in this section is intended to give a cohesive understanding of what the
architecture includes, and how an implementation of the architecture would operate. In
order to make the description understandable, it is less precise in identifying the
generality of specific aspects of the architecture, deferring this task to the tier-by-tier
description in the second part of this report. As mentioned earlier, the present
discussion of the architecture is primarily in terms of the architectures from which it is
built, namely RCS and MSI. Future discussions of the architecture will be written up
independently from its predecessors.

3.2.1 Scope and Purpose

We plan to apply the joint architecture to a control system which controls a
manufacturing shop that produces machined metal parts. We are working toward
defining an architecture which can be implemented for this domain with existing
communications and computer hardware. We expect that certain aspects of the
architecture will apply to broader domains, but this is not discussed in depth in this
report.

The joint architecture focuses upon the operation of a shop which receives orders and
raw materials for the production of parts. The architecture integrates shop planning,
scheduling, and control functions in both nominal and error situations and must be able
to control a shop with any combination of physical and emulated equipment. In the
architecture, individual pieces of equipment in a shop are arranged in small clusters
called workcells. For equipment and workcells, the architecture provides for real-time
control with sensory input. The architecture is not required to integrate legacy systems,
although this is facilitated wherever possible. It is anticipated that aspects of the
architecture will be candidate standards for a new generation of manufacturing systems.

3.2.2 Methodology For Architectural Development

The joint architecture employs a cyclic development approach. The idea of cyclic
development is that one develops an architecture, assesses the finished product (the
assessment would include implementing the architecture), and uses the results of the
assessment as feedback to a cycle of refining the architecture. This may be done several
times. This document reports on the first (incomplete) cycle of definition of the
architecture.

The MSI and RCS architectures are used extensively in the formulation of the
architecture. The MSI architecture integrates shop planning, scheduling, and control
functions. The joint architecture will use adaptations of the mechanisms proposed by
the MSI architecture to obtain the high level integration of the shop. The RCS
architecture provides for real-time control with sensory feedback. The joint architecture
will use (an adaptation of) the RCS architecture to provide this function for equipment
and workcells which need this type of control. The joint architecture defines

Reference Architecture Interim Report

8

mechanisms for integrating RCS-like controllers with the functions of the shop. We
have not used the MSI and RCS architectures in their full generality: choices have been
made to help reduce the complexity of the joint architecture. Thus, the joint architecture
does not subsume either architecture.

3.2.3 Domain Analyses

The joint architecture draws heavily upon previous work of both FASD and RSD in
analyzing the discrete parts manufacturing domain and in providing for domain
analyses for real-time control with sensory feedback. While it is possible to categorize
the domain analyses which have been performed as information, function, and dynamic
analyses, this has not been done in this section of the document. Instead, a description
of a shop is presented (information and function analysis), and then the operation of the
shop (dynamic analysis) is discussed.

3.2.3.1 Description of a Manufacturing Shop

A manufacturing shop’s function is to manufacture products to fill orders it has
received. The shop can be viewed as a set of physical equipment and human workers in
which a set of activities is coordinated by humans, hardware, and software to produce
parts indicated by the orders. A full description of a system which controls a shop must
include a description of the activities of the shop, the resources of a shop (including its
personnel, all physical equipment, related hardware, all software, the functionality of
hardware and software, and the relationship between the hardware and software), and
the relationship between the activities and the resources.

High-level activities which normally take place in a shop and are identified by the joint

architecture include:1

(1) Part Design—the creation of the designs for parts, associated fixtures and
jigs.2

(2) Planning—the planning required for the production of parts including
process planning, production management planning, production planning,
and real-time compensation of normal process variation.

(3) Control—the performance of manufacturing tasks.

(4) Order Entry—the entry of external instructions which direct the shop as to
what items to make, how many of each item to make, and when the items
must be ready for the customer.

(5) Configuration Management—the identification and control of shop resources
and capabilities.

(6) Material Handling—the routing and delivery of material throughout the
shop.

1. Additional systems (such as billing, personnel management, materials ordering, etc.) may of course, be
part of a manufacturing system, but these have not been considered in the formulation of the architecture.
2. Note that the architecture uses designs but does not at present address the process of producing designs.

Reference Architecture Interim Report

9

The joint architecture uses the following types of information:

(1) Part Designs.
The joint architecture will use models for the specification of product design
generated by the International Standards Organization Technical Committee
184, Subcommittee 4 (ISO TC184/SC4)[ISO1].

(2) Plans.
The process plan model (ALPS) which provides a structure for the
representation of plans for part production (including schedules), will be used
by higher-level controllers [Catron], [Ray2]. State table representations for
plans will be used by other controllers [Barbera], [Quintero].

(3) Shop Orders.
The order model developed by the MSI project serves as a starting point
[Barkmeyer].

(4) Resource Descriptions.
The MSI architecture provides a high-level categorization of shop resources
both physical and logical. This includes material handling resources. A
framework for description of the status of resources is included [Barkmeyer],
[Ray1].

(5) Configuration Descriptions.
The MSI architecture provides a description of the relationships between
hardware, software, and communications entities in the shop and their status.
This model must be revised to include communications methods
[Barkmeyer], [Ray1]. Communications entities and methods in the joint
architecture may differ from those of MSI.

(6) Description of Relationships.
The Integrated Production Planning Information Model shows the
relationships among product design, shop resources, plans, shop
configuration, and shop status [Barkmeyer], [Ray1].

To determine the relationship between activities and resources, an analysis is
performed which involves decomposition of the tasks commonly performed by the
shop. Based on the task decompositions, determination of the appropriate number of
levels of control is made. The RCS and MSI architectures give (compatible) guidelines
for performing this analysis which will be used by the joint architecture [Albus1],
[Senehi1]. Substantial analyses of information required at specific control levels for
specific classes of applications have been performed in RSD. The joint architecture will
formalize the results of these analyses and include them, modified as necessary.
Examples are found in [Fiala] and [Wavering].

Reference Architecture Interim Report

10

3.2.3.2 Operation of a Manufacturing Shop

The goal of a shop is to manufacture products according to orders it has received. To
achieve this goal, individual pieces of equipment must perform activities which carry
out manufacturing tasks, and activities of individual pieces of equipment must be
coordinated. A control architecture for the shop must provide for both individual
activity and coordination.

The natural language functional model of the operation of a shop as developed in the
MSI architecture provides mechanisms for integrating the tasks of individual
controllers so that the collection of all the tasks achieves the shop’s goal [Senehi2]. The
mechanisms proposed are based upon a model of the shop operation. This model of
shop operations is appropriate for the high-level control of the shop and is adopted by
the joint architecture.

Briefly, the high-level operational model may be stated as follows. A shop receives an
order for a specific number of a given product specified by a design. For each design, a
process plan gives detailed instructions on how to manufacture the product, using
classes of resources. When an order is received for making a number of a product, an
appropriate process plan is retrieved or generated, and the order is broken into batches
for manufacturing. For each batch, the specific resources for product production are
selected and material handling steps are inserted. This planning is termed production
management planning, and the result is a production managed plan. Finally, the
production managed plan is scheduled, resources allocated, and material handling plans
finalized. The end result of performing these operations is a production plan which
contains all necessary information for making the product. When the scheduled time to
start manufacturing the batch arrives, the controllers in the shop interpret the production
plan and perform the work to manufacture the product.

3.2.3.3 Controllers in a Manufacturing Shop

The MSI architecture provides a specification for a controller which is integrated into
the manufacturing environment, the generic controller [Wallace]. The joint architecture
includes controllers of a similar sort in the upper hierarchical levels of control, where
resource allocation is required and operation in hard real time is not.

The high-level model of control is not appropriate for situations in which control of
some equipment and workcells in the shop is subject to stringent real-time response or
speed requirements and in which sensory processing is required. For controllers which
have these requirements, the RCS model of controller operation is appropriate and is
adopted by the joint architecture. Briefly, this model may be stated as follows. Control
systems are expected to have mechanisms for sensory input so that changes in the
environment can be detected. The control system is constantly monitoring its sensory
input to determine when events have occurred in the environment that it must react to.
Once raw sensor data has been processed into abstract information about the condition
of the environment, the control system makes decisions about what actions should be

Reference Architecture Interim Report

11

taken and plans reactively for the events it perceives. The execution of plans produces
the external actions needed to cope with the environmental changes. An RCS controller
continuously performs a sense-decide-act cycle [Albus2].

A new operational model is needed for the level of control bridging the high and low
levels of control. Section 3.2.4.2.4 describes such a model.

The joint architecture does not specify at what hierarchical level the transition between
controller types should occur. In a discrete parts shop with a regularly changing mix of
parts to produce, with choices to make about which part is made on which machine, and
with non-trivial scheduling — our view of a typical discrete parts shop — it is
anticipated that at least one or two hierarchical levels of control will require MSI-like
controllers. In less complex discrete part shops and in other domains to which the joint
architecture may apply, it may be feasible to use only RCS-like controllers. For this to
work, the RCS-like controllers must be able to accept orders and update and accept
other information required for high-level shop management.

3.2.4 Architectural Specification

Key aspects of the shop model are shop information, control, and communications.
How the joint architecture handles each of these is discussed in the following sections.
The discussion assumes a knowledge of the MSI and RCS architectures.

3.2.4.1 Shop Information

Implementations of the architecture are expected to provide for the storage and access
of the data specified in the information models adopted by the joint architecture. As
discussed in Section 3.2.3.3, these include part descriptions, shop orders, resource
descriptions with resource status, configuration descriptions, and plans. Plans will be
discussed in depth in Section 3.2.4.2.1.

Shared information is stored in a known location (e.g., a memory location, database,
file, variable), and components (of an implementation) may be given access (e.g., read,
write, no access) to the information as required. Components which have access to the
same information need not be known to each other and need not acknowledge any
access or change of the information by any other component, except to maintain the
integrity of the information.

At this point in the definition of the joint architecture, the decision as to which
information gets stored in which type of storage (e.g., memory location, database, file,
variable) is implementation-dependent. Factors affecting this decision are physical
distribution of the components of the implementation, available communications
mechanisms, response requirements on components, and available hardware and
software.

Reference Architecture Interim Report

12

3.2.4.2 Levels of Control

As previously indicated, the joint architecture is a hierarchical control architecture. There
must be a single shop (top) level of control characterized by the ability to input shop orders
for parts. Beneath this top level, appropriate levels of control for an implementation can be
determined by using guidelines from either MSI or RCS.

At the highest level of control, the joint architecture provides for the coordination of
manufacturing tasks by executing the tasks according to a schedule. The schedule is
conveyed to controllers at each level of control through the parsing of a planning language
with constructs for specifying tasks and the coordination of these tasks. In this scheme, the
type and method of coordination allowed is determined by the planning language.

The joint architecture will adapt the ALPS language [Catron], [Ray2] for use at high levels
of control. This represents a specialization of the MSI architecture, which requires a language
with the capabilities of the ALPS language, but not necessarily ALPS. The capabilities of
ALPS are discussed in Section 3.2.4.2.1, and the controller functionality required to support
them is discussed in Section 3.2.4.2.4. To support the capabilities of ALPS, there are
functional requirements upon controllers not only at the high control levels, but also at the
lower ones.

For each level of control, there is a plan. The hierarchical trees of plans required for the
operation of the shop may be either generated in real time, or retrieved from a database.
While a real-time planning system is not currently available, there is nothing in the
architecture which requires plans to exist prior to their execution.

Additional flexibility to deal with scheduling variations and errors in the shop is provided by
a suite of messages between planners and controllers in the control hierarchy [Wallace]. In
this document, we will refer to this set of messages as the Schedule Negotiation Message
Suite, and the associated protocol as the Schedule Negotiation Protocol. The joint
architecture will adopt this specification for high levels of control; not all controllers are
required to be able to participate in this message exchange. The protocol needs to be tested
extensively. In particular, the specification must be enhanced to eliminate the possibility of
deadlocks.

The degree of automated error recovery of the shop will be determined by the level at which
controllers are capable of supporting this message exchange. The issue of requirements to
participate in this message exchange is discussed in Section 3.2.4.2.4.

3.2.4.2.1 ALPS Language

The ALPS process plan language uses a directed graph structure to represent plans for part
manufacture. It relies upon information about factory resources and capabilities, a shop-wide
clock, and externally-defined task definitions being available. All of these items are to be
specified in the information models of the joint architecture.

Each node in an ALPS plan represents an activity which must be performed. The activity to
be performed may be a manufacturing task or a related task, such as retrieving information,
making judgements using information, performing timing functions, or handling material.

Reference Architecture Interim Report

13

An ALPS plan may contain branches which represent alternative sequences of activities
to be performed. The plan specifies how many branches (of those which follow the
node at which a decision is to be made) may be selected and whether these paths may
be executed sequentially or concurrently. The decision as to which branch(es) should
be chosen is based upon external information of the types mentioned in the previous
paragraphs. A controller parsing an ALPS plan must therefore be able to traverse this
complex graph and must be able to retrieve information from the external source
specified.

In an ALPS plan, a node which represents a manufacturing task may either refer to a
single primitive task, or may refer to another plan (which may or may not be an ALPS
plan). Typically, this plan would be a plan of a subordinate controller. It is not required
for the superior to know the form or location of the subordinate’s plan.

The ALPS language supports exclusive and non-exclusive resource allocation. To take
advantage of this feature, there must be a place in which to store the status of resources
referred to in the plan which is accessible to other controllers that may use this resource,
and the controller must be able to update these data location(s).

The ALPS language supports several synchronization mechanisms. These are:

(1) Signal and Wait for an Event.
Supporting this feature requires that a controller be able to set and to detect a
signal that an event has taken place. The controller must be able to idle,
waiting for the event to occur. The associated integrated planning model
describes the information structure of these events.

(2) Wait for a Lock.
The controller must be able to wait for a lock to be set. It must also be able to
access a lock object in the implementation of ALPS.

(3) Delay for a Specified Time Interval.
The controller must be able to idle and to detect when the specified duration
of time has elapsed.

(4) Delay Until a Specified Date and Time.
The controller must be able to idle and to detect when the specified time has
arrived.

ALPS nodes and plans have states. A plan node may be changed any time until the node
is uploaded from where it is stored and converted by a controller into a task to be
executed. The use of states prevents corruption of the plan by the different programs
which may be updating it. The state transition diagrams may be found in [Wallace].

In addition, ALPS plans can have input and output parameters. In some
implementations of ALPS, this feature has been used to provide a mechanism for
transferring the names of semaphores and locks. An implementation must address the
issue of how to pass parameters.

Reference Architecture Interim Report

14

3.2.4.2.2 State Table Plans

At hierarchical levels using Real-Time Control Units, plans may be state tables — as
described in Section 4 of [Quintero], for example. A plan being executed (or the
controller executing the plan) is always in one of a set of known possible states. The
plan is executed cyclically. In each cycle, a set of conditions and the state are tested.
For each set of possible conditions and states, the plan specifies a state to enter for the
next cycle (which may be the same as the current state) and a set of jobs to carry out
during the current cycle.

3.2.4.2.3 Schedule Negotiation Protocol

The Schedule Negotiation Protocol is a series of message exchanges between the
planner and controller architectural units in the MSI architecture. It provides for
recovery from scheduling problems and detection of anomalies in the operation of the
shop. The current specification of the messages presupposes that control units have the
following five (logical) interfaces:

(1) Planning to Planner Interface—which governs interactions of superior and
subordinate planners concerning the selection, generation, and scheduling of
process, production managed, and production plans.

(2) Controller Interface—which governs interactions of superior and subordinate
controllers concerning task execution.

(3) Guardian to Planner Interface—which governs how an intelligent agent may
interact with the planner.

(4) Guardian to Controller Interface—which governs how an intelligent agent
may interact with the controller.

(5) Planner to Controller Interface—which governs how the planner and the
controller may interact in both ordinary and error situations.

The current Schedule Negotiation Protocol needs further testing and development. In
addition to testing for potential deadlocks, some provision for continuing when a timely
response from a control unit fails to come should be made and timing information for
tasks may need to be made more explicit than is currently possible with either ALPS or
the Schedule Negotiation Protocol.

For a control unit to participate fully in the Schedule Negotiation Protocol, the control
unit must be able to:

(1) detect when a subordinate has failed,

(2) detect when a subordinate’s task is late,

(3) abort task execution,

(4) pause task execution and retain information to restart later,

(5) restart task execution from a point at which it was paused,

(6) halt task execution, discard all information related to the task, and become
ready to start another task,

Reference Architecture Interim Report

15

(7) halt task execution and regard the task as complete, and

(8) estimate task completion time and alter task execution based on new
parameters (e.g., new start, completion times).

The inability of either the production planner or the controller to perform any of the
indicated functions does not prevent a production planner or controller from being
integrated into a control system for a shop using the architecture, but it does weaken the
recovery ability of the system.

3.2.4.2.4 Types of Controllers

It would be desirable if all controllers in a control system could be of the same type.
This would make the architecture simpler to understand and implement. The
requirements on controllers at opposite ends of a control hierarchy, however, are very
different. In the upper levels of many systems, it is essential to be able to perform
schedule negotiation, plan parsing, resource allocation, and time-consuming remote
data access operations. At the lower levels of many systems, it is essential to be able to
react to events in a few milliseconds, while plan parsing, resource allocation,
scheduling, and remote data access are irrelevant. We feel intuitively that it will be
more effective to include different types of controllers in the architecture for the high
and low levels of a controller hierarchy. Our analysis of the consequences of having two
types of controllers with these different capabilities indicates that it will probably be
necessary to have a third type to mediate between them.

Thus, the joint architecture has three basic types of controllers: Scheduled Control
Units (SCU), Real-Time Control Units (RTCU), and Transition Control Units (TCU).
Scheduled Control Units, patterned after the MSI generic controller, are to be used at
high levels of control where real-time response is not required, or where there is the
need to manage the allocation of resources among controllers which do not have the
same immediate superior. Real-Time Control Units are to be used when real-time
control is required or when sensory input must be processed. Transition Control Units
are to be used as superiors of RTCUs and subordinates of SCUs. The job of TCUs is to
bridge between the two operational paradigms discussed in Section 3.2.3.3. A TCU is
not required if the RTCU can parse ALPS plans and participate in the Schedule

Negotiation Protocol3. Each of these types of controllers is discussed in the following
sections.

When resource allocation is not a problem and real-time operation is not forestalled by
potentially untimely database or communications operations, most or all of the control
hierarchy may be composed of RTCUs. And when real-time demands are modest but
scheduling is required throughout the control system, an entire hierarchy might be
composed of SCUs. Figure 1 shows some sample permitted configurations for
controllers in the joint architecture. If further analysis shows that an architecture can
perform well in most situations with only one type of controller, we will drop the
multiple types.

3. Or in the subset of the ALPS plans and Schedule Negotiation Protocol which the implementation requires.

Reference Architecture Interim Report

16

SCU

1. This diagram illustrates a hierarchy with an SCU-type controller at the top. The hierarchy
has an SCU which supervises both a TCU and an RTCU. On the other side of the hierarchy,
there is a hierarchy consisting solely of RTCUs.

2. This diagram illustrates a hierarchy consisting of entirely RTCUs. This may be appropriate
in situations where the control system reacts primarily on sensory data.

SCU

RTCURTCURTCU

RTCU

RTCURTCU

TCU

RTCU RTCU

RTCU

RTCU RTCU

RTCURTCURTCURTCU

SCU

SCU

RTCURTCU

RTCU

RTCU

RTCU

TCU

RTCU RTCU

SCU TCU

SCU

3. TCUs can occur at any level or not at all, depending on the needs of the application. In
cases where an SCU directly supervises an RTCU, the RTCU must perform the functions
expected of a TCU.

Figure 1. Sample Permitted Configurations
for the Joint Architecture

Reference Architecture Interim Report

17

Scheduled Control Units

Scheduled Control Units (SCU) are a specialization of the MSI control entity
[Wallace]. We will assume that the SCU contains both a controller (which executes
tasks) and a planner (which schedules the controller). Although MSI allows other
configurations of planners and controllers, it is not immediately clear whether the joint
architecture needs or can use this flexibility. In the configuration chosen for the SCU,
conformance to the planner-to-controller portion of MSI’s schedule negotiation
message suite is optional.

An SCU parses and executes ALPS plans and provides scheduling and rescheduling for
ALPS plans when required. An SCU supports the schedule negotiation message suite.

An SCU has a subset of the five interfaces required by the MSI architecture.

Of the interfaces listed in Section 3.2.4.2.3, all SCUs must have interfaces 1-4. The
specification for interface 5 may be used if desired.

Processing in the shop is initiated when the Shop level control unit receives an order for
parts to be produced. It is expected the Shop level control unit will usually be an SCU.
At this point, the method by which an SCU is notified that an order exists and the
method by which an appropriate tree of ALPS plans is retrieved or generated, are not
specified by the architecture.

For SCUs that are not at the shop level, processing is initiated when an appropriate
message is received from the superior controller. This message contains a pointer to the
plan to be executed and the input parameters for the plan.

SCUs use the interrupt-driven control paradigm. The rationale for this is that, since
there is so much information which may affect the control unit, it is not practical to poll
every bit of information. Instead, the control unit is notified when something changes
which may make a difference. Changes which produce events are such things as: a
change in the status of a resource affecting the control unit, receipt of a message from
the subordinate or superior, and changes in semaphores or locks. The disadvantage of
this approach is that the code for the SCU is complex.

Real-time Control Units

The Real-time Control Unit (RTCU) is a specialization of the RCS controller. As
indicated in the Feasibility Report, [Kramer] there are several variations upon the basic
RCS architecture [Albus1], [Albus2], [Albus3], [Barbera], [Herman], [Quintero].
While the joint architecture will attempt to permit as many of these variations as
possible, choices may be made to obtain a working architecture.

As previously stated in Section 3.2.3.2, an RTCU operates on sensory information from
the environment, processing it into an internal representation, determining appropriate
actions, and performing them (with actuators). Following the RCS architecture, the
internal representation of selected features of the environment and the state of the RCS
system is termed the world model of the system. The world modeling architectural unit

Reference Architecture Interim Report

18

governs interactions with the world model. In addition to world modeling and the associated
world model, an RTCU includes three other architectural units. The four internal architectural
units of an RTCU are:

(1) Sensory Processing (SP)—which processes sensory information for insertion into
the world model.

(2) World Modeling (WM)—which controls access to the world model.

(3) Value Judgment (VJ)—which determines the course of action to take in responding
to the environment.

(4) Behavior Generation (BG)—which generates the actions of the system.

 Behavior generation is further decomposed into three parts:

(1) Job Assignment (JA)—which decomposes tasks into subtasks and assigns them to
subordinates.

(2) Planning (PL)—which orders the subtasks into a temporal sequence.

(3) Execution (EX)—which performs the designated subtasks.

A parallel exists between the SCU’s planner and controller, and an RTCU’s planning and
execution.

A variety of plan representations are used by RTCU’s ranging from state tables [Barbera],
[Quintero] to directed graphs having some of the same features as ALPS. A command and
status interface exists between BG in adjacent control levels. This command and status
interface is not standardized by the architecture, but in all cases task execution can be initiated
by naming a work element and passing appropriate parameters.

RTCUs can operate using either a cyclic execution control paradigm or an interrupt-driven
control paradigm. Neither paradigm poses a problem for integration, provided that a TCU is an
immediate superior.

In an RTCU, the amount of information that is to be processed or exported during control unit
operation must be limited to what can be handled quickly enough to meet the real-time
requirements of the RTCU. It is anticipated that real-time requirements of many applications
will preclude having an RTCU handle information not available through the processor on
which the RTCU is running or through another processor on the same backplane.

To integrate with the shop, it is necessary to export to the supervising TCU the status of the
physical equipment which the RTCU is operating and the status of tasks which it is performing.
It is also desirable that the RTCU have a notion of a system wide clock so that it can report on
task status and timing. Obtaining equipment status and system clock time may be so time-
consuming that an RTCU cannot do it and meet its real-time requirements. If an RTCU cannot
provide these, the supervising TCU must supply this information. Recovery from an
unforeseen error affecting controllers outside the part of the control hierarchy subordinate to
the RTCU experiencing the error cannot be performed for control units at a lower level of
control than that RTCU.

Reference Architecture Interim Report

19

RTCUs have the ability to provide the following services to aid in error detection and
recovery:

(1) detect when a subordinate has failed,

(2) abort task execution, and

(3) halt task execution and discard all information related to the task.

The other functions required for full participation in the error-recovery of the shop
listed in Section 3.2.4.2.3 must be provided by the supervising TCU.

Transition Control Unit

Transition Control Units are responsible for bridging between SCUs and RTCUs. The
exact functions which the TCU performs depends upon the capabilities of the RTCU to
which it is interfacing. Therefore, it is unclear how generic a TCU can be. While it is
desirable that a TCU be generic, it is more important that it is possible to build a TCU
with the desired capabilities. With this in mind, we look at the functions required of a
TCU and mechanics for building such a TCU.

A TCU is required to be able to parse ALPS plans and participate fully in the Schedule
Negotiation Protocol. It is unclear if it is desirable for a TCU to control equipment itself
directly. As this makes the functional description more complex, we will assume that it
cannot. If the RTCU which it supervises is not capable of performing the functions
requested, the TCU is responsible for translating the message or ALPS plan node,
substituting a related message or node or simulating the required action, instead of
passing the function down. Additionally, a TCU must ensure that appropriate
information about the RTCU is available to allow the TCU to participate in the
execution of the ALPS plan and the Schedule Negotiation Protocol. We will discuss
each of these in turn.

Participation in ALPS Plan Execution

While this discussion does not assume a detailed knowledge of each of the types of
nodes in ALPS, it is helpful to know that ALPS nodes fall into several general types.
These are:

(1) Task Nodes—which contain a description of work to be done.

(2) Information Nodes—which contain a description of information to be
retrieved for use by the plan.

(3) Navigational Nodes—which mark the start and end of a plan and allow
choices of which plan branches are executed.

(4) Synchronization Nodes—which provide for synchronizing paths in a single
plan or paths in plans for controllers in separate parts of a hierarchy (see
Section 3.2.4.2.1).

(5) Resource Nodes—which describe resources which can be used.

A more detailed discussion of the nodes may be found in [Catron], [Ray], [Barkmeyer].

Reference Architecture Interim Report

20

Each type of node poses its own unique challenges to the TCU. We will start with
discussing task nodes. Like the SCU, a TCU needs to have the ability to reference a
system-wide clock to see whether it is on schedule and to accommodate ALPS nodes
which require a notion of external time. Designing such a clock for a variety of
platforms is a great technical challenge. This is eased somewhat because the clock is
explicitly not to be used for sequencing messages. Therefore, the degree of accuracy
can be set at an acceptable level. Although it is desirable that a RTCU can report its own
time, it may be necessary for the TCU to keep track of the time for the subordinate
RTCU.

When an ALPS node indicates that it should start at a particular time, the TCU will give

the command at the correct time4. It will use the available time to update the status of
the node and the resources associated with its subordinate and to determine whether a
task is on-time, etc. This will limit the ability of the hierarchy to recover from errors to
the level of the highest RTCU only, which may not be adequate, but is the best that can
be done in this arrangement without a serious violation of the hierarchical control
principle that the superior does not know the internals of the subordinate controller.

The form of mediation between the ALPS plan which the TCU is given and the plan(s)
which the subordinate RTCU expects is dependent on the type of plans which the
RTCU expects. In the simplest case, the RTCU can perform only one task, generated
by one plan; then the passing of the plan is moot. If the RTCU has the ability to choose
the plan which it executes dynamically, the name of the plan can be passed down in an
‘execute’ command with the other plan parameters. If an RTCU uses plans which are
state tables, the RTCU will be able to recover only from those errors for which error
states and recovery actions have been included in plans.

Part of the responsibility of the TCU is to know which parameters are valid for the
subordinate and which are not. For example, a subordinate might need to know the feed
and speed going with a milling command, but a subordinate might not know how to
handle a request for information from a database, and the TCU would need to place an
appropriate form of the retrieved data into the form and the location that the RTCU
requires.

Interactions of a TCU with an RTCU may require the TCU to have detailed knowledge
of the internals of the RTCU. They might even require certain hardware
accommodations; if the RTCU is on a personal computer and uses shared memory to
store its world model, the TCU might need to run on a (different) personal computer
(pc) processor which had access to the same pc memory board as well. One presumes
that such arrangements need only be made with the lowest levels of control, where the
cycle time is fast and the response requirements are great.

4. Note that this means that the RTCU supervised by a TCU will not be able to queue commands at its level,
although it may allow its subordinates to queue commands.

Reference Architecture Interim Report

21

A more generic TCU might be achieved by determining which types of information
about the RTCU are normally needed (e.g. parameters, world model storage locations,
types, names, and parameters of specific plans, execution times of plans with various
parameter values, stopping, starting, resuming, and replanning abilities of the RTCU,
and a description of the resources controlled by the RTCU and their status, resource
consumption). An RTCU could modify its execution of the plan based upon sensory
input. In this case, it would be desirable for the RTCU to have some way of exporting
its new expected ending date and time to the TCU.

Handling nodes for processing information and navigation requires the TCU to access
information about both the Shop, itself, and the resources which the subordinate RTCU
manages, and to make the appropriate choices. This is a service for the (hard) real-time
controller which cannot handle queries and information processing of indeterminate
duration.

Synchronization nodes pose more of a challenge for the TCU. Since the RTCU is not
expected to have the same notions of semaphores and locks as ALPS, the TCU must
handle this. This means that, like resources, plans can only be synchronized at the level
of the RTCU immediately below the TCU. Whether this will be enough
synchronization capability to permit the system to function fully must be investigated
by looking at the application of the architecture to a number of specific cases. If this
does not prove sufficient, it may be possible to allow an exception to strict hierarchical
control, whereby the superior could know more about the plans and resources of some
part of the RTCU hierarchy below the immediate subordinate.

Finally, since RTCUs only use the concept of exclusive resource allocation, the TCU
must simulate all other types of resource allocation by updating the appropriate
resource description for the overall shop model. By virtue of the plans, the proper
resource allocations will be maintained.

Participation in the Schedule Negotiation Protocol

As previously indicated, RTCUs already support some of the functionality required for
participation in the Schedule Negotiation Protocol. The other functionalities can be
supported to various degrees based on the capabilities of the controller. In some cases,
the functionality cannot be supported by the RTCU which the TCU supervises. In these
cases, the TCU must determine an acceptable alternative command to pass down to the
RTCU to support the following functions:

(1) Detect when a subordinate’s task is late.
If the RTCU can detect when its subordinate’s task is late, it may pass this
information up to the TCU, which can negotiate appropriately.
If the RTCU cannot detect when its subordinate’s task is late, the TCU must
assume that the task is on time, until the RTCU it supervises is late.

(2) Estimate task completion time and alter task execution based on new
parameters (e.g., new start, completion times).
If the RTCU can detect that the task completion time has changed from the
standard for that plan, it may pass this information up to the TCU, which can

Reference Architecture Interim Report

22

negotiate appropriately.
If the RTCU cannot detect when the task completion time has changed from
the standard for that plan, the recovery mechanism will not be able to operate
until the RTCU is late.

(3) Halt task execution and retain information to restart later.
If the TCU is halted and instructed to save all information necessary to
resume the task later, and if the RTCU it supervises can save its information,
the RTCU simply waits for the TCU to resume execution.
If the RTCU is not capable of performing this, the TCU can either save all the
information for the subordinate controller and its place in the plan, or it can
issue a response to the superior controller that this task has not been
successful. The latter option will produce a halt or an abort.

(4) Restart task execution from the previous point,
This depends upon the TCU having a notion of which of the RTCU’s tasks
can be resumed safely, which can be repeated safely and which cannot.
If a task can be repeated, the TCU can simulate the correct behavior by re-
issuing the original task.
If the RTCU has the notion of restarting a task, the TCU can then tell the
RTCU to restart.
Otherwise, a negative response for the request will be sent, resulting in the
task being halted or aborted.

(5) Halt task execution and regard the task as complete.
Given that most RTCUs do not keep a record of previously performed tasks,
this requirement is merely a requirement for the TCU to update the ALPS
plan with the ‘complete’ state.

A re-thinking of the Schedule Negotiation Protocol might produce a more satisfactory
solution to 3 and 4.

3.2.4.2.5 Controller Interfaces

When the control system is in operation, controllers of all types need interfaces for a
human or other intelligent agent to provide monitoring and intervention. Exact
requirements for the joint architecture have yet to be determined, but the current
practices in the MSI and RCS architectures can be used as input.

MSI controllers (on which SCUs are based), have an interface called the guardian
which provides external support for external monitoring and intervention. It is designed
to be used primarily for user intervention when automatic error recovery cannot be
done. A guardian interface may be either passive, which is used for monitoring only, or
active, which can also provide intervention. A controller can have any number of
passive guardian interfaces, but only one active guardian interface. A guardian interface
has specific messages which may be sent to and from the controller. Details are given
in the Schedule Negotiation Protocol (see Section 3.2.4.2.3). The intelligent user is
permitted to alter quite a few aspects of task execution, but may alter only limited
aspects of task planning.

Reference Architecture Interim Report

23

RCS controllers (on which RTCUs are based), have a user interface for each controller
the details of which are left to the implementor. Frequently, the monitoring interface
can be used to track data exchange between controllers and alter virtually any aspect of
task planning or execution.

3.2.4.3 Communications

For the levels of the architecture which participate in the Schedule Negotiation
Protocol, communication channels for command and status messages must use a point
to point, guaranteed message communication paradigm. Such a protocol is provided by
the Manufacturing Automation Protocol (MAP) [MAP1], [MAP2], with the
Manufacturing Messaging Specification (MMS) application layer [ISO2]. However,
the use of Ethernet/TCP/IP instead of the Token Bus (as required by MAP)
[Tanenbaum] has been more workable in our experience in the past and is strongly
encouraged in future implementations of the joint architecture. The requirement of
point to point communication for command and status may be softened to allow other
forms of communication (such as communication via a memory board in a backplane
shared by the processors on which the command and status senders are running)
provided that the communication method is used to send command and status messages
from one specified party to another specified party.

For control units in the architecture which use ALPS plans, some type of
communications mechanism which permits data to be read by multiple readers who are
not known in advance must be used to implement locks and other synchronization
structures. NIST’s Common Memory [Libes], [Rybczynski] provides such a
mechanism, as do databases.

For other required communications, standard communication protocols such as
Ethernet/TCP/IP or RS-232 [EIA] can be used. For processes running in the same
computer, shared memory may be available, as may a common bus.

Reference Architecture Interim Report

24

3.3 Framework for the Joint Architecture and Description via the Framework

This section gives an overview of the framework of the joint architecture and a tier-by-
tier description of the architecture.

An incomplete model of the joint architecture written in the EXPRESS language is
included in this report as Appendix B. The EXPRESS model also takes a tier-by-tier
view. Sections 3.3.4 through 3.3.6 of the text are natural language equivalents of the
major sections of the EXPRESS model. Reading and understanding these sections
requires no knowledge of EXPRESS. Large portions of the text in this section are
identical to comments in the EXPRESS model. If there is any deviation of the English
language description of the EXPRESS model from the EXPRESS model description
here, it is unintentional, and the EXPRESS model should be regarded as definitive.

3.3.1 Textual Description Methods

Starting with Section 3.3.4, the text in this section consistently uses the same
constructions for the same purposes. The motivation for this is to provide as
unambiguous a description as possible of what is intended.

The textual description of the architecture presented here uses the same approach as
many object-oriented languages, including EXPRESS. The model is comprised largely
a number of class definitions. Each class has a name, may be derived from another
class, may have other classes derived from it, and may have a number of attributes. The
data type of each attribute is either a universally recognized type (such as an integer) or
is one of the other classes defined in the model.

If class B is derived from class A, class B will have all the attributes that A has, and it
may have additional attributes A does not have. Also, if class B is derived from class
A, the data type of an attribute of B may be constrained from the data type of the same
attribute of A. For example, if the data type of the “favorite_food” attribute of A is
“meat”, the data type of the “favorite_food” attribute of B might be constrained to be
“beef”. Thirdly, if class B is derived from class A, we will say that “B is a kind of A”,
or “an A may be a B”. We will not use “kind of” or “may be a” in any other sense in
this section. If class B is derived from class A and class C is derived from class B, it is
implicit that C is a kind of A. We could say that explicitly, but we will not do so in this
section, to avoid adding confusion.

Where class A has attribute B, which must be of type C, we say, “C serves as the B of
A”.

Except at the first level of subsections of this section (which have numbers like 3.3.1 or
3.3.2), the remaining subsections of this section are organized hierarchically. Where B
is a kind of A, a description of B will either be given as a subsection of the description
of A or as part of the same subsection that describes A.

Two varieties of classes of are needed to define the joint architecture: those that
describe generic components and those that describe which specific sorts of the generic
components are put together to form the architecture. An analogy is that in specifying

Reference Architecture Interim Report

25

the designs of pieces of furniture (whose generic components include wood), it is
necessary to have terminology for identifying different types of wood (such as “pine”,
“oak”, and “cherry”) in order to say which specific type of wood is to be used for a
given piece of furniture. In several cases in the joint architecture, a generic component
is defined as the singular form of a term (such as “architectural_specification”) while
use of the component is identified by the plural form of the same term (such as
“architectural_specifications”). We have not tried to segregate the two varieties of
classes in the organization of this section.

Terms defined in the EXPRESS model by using underscores to convert a phrase into a
single word are written using underscores in this section, rather than with spaces. Thus,
for example, “control architecture” becomes “control_architecture”. Other typographic
devices for clarifying meaning, such as using different fonts, are not used here to avoid
taxing the reader’s eyes, but are used in Appendix B.

3.3.2 Framework Overview

As noted earlier, the joint architecture conforms to the conceptual framework presented
in Section 2.1. That is, it has explicit tiers_of_architectural_definition, and the
elements_ of_architectural_definition are defined at each tier.

The joint architecture has five tiers. The lowest two or three tiers are intended to be
defined differently for different applications and implementations, with little or nothing
from those tiers specified beforehand, provided, of course, that they conform to all the
higher tiers of the architecture. This section describes only the top two tiers of the joint
architecture. Appendix B includes all five tiers, but the lowest three tiers are empty
shells.

In addition to the five tiers of the joint architecture, many generic control architecture
concepts are needed as the foundation for building the tiers. These concepts are
described in Section 3.3.4 and may be thought of as comprising tier 0 of the joint
architecture. They are very general, however, and could equally well serve as the
foundation for radically different architectures.

3.3.3 Model Overview

Following the framework, the model of the architecture is composed of an EXPRESS
schema for the framework itself (the generic control architecture) and five separate
EXPRESS schemas, one for each tier of architectural definition. The overall form of
the model is shown in Figure 2.

Reference Architecture Interim Report

26

The generic control architecture model has several important classes: control_
architecture, tier_of_architectural_definition, element_of_architectural_definition, and
architectural_unit. These classes correspond directly to the concepts in Section 2.1.2
and Section 2.1.3. The correspondence between the EXPRESS model and the
operational description of the architecture in Section 3.2 is less immediate. The
following sections discuss highlights of the correspondence to give the reader an
overall feel for how the two descriptions relate.

schema: Generic Control Architecture

schema: Tier 1 Hierarchical Control

Figure 2. EXPRESS Model of Joint Architecture - Overall Form

scope purpose analyses architectural
specifications

methodology
for arch. dev.

conformance
criteria

schema: Tier 2 Discrete Parts
scope purpose analyses architectural

specifications
methodology
for arch. dev.

conformance
criteria

schema: Tier 3
scope purpose analyses architectural

specifications
methodology
for arch. dev.

conformance
criteria

schema: Tier 4
scope purpose analyses architectural

specifications
methodology
for arch. dev.

conformance
criteria

schema: Tier 5
scope purpose analyses architectural

specifications
methodology
for arch. dev.

conformance
criteria

architectural
unit

element of archit.
definition

tier of archit.
definition

control
architecture

Reference Architecture Interim Report

27

The description of the architecture in Section 3.2.4 gives architectural_specifications.
These architectural_specifications consist of information_specifications,
communications_specifications, and functional_specifications, corresponding to key
aspects of the architectural_specifications listed in the previously referenced section.
We will discuss each of these specifications.

3.3.3.1 Information_Specifications

The information_specifications of the joint architecture discuss the storage mechanism
for data, the information access paradigm for the data and the semantics of the data
itself.

The physical storage location for a datum is of class data_store, which may be a
temporary or a permanent place for data storage. A data_store has an associated
data_store_manager which accesses the data_store.

A party which communicates with one or more other parties is an interactive_unit.
Interactive units communicate via an interaction specification. In the model, a non-
specific interaction specification is represented by the class
generic_interaction_specification. There are two fundamentally different types of
generic_interaction_specifications, direct_interaction_specification and
indirect_interaction_specification.

In an indirect_interaction_specification, a set of permitted_stored_data_units (which
consist of data_units) may be stored in one or more data_stores through the associated
data_store_managers. The indirect_interaction_specification specifies any number of
interactive_units which may read the data in the data_store and any number of
interactive_units which may write the data in the data_store. Conflict among the
interactive_units permitted either read_access, write_access or both is resolved
according to the access_scheme which is associated with the
indirect_interaction_specification.

In a direct_interaction_specification, the physical moving of bits from one
interactive_unit to another is accomplished via a communication_method. Data_units
are exchanged via messages with a message_content. The mode of interaction is given
by an interaction_protocol which specifies the two interacting parties (labelling them
first_party and second_party) and giving a set of message_protocols which may be used
for the communication. Note that since the model allows only two interacting parties,
direct communication is explicitly point-to-point.

In the case where one of the interacting parties is a data_store_manager, the data_store
manager controls the access to the data_store by the parties specified in an
data_interaction_setup, according to the rules set forth by a data_interaction_protocol.
In the interaction, data_messages are exchanged. Data messages can be either to or
from the data_store. Data_messages are part of a data_message_protocol. There is no
analog to this protocol description of architecture given in Section 3.2.4.3, where
communication via database or Common Memory is indirect.

Reference Architecture Interim Report

28

In the case where neither of the parties is a data_store_manager, the two
interactive_units specified in a functional_interactive_setup communicate by
exchanging functional_messages according to the rules set forth by a
functional_interaction_protocol. Functional_messages may be either command or
status messages and are part of a functional_message_protocol. The
functional_message_protocol specified in the joint architecture is the Schedule
Negotiation Protocol (SNP). The full details of the messages specified in the SNP is not
yet part of the model of the joint architecture, although it may appear at a lower tier_of_
architectural_definition.

The data represented in the joint architecture in the information models is not yet fully
represented in the EXPRESS model. Certain elements are stubbed out: for example,
plans (and derived types process, production, and schedule plans), resources, and
message information.

3.3.3.2 Communication_Specifications

As previously discussed, the EXPRESS model represents both indirect communication
via a database or other data storage location and direct communication via message
exchange. Both paradigms are supported by the architecture. The presently filled in
tiers of the architecture do not include a communications specification detailed enough
to discuss MS, RS-232 or other standards described in Section 3.2.4.3.

3.3.3.3 Functional_Specifications

The functional_specifications of the architecture are described by the subclasses and
relationships of system_activity. The primary activities of the system are planning and
control. Planning has the expected derived types process_planning,
production_management_planning, and schedule_planning. Parts of the EXPRESS
model having to do with planning and control are shown in Figure 3. It will be
necessary to add subtypes to “plan” for those plans which are used by RTCUs. Our
initial hope of using the “process_plan” subtype or the parent “plan” for RTCUs does
not seem workable.

Reference Architecture Interim Report

29

production_management_
planner

SELF\planner.output:
production_managed_plan

data_store_manager
managed_store: data_store

control_unit

functional_unit

architectural_unit

schedule_
planner

SELF\planner.output:
schedule

process_
planner

SELF\planner.output:
process_plan

interactive_unit

scheduled_control_unit

transition_control_unit

real_time_control_unit

planner
output: plan plan

process_plan

production_managed_plan
antecedent_process_plan:

process_plan

schedule
antecedent_managed_plan:
production_managed_plan

data_unit

Figure 3. Planning and Control
in EXPRESS Model of Joint Architecture

data_store

KEY
Each box defines an entity, including name and attributes, with data type of each attribute
bold = entity name
italic: roman = attribute name followed by data type of attribute

= pointer from attribute type to type definition
= connection from supertype above to subtype below
= connection to subtypes not shown

Reference Architecture Interim Report

30

The planning and control functions are performed by a special type of interactive_unit
called a functional_unit. Functional_units are specialized as control_units and planners.

There are three types of planners: process_planners,
production_management_planners, and schedule_planners which perform
process_planning, production_management_planning, and schedule_planning,
respectively. Planners produce plans: Process_planners produce process_plans;
production_management_planners produce production_managed_plans, and
schedule_planners produce schedules. Control units operate using plans of one of these
three sorts, although this fact is not reflected anywhere in the EXPRESS model.

Control_units perform control functions. A control_unit is part of a
superior_and_subordinate (complex). A control_unit has at most one superior in the
superior_and_subordinates and may have zero or more subordinates. A control_unit
may be either a scheduled_control_unit, real_time_control_unit, or a
transition_control_unit. The characteristics of these different types of control_units are
discussed in Section 3.2.4.2.4.

The handling of functional units should be re-examined because the current model does
not provide for building functional units from other functional units, and it is expected
that some mechanism for combining subunits will be required.

3.3.4 Generic_Control_Architecture

The “generic_control_architecture” is the most abstract level of the model of the joint
architecture. This section gives the many detailed definitions which are required to
specify unambiguously what is intended.

It should be noted that other models exist for some of these concepts —
communications and data, in particular. The intent of the model described here is to
specify those aspects of these concepts which are relevant to control systems. Further
study of existing models should be undertaken to determine if they are usable in the
context of control systems.

3.3.4.1 Control_Architecture

A control_architecture is not a kind of anything else and has attributes:
tiers_of_architectural_definition (which is an ordered list of tiers) and an
overall_methodology (which is a methodology_for_architectural_development). The
tiers are ordered by degree of abstraction, as described earlier. A control_architecture
may be a hierarchical_control_architecture (see Section 3.3.5). Other types of
architectures could be defined which are kinds of control_architecture.

A control_architecture does not serve as part of any other defined thing.

The overall_methodology is a methodology_for_architectural_development which is
applicable to the entire architecture, not just to a single tier. For example a general
approach, such as “define tiers from the bottom up” lies outside any one tier and applies
to the architecture as a whole.

Reference Architecture Interim Report

31

3.3.4.2 Tier_of_Architectural_Definition

A tier_of_architectural_definition is not a kind of anything else and has attributes:
tier_scope (a scope), tier_purpose (a purpose), tier_analyses (an analyses),
tier_architectural_specifications (an architectural_specifications), tier_methodology (a
methodology_for_architectural_development), and tier_conformance_criteria (a
conformance_criteria). The tier_methodology is a method of building lower or higher
tiers.

Tier_of_architectural_definition serves as one element in the list of tiers (of
architectural definition) of a control_architecture. The concept
tier_of_architectural_definition is the same one as that discussed in Section 2.1.3.

3.3.4.3 Element_of_Architectural_Definition

An element_of_architectural_definition is not a kind of anything else and may be a:
scope, purpose, analyses, architectural_specifications, methodology_for_
architectural_development, or conformance_criteria. Note that scope and purpose are
two separate items here.

An element_of_architectural_definition does not serve directly as part of any other
defined thing.

The elements_of_architectural_definition are the same as those discussed in Section
2.1.2. The EXPRESS definitions of elements_of_architectural_definition and the
relationships among them are shown in Figure 4.

Reference Architecture Interim Report

32

element_of_architectural_definition

architectural_specifications
communications_specifications: list of zero or more communication_specification

functional_specifications: list of zero or more functional_specification
hardware_specifications: list of zero or more hardware_specification

information_specifications: list of zero or more information_specification
language_specifications: list of zero or more language_specification

other_specifications: list of zero or more other_specification

purpose

analyses
information_analyses: set of zero or more information_analysis

functional_analyses: set of zero or more functional_analysis
dynamic_analyses: set of zero or more dynamic_analysis

other_analyses: set of zero or more other_analysis

scope

methodology_for_architectural_development

conformance_criteria
criteria: set of zero or more conformance_criterion

j_scope_one
restriction1:

scope_restriction

j_scope_two
restriction2:

scope_restriction

j_scope_three
restriction3:

scope_restriction

j_scope_four
restriction4:

scope_restriction

j_scope_five
restriction5:

scope_restriction

j_purpose_one
restriction1:

purpose_restriction

j_purpose_two
restriction2:

purpose_restriction

j_purpose_three
restriction3:

purpose_restriction

j_purpose_four
restriction4:

purpose_restriction

j_purpose_five
restriction5:

purpose_restriction

Figure 4. Elements of Architectural Definition
in EXPRESS Model of Joint Architecture

(see key on Figure 3)

Reference Architecture Interim Report

33

3.3.4.3.1 Scope

A scope is a kind of element_of_architectural_definition. A scope is the range of areas
to which an architecture is intended to be applied. It is expected that the scope of each
lower tier of a control_architecture will be defined as a kind of the scope of the
preceding tier, with an added attribute; the attribute will be a scope_restriction, which
may be unstructured text. The scope_restriction serves to further limit the scope which
was described in the preceding tier. A scope may be a j_scope_one; see Section 3.3.5.

A scope serves as the tier_scope of a tier_of_architectural_definition.

The initial scope for the joint architecture is given in Section 3.2.1, Section 3.3.5.1, and
Section 3.3.6.1.

3.3.4.3.2 Purpose

A purpose is a kind of element_of_architectural_definition. A purpose is a statement of
what the architecture is intended to help accomplish within the scope of that tier. It is
expected that the purpose of each lower tier of a control_architecture will be a defined
as a kind of the purpose of the preceding tier, with an added attribute; the attribute will
be a purpose_restriction, which may be unstructured text. The purpose_restriction
serves to further limit the purpose which was described in the preceding tier. A purpose
may be a j_purpose_one; see Section 3.3.5.

A purpose serves as the tier_purpose of a tier_of_architectural_definition.

The initial purpose for the joint architecture is given in Section 3.2.1 and Section
3.3.5.2.

3.3.4.3.3 Analyses

An analyses is a kind of element_of_architectural_definition. An analyses is a
collection of analyses that should be performed. An analyses has attributes:
information_analyses (which is a set of information_analysis), functional_analyses
(which is a set of functional_analysis), dynamic_analyses (which is a set of dynamic
analysis), and other_analyses (which is a set of other_analysis).

An analyses serves as the tier_analyses of a tier_of_architectural_definition.

The initial domain analyses for the joint architecture are given in Section 3.2.3.

3.3.4.3.4 Architectural_Specifications

An architectural_specifications is a kind of element_of_architectural_definition. An
architectural_specifications has attributes: communications_specifications (which is a
list of zero to many communications_specification), functional_specifications (which
is a list of zero to many functional_specification), hardware_specifications (which is a
list of zero to many hardware_specification), information_specifications (which is a list
of zero to many information_specification), language_specifications (which is a list of
zero to many language_specification), and other_specifications (which is a list of zero
to many other_specification). Of course, at least some of these elements must be non-
zero in order for the architecture to have any content.

Reference Architecture Interim Report

34

An architectural_specifications serves as the tier_architectural_specifications of a
tier_of_architectural_definition.

3.3.4.3.5 Methodology_for_Architectural_Development

A methodology_for_architectural_development is a kind of element_of_architectural_
definition. A methodology_for_architectural_development is a set of procedures for
applying an architecture.

A methodology_for_architectural_development serves as the overall_methodology of
a control_architecture and as the tier_methodology for a tier_of_architectural_
development.

3.3.4.3.6 Conformance_Criteria

A conformance_criteria is a kind of element_of_architectural_definition.
Conformance_criteria are criteria which specify how an architectural_unit at one tier of
an architecture conforms to the architectural_specifications of a higher tier, or how a
process for building part of an architecture conforms to the development methodology
given by the architecture for building that part. A conformance_criteria has one
attribute: criteria (which is a set of conformance_criterion).

A conformance_criteria serves as the tier_conformance_criteria of a
tier_of_architectural_definition.

3.3.4.4 Architectural_Unit

An architectural_unit is an atomic or molecular unit that is recognized by an
architecture. An architectural unit is not a kind of anything else and may be an
access_scheme, an analysis, an architectural_specification, a communication_method,
a conformance_criterion, a control_hierarchy, a data_unit, a generic_interaction_
specification, an interaction_setup, an interactive_unit, a message_protocol, a
planning_model, a resource, a superior_and_subordinates, or a system_activity. All
these except control_hierarchy, resource, and superior_and_subordinates are discussed
immediately below. The notions of superior_and_subordinates and control_hierarchy
are introduced in tier1 of the joint architecture (not in generic control architecture) and
are described in Section 3.3.5. Resource is defined in tier 2 and is described in Section
3.3.6.

An architectural_unit does not serve directly as part of any other defined thing.

The model given here needs improvement. Several things which are kinds of
architectural_unit (such as generic_interaction_specification, control_hierarchy, and
communication_method) should be kinds of one of the kinds of architectural_
specification, instead. For example, a control_hierarchy should be a kind of
functional_specification.

Reference Architecture Interim Report

35

3.3.4.4.1 Access_Scheme

An access_scheme is a kind of architectural_unit. An access_scheme describes the
reading and writing access of interactive_units to the various stored_data_units
involved in an indirect_interaction_specification. It also describes any locking
mechanism that may be used.

An access_scheme serves as the scheme of an indirect_interaction_specification.

3.3.4.4.2 Analysis

An analysis is a kind of architectural_unit. An analysis is the examination of the
components of some complex system and how they relate to one another. An analysis
may be a dynamic_analysis, a functional_analysis, an information_analysis, or an
other_analysis.

An analysis does not serve directly as part of any other defined thing.

3.3.4.4.2.1 Dynamic_Analysis

A dynamic_analysis is a kind of analysis. A dynamic analysis is an analysis of the
characteristics of the function and information in a domain which vary over time during
control system operation. It provides qualitative and quantitative information about the
sequence, duration, and frequency of change in the function and information of the
domain.

A dynamic_analysis serves as one of the dynamic_analyses of an analyses.

3.3.4.4.2.2 Functional_Analysis

A functional_analysis is a kind of analysis. A functional_analysis is an analysis of all
the activities within the scope of an architecture which a conforming system is
supposed to be able to perform.

A functional_analysis serves as one of the functional_analyses of an analyses.

3.3.4.4.2.3 Information_Analysis

An information_analysis is a kind of analysis. An information_analysis is an analysis
of all the information within the scope of an architecture needed for a conforming
system to function properly.

An information_analysis serves as one of the information_analyses of an analyses.

3.3.4.4.2.4 Other_Analysis

An other_analysis is a kind of analysis. An other_analysis is a kind of analysis which
is not an information_analysis, functional_analysis, or dynamic_analysis.

An other_analysis serves as one of the other_analyses of an analyses.

Reference Architecture Interim Report

36

3.3.4.4.3 Architectural_Specification

An architectural_specification is a kind of architectural_unit. An
architectural_specification is a prescription of what the pieces (software, languages,
execution models, controller models, communications models, computer_hardware,
machinery, etc.) of an architecture are, how they are connected (logically and
physically), and how they interact. An architectural_specification may be a
communications_specification, a functional_ specification, a hardware_specification,
an information_specification, a language_ specification, or an other_specification.

An architectural_specification does not serve directly as part of any other defined thing.

3.3.4.4.3.1 Communications_Specification

A communications_specification is a kind of architectural_specification. A
communications_specification describes some aspect of the communications of a
control system.

A communications_specification serves as one of the communications_specifications
of an architectural_specifications.

3.3.4.4.3.2 Functional_Specification

A functional_specification is a kind of architectural_specification. A functional_
specification describes part of the functioning of a control system.

A functional_specification serves as one of the functional_specifications of an
architectural_specifications.

3.3.4.4.3.3 Hardware_Specification

A hardware_specification is a kind of architectural_specification. A hardware_
specification describes part of the hardware of a control system.

A hardware_specification serves as one of the hardware_specifications of an
architectural_specifications.

3.3.4.4.3.4 Information_Specification

An information_specification is a kind of architectural_specification. An information_
specification describes part of the information or method of handling information of a
control system.

An information_specification serves as one of the information_specifications of an
architectural_specifications.

3.3.4.4.3.5 Language_Specification

A language_specification is a kind of architectural_specification. A language_
specification specifies the use of some particular language for modeling or
programming.

Reference Architecture Interim Report

37

A language_specification serves as one of the language_specifications of an
architectural_specifications.

3.3.4.4.3.6 Other_Specification

An other_specification is a kind of architectural_specification. An other_specification
describes part of a control system which cannot be classified as having to do with
communications, function, hardware, information, or language.

An other_specification serves as one of the other_specifications of an
architectural_specifications.

3.3.4.4.4 Communication_Method

A communication_method is a kind of architectural_unit. A communication_method
specifies a method of getting messages from one interactive_unit to another. It is
important to note that two interactive_units are regarded as communicating whenever
one sends the other a message. The two interactive_units may be as close together as
blocks of code in a single program, or they may be as far separated as running on two
different computers which are physically far separated.

A communication_method serves as the link_method of an interaction_setup.

This part of the model is incomplete. In particular, specific subtypes of
communication_method will be defined in the completed joint architecture. Defining
these subtypes is expected to be a technical challenge. Many models of communication
and many types of communication hardware and software already exist. These will
have to be examined. It may be possible to use existing models. We plan to define only
communication_methods which can be implemented with existing hardware.

3.3.4.4.5 Conformance_Criterion

A conformance_criterion is a kind of architectural_unit. A conformance_criterion
specifies how an architectural_unit at one tier of an architecture conforms to the
architectural_specifications of a higher tier, or how a process for building part of an
architecture conforms to the development methodology given by the architecture for
building that part.

A conformance_criterion serves as one of the criteria of a conformance_criteria.

3.3.4.4.6 Data_Unit

A data_unit is a kind of architectural_unit. A data_unit is any kind of data and may be
a data_store, message, message_information, plan, or stored_data_unit.

A data_unit does not serve directly as part of any other defined thing.

Reference Architecture Interim Report

38

3.3.4.4.6.1 Data_Store

A data_store is a kind of data_unit. A data_store is a physical location where data
resides. It may be short-lived (dying with a computer process within which it resides,
for example) or long-lived (a file system, for example).

A data_store serves as the managed_store of a data_store_manager.

3.3.4.4.6.2 Message

A message is a kind of data_unit. A message may be a data_message or a
functional_message. A message has attributes: sender (which is an interactive_unit),
receiver (which is another interactive_unit), and contents (which is a
message_information). A message is used to carry information from the sender to the
receiver.

A message serves as one of the messages of a message_protocol.

Data_Message

A data_message is a kind of message. A data_message may be a
message_from_data_store_manager or a message_to_data_store_manager.

A data_message serves as one of the messages of a data_message_protocol.

Message_from_Data_Store_Manager

A message_from_data_store_manager is a kind of data_message in which the sender is
a data_store_manager.

Message_to_Data_Store_Manager

A message_to_data_store_manager is a kind of data_message in which the receiver is
a data_store_manager.

Functional_Message

A functional_message is a kind of message in which the sender is a functional_unit and
the receiver is a functional_unit. A functional_message may be a command or a status;
see Section 3.3.5.

A functional_message serves as one of the messages of a functional_message_protocol.

3.3.4.4.6.3 Message_Information

A message_information is a kind of data_unit. A message_information is the
information content of a message. It is expected that subclasses of
message_information defined at lower tiers will specify the structure of the
information.

A message_information serves as the contents of a message.

Reference Architecture Interim Report

39

3.3.4.4.6.4 Plan

A plan is a kind of data_unit. A plan is a scheme developed to accomplish a specific
goal. A plan may be a process_plan, production_managed_plan, or schedule.

A plan serves as the output of a planner.

3.3.4.4.6.5 Stored_Data_Unit

A stored_data_unit is a kind of data_unit. A stored_data_unit describes a stored unit of
data. A stored_data_unit has one attribute: manager (which is a data_store_manager
which manages the data_store in which the stored_data_unit resides).

A stored_data_unit serves as one of the permitted_data_units of an
indirect_interaction_specification.

A stored_data_unit may be used in many indirect_interaction_specifications, each of
which has (probably different) sets of readers and writers, both of which are composed
of interactive_units, which can access the data. Because the relationship between a
stored_data_unit and its readers and writers may be complex, the readers and writers
are not modeled as part of the stored_data_unit, but rather as part of the
indirect_interaction_specifications in which the stored_data_unit is involved.

3.3.4.4.7 Generic_Interaction_Specification

A generic_interaction_specification is a kind of architectural_unit. A
generic_interaction_specification describes an interaction between two or more
interactive_units. A generic_interaction_specification may be a
direct_interaction_protocol (in which two interactive_units interact by sending
messages to one another) or an indirect_interaction_specification (in which two or
more interactive_units interact by access to common data).

A generic_interaction_specification does not serve directly as part of any other defined
thing.

3.3.4.4.7.1 Direct_Interaction_Protocol

A direct_interaction_protocol is a kind of generic_interaction_specification. A
direct_interaction_protocol describes the continuing interaction between two
interactive_units. A direct_interaction_protocol may be a data_interaction_protocol or
a functional_interaction_protocol. A data_interaction_protocol has attributes:
first_party (which is an interactive_unit), second_party (also an interactive_unit), and
message_protocols (a set, each of which is a message_protocol). Each
message_protocol describes a sequence of messages to be passed between the two
parties needed to accomplish some specific purpose.

A direct_interaction_protocol serves as the interaction_specification of an
interaction_setup.

Reference Architecture Interim Report

40

Data_Interaction_Protocol

A data_interaction_protocol is a kind of direct_interaction_protocol in which all of the
message_protocols are data_interaction_protocols.

A data_interaction_protocol serves as the interaction_specification of a
data_interaction_setup.

Functional_Interaction_Protocol

A functional_interaction_protocol is a kind of direct_interaction_protocol in which all
of the message_protocols are functional_message_protocols.

A functional_interaction_protocol serves as the interaction_specification of a
functional_interaction_setup.

3.3.4.4.7.2 Indirect_Interaction_Specification

An indirect_interaction_specification is a kind of generic_interaction_specification.
An indirect_interaction_specification describes a continuing interaction between two
sets of interactive_units via a set of stored_data_units managed by one or more
data_store_managers and mediated by an access_scheme. An interaction_protocol has
attributes: readers (which is a set of interactive_units), writers (also a set of
interactive_units — possibly only one), permitted_data_units (which is the set of
stored_data_units which may be accessed by the readers and writers), a scheme (which
is an access_scheme), and managers (which is a set of data_store_managers). The
permitted_data_units must all be in the data_stores managed by the managers.

An indirect_interaction_specification does not currently serve directly as part of any
other defined thing.

Note that an indirect_interaction_specification does not specify messages. Messages
might well flow between the data_store_managers managing the stored_data_units and
the various interactive_units which have access to the permitted_data_units, but that is
not relevant here.

It might be useful to add a purpose to the definition of indirect_interaction_
specification.

3.3.4.4.8 Interaction_Setup

An interaction_setup is a kind of architectural_unit. An interaction_setup is an
arrangement between two interactive_units in which they have an agreed method of
communicating and an agreed direct_interaction_protocol. An interaction_setup has
attributes: first_party (which is an interactive_unit), second_party (which is also an
interactive_unit), link_method (which is a communication_method), and
interaction_specification (which is a direct_interaction_protocol). An interaction_setup
may be a data_interaction_setup or a functional_interaction_setup.

A data_interaction_setup does not serve directly as part of any other defined thing.

Reference Architecture Interim Report

41

3.3.4.4.8.1 Data_Interaction_Setup

A data_interaction_setup is a kind of interaction_setup in which the second_party is a
data_store_manager and the interaction_specification is a data_interaction_protocol.

A data_interaction_setup does not currently serve directly as part of any other defined
thing, but is expected to be used in lower tiers of the joint architecture.

3.3.4.4.8.2 Functional_Interaction_Setup

A functional_interaction_setup is a kind of interaction_setup in which the first_party
and the second_party are both functional_units and the interaction_specification is a
functional_interaction_protocol.

A functional_interaction_setup does not currently serve directly as part of any other
defined thing, but is expected to be used in lower tiers of the joint architecture.

3.3.4.4.9 Interactive_Unit

An interactive_unit is a kind of architectural_unit. An interactive_unit interacts with
other interactive_units of the architecture by sending and receiving messages.
Typically, the messages will be commands, status information, data, or requests for
data. An interactive_unit may be a data_store_manager or a functional_unit.

An interactive_unit serves as the first_party and the second_party of a
direct_interaction_protocol, as one of the readers and one of the writers of an
indirect_interaction_specification, as the sender and receiver of a message, and as the
first_party and the second_party of a message_protocol.

The interactive_unit is the basic active element of a control system. All active elements
in a control system are subtypes of interactive_unit.

The current model is too simplistic regarding interactive_units. In particular, the model
defines interactive_unit as an atomic thing with no substructure. However, we may
wish to have molecular interactive units. Both RCS and MSI define things which are
logically molecular interactive_units: an RCS controller includes world modeling,
behavior generation, sensory processing, and value judgement; an MSI control entity
includes a planner and a controller. Completing the joint architecture will include
redefining interactive_unit and devising a method of combining interactive_units to
form larger interactive_units.

3.3.4.4.9.1 Data_Store_Manager

A data_store_manager is a kind of interactive_unit and has one attribute:
managed_store (which is a data_store). A data_store_manager receives messages about
data (primarily requests to store or retrieve data) and acts on them. A
data_store_manager also sends messages about data.

Reference Architecture Interim Report

42

A data_store_manager serves as the second_party in a data_interaction_setup, as the
sender of a message_from_data_store_manager, as the receiver of a
message_to_data_store_manager, as one of the managers in an
indirect_interaction_specification, and as the manager of a stored_data_unit.

3.3.4.4.9.2 Functional_Unit

A functional_unit is a kind of interactive_unit. A functional_unit may be a control_unit
or a planner. As noted earlier, the definition of functional_unit will probably need to be
revised to allow functional_units to be composed of other functional_units.

A functional_unit serves as the first_party and the second_party of a
functional_interaction_setup, as the first_party and second_party of a
functional_message_protocol, and as the sender and receiver of a functional_message.

Control_Unit

A control_unit is a kind of functional_unit. A control_unit performs task execution - as
opposed to planning, information handling, sensory processing, etc. A control_unit
may be a real_time_control_unit, a scheduled_control_unit, or a
transition_control_unit. These correspond to the types of controllers identified in the
description of the joint architecture in Section 3.2.4.2.4.

A control_unit serves as the sender and receiver of a command (see Section 3.3.5), as
the sender and receiver of a status (see Section 3.3.5), and as superior and one of the
subordinates in a superior_and_subordinates (see Section 3.3.5).

As noted above, it will be desirable that some subtypes of interactive_units be
composed of interactive_units. Control_unit is a prime candidate for having
substructure. The definition of control_unit will be reconsidered as the joint
architecture is defined further.

Planner

A planner is a kind of functional_unit. A planner is an agent which generates or selects
plans to accomplish one or more goals. The one attribute of a planner is output (which
is a plan). A planner may be a process_planner, production_management_planner, or
schedule_planner. These are defined in tier1 of the joint architecture; see Section 3.3.5.
The types of planners and plans correspond to those defined in Section 3.2.3.2. We
believe additional types of planners will be needed as we refine the way planning is
handled in different subtypes of control_unit.

A planner does not serve directly as part of any other defined thing.

3.3.4.4.10 Message_Protocol

A message_protocol is a kind of architectural_unit. A message_protocol is a
specification of one or more messages which are exchanged between two
interactive_units in order to accomplish some specific purpose. A message_protocol
may be a data_message_protocol or a functional_message_protocol. Each of these

Reference Architecture Interim Report

43

includes messages of only one type (either data_messages or functional_messages).
Further consideration should be given to whether another kind of message_protocol
should be defined in which a mixture of message types is allowed.

A message_protocol has attributes: first_party (which is an interactive_unit),
second_party (which is also an interactive_unit), purpose (which is a
message_protocol_purpose), and messages (which is an ordered list of messages).

A message_protocol_purpose is a textual statement of the purposed served by a
message_protocol.

A message_protocol serves as one of the message_protocols of a
direct_interaction_protocol.

As currently defined, a message_protocol can only exist between two interactive_units.
It may be desirable to have something like a message_protocol which involves more
than two interactive_units. We will consider this as we develop the joint architecture.

3.3.4.4.10.1Data_Message_Protocol

A data_message_protocol is a kind of message_protocol in which all the messages are
data_messages.

A data_message_protocol serves as one of the message_protocols of a
data_interaction_protocol.

3.3.4.4.10.2Functional_Message_Protocol

A functional_message_protocol is a kind of message_protocol in which the first_party
is a functional_unit, the second_party is also a functional_unit, and the messages are all
functional_messages.

A functional_message_protocol serves as one of the message_protocols of a
functional_interaction_protocol.

The Schedule Negotiation Protocol described in Section 3.2.4.2.3 is a
functional_message_protocol.

3.3.4.4.11 Planning_Model

A planning_model is a kind of architectural_unit. A planning model is a model of how
planning is done in a control_architecture — the stages of planning, the types of plans,
etc. A planning_model may be a j_planning_model (see Section 3.3.5).

A planning_model does not serve directly as part of any other defined thing.

3.3.4.4.12 System_Activity

A system_activity is a kind of architectural_unit. A system_activity may be control or
planning.

The system_activity class could be expanded into a full activity model. This has not yet
been done.

Reference Architecture Interim Report

44

A system_activity does not serve directly as part of any other defined thing.

3.3.4.4.12.1Control

Control is a kind of system_activity. Control is the activity performed by controllers.

Control does not serve directly as part of any other defined thing.

3.3.4.4.12.2Planning

Planning is a kind of system_activity. Planning is the activity of making plans. A
planning may be a process_planning, a production_management_planning, or a
schedule_planning.

Planning does not serve directly as part of any other defined thing.

3.3.5 Tier One: Hierarchical Control

In tier one of the joint architecture, we restrict the scope of the architecture to control
of mechanical systems, and we specify that hierarchical control must be used. Several
classes used are defined in order to develop the notion of hierarchical control.

This tier is incomplete, entirely missing analyses, methodology_for_architectural_
development, and conformance_criteria.

3.3.5.1 J_Scope_One

A j_scope_one is a kind of scope. A j_scope_one has one attribute: restriction1 (which
is a scope_restriction). The limitation imposed by restriction1 is that this tier applies
only to hierarchical control of mechanical systems. A j_scope_one may be a
j_scope_two (see Section 3.3.6).

3.3.5.2 J_Purpose_One

A j_purpose_one is a kind of purpose. A j_purpose_one has one attribute: restriction1
(which is a purpose_restriction). The purpose of this tier is to provide a control
architecture which will encompass all applications that one or both of RCS and MSI
can currently handle. A j_purpose_one may be a j_purpose_two (see Section 3.3.6).

3.3.5.3 Architectural_Specifications

3.3.5.3.1 Command

A command is a kind of functional_message in which the sender is a control_unit and
the receiver is a control_unit. A command is an instruction from the sender to the
receiver which the receiver must try to carry out.

A command does not currently serve directly as part of any other defined thing.

Reference Architecture Interim Report

45

3.3.5.3.2 Command_and_Status_Protocol

A command_and_status_protocol is a kind of functional_interaction_protocol in which
all the messages in all the message_protocols for which the first_party is the sender are
commands, and all the messages in all the message_protocols for which the second
party is the sender are statuses.

A command_and_status_protocol serves as one of the protocols of a
superior_and_subordinates.

The Schedule Negotiation Protocol (SNP) is a command_and_status_protocol, in
which the first party is a superior and the second party is a subordinate. In the SNP,
some of the status messages sent by the subordinate are not solicited by a command
from the superior, but are sent spontaneously by the subordinate.

3.3.5.3.3 Control_Hierarchy

A control_hierarchy is a kind of architectural_unit. It has one attribute:
superior_subordinate_sets (which is a list of superior_and_subordinates). A
control_hierarchy may be a melded_control_hierarchy (see Section 3.3.6). A
control_hierarchy is an arrangement of control_units which is a tree, with one
control_unit at the top which has at least one subordinate. Each of the subordinates of
the top control_unit may have zero to many subordinates, each of which may also have
zero to many subordinates, and so on. Each of the subordinates has only one superior.

A control_hierarchy does not currently serve directly as part of any other defined thing.

3.3.5.3.4 Hierarchical_Control_Architecture

A hierarchical_control_architecture is a kind of control_architecture in which the
control_units are arranged in a control_hierarchy (which implies they interact via
command_and_status_protocols).

Other functional_units of the same architecture — those which are not control_units —
do not have to be arranged in a hierarchy.

A hierarchical_control_architecture does not currently serve directly as part of any
other defined thing.

3.3.5.3.5 Status

A status is a kind of functional_message in which the sender and receiver are
control_units. The content of a status message should be to give the status of the
execution of a command or the status of health of the sender of the status message.

A status does not currently serve directly as part of any other defined thing.

3.3.5.3.6 Superior_and_Subordinates

A superior_and_subordinates is a kind of architectural_unit. A
superior_and_subordinates has attributes: superior (which is a control_unit),
subordinates (which is a list — with no duplicates — of control_units), and protocols

Reference Architecture Interim Report

46

(which is a list of command_and_status_protocols). In each of the
command_and_status_protocols, the first_party must be the superior and the
second_party must be the subordinate in the corresponding place in the list of
subordinates.

A superior_and_subordinates serves as one of the superior_and_subordinate_sets in a
control_hierarchy.

A superior_and_subordinates may be thought of as a two-level hierarchy that may be
used as the building block for making multi-level hierarchies.

3.3.6 Tier Two: Discrete Parts

In the second tier of the joint architecture, we limit the scope to discrete parts
manufacturing and we define a specialized form of hierarchical control in which the
control_units in upper levels of the hierarchy are scheduled_control_units, the
control_units in the lower levels are real_time_control_units, and the control_units
between the upper and lower levels are transition_control_units. Thus, this tier provides
for many of the major concepts discussed in Section 3.2.

This tier is incomplete, entirely missing purpose, analyses, methodology_for_
architectural_development, and conformance_criteria. The definitions of various
classes of plans, planners, and planning given here need improvement.

3.3.6.1 J_Scope_Two

A j_scope_two is a kind of j_scope_one. A j_scope_two has one additional attribute:
restriction2 (which is a scope_restriction). The limitation imposed by restriction2 is that
this tier applies only to discrete parts manufacturing.

3.3.6.2 Architectural_Specifications

3.3.6.2.1 Melded_Control_Hierarchy

A melded_control_hierarchy is a kind of control_hierarchy in which the control_unit at
the top of the hierarchy is a scheduled_control_unit, the subordinates of each
scheduled_control_unit are either scheduled_control_units or transition_control_units,
and the subordinates of transition_control_units are all real_time_control_units. The
joint architecture, as defined in Section 3.2.4.2 is a melded_control_hierarchy.

3.3.6.2.2 J_Planning_Model

A j_planning_model is a kind of planning_model. A j_planning_model has three
attributes: phase1 (which is a process_planning), phase2 (which is a
production_management_planning), and phase3 (which is a schedule_planning).

It is intended that the j_planning_model should serve for all controllers in a
control_hierarchy which has MSI-type controllers in the upper hierarchical levels
(requiring resource allocation and scheduling) and RCS-type controllers in the lower

Reference Architecture Interim Report

47

hierarchical levels (running in real time and doing sensory processing). The MSI-type
require all three phases before plan execution is possible. The RCS-type require only
process_planning.

3.3.6.2.3 Process_Plan

A process_plan is a kind of plan.

A process_plan is a specification of the activities (possibly including alternatives)
necessary to reach some goal. A process_plan serves as a template, or recipe.
Process_plans may be distinguished from production_managed_plans and schedules,
both of which are derived from process_plans. This corresponds to the concept by the
same name Section 3.2.3.2.

3.3.6.2.4 Process_Planner

A process_planner is a kind of planner for which the output is a process_plan.

3.3.6.2.5 Process_Planning

Process_planning is a kind of planning in which process_plans are produced. This
corresponds to the concept by the same name in Section 3.2.3.1.

3.3.6.2.6 Production_Managed_Plan

A production_managed_plan is a kind of plan. A production_managed_plan has one
attribute: antecedent_process_plan (which is a process_plan). A
production_managed_plan is derived from its antecedent_process_plan. This
corresponds to the concept by the same name in Section 3.2.3.2.

3.3.6.2.7 Production_Management_Planner

A production_management_planner is a kind of planner for which the output is a
production_managed_plan.

3.3.6.2.8 Production_Management_Planning

production_management_planning is a kind of planning in which
production_managed_plans are produced. This corresponds to the concept by the same
name in Section 3.2.3.2.

3.3.6.2.9 Real_Time_Control_Unit

A real_time_control_unit is a control_unit that operates in hard real time. This
corresponds to the concept of the same name in Section 3.2.4.2.4.

3.3.6.2.10 Resource

A resource is a kind of architectural_unit. This definition needs to be expanded.

Reference Architecture Interim Report

48

3.3.6.2.11 Schedule

A schedule is a kind of plan. A schedule has one attribute:
antecedent_production_managed_plan (which is a production_managed_plan). A
schedule is derived from its antecedent_production_managed_plan. Schedules
correspond to production plans in Section 3.2.3.2.

3.3.6.2.12 Schedule_Planner

A schedule_planner is a kind of planner for which the output is a schedule. A
schedule_planner corresponds to a production planner in Section 3.2.4.2.3.

3.3.6.2.13 Schedule_Planning

Schedule_planning is a kind of planning in which schedules are produced.
Schedule_planning corresponds to production planning in Section 3.2.3.1.

3.3.6.2.14 Scheduled_Control_Unit

A scheduled_control_unit is a kind of control_unit which will support being scheduled
and does not necessarily run in hard real time. This corresponds to the concept of the
same name in Section 3.2.4.2.4.

3.3.6.2.15 Transition_Control_Unit

A transition_control_unit is a kind of control_unit which may be one of the
subordinates of a scheduled_control_unit and the superior of a real_time_control_unit.
This corresponds to the concept of the same name in Section 3.2.4.2.4.

Reference Architecture Interim Report

49

4 Completing the Architecture
For the architecture to be made complete, a great deal of work must be done. Only when
the details for an implementation have been worked out, can it be said with certainty
that the architecture is complete.

4.1 Technical Approach to Completing the Architecture

Since the joint architecture is to be suitable for control of a broad range of systems in a
discrete parts shop, only the upper two tiers of the architecture will be heavily populated
with elements of architectural definition when the architecture is complete. The lowest
three tiers are intended to be defined differently for different applications and
implementations, so the joint architecture will provide only the skeletons of those tiers.
These skeletons exist now in incomplete form. The skeletons will need to be completed
as part of finishing the joint architecture. The skeletons would be filled out differently
for different applications of the architecture, as shown in Figure 5, a hypothetical tree
of tiers. Our current thinking is that tier 3 is for some specific application (such as a
work cell with a 3-axis machining center), tier 4 is for the detailed design of an
implementation, and tier 5 is for defining implementation details.

4.1.1 Resolve Issues

As a first step in completing the architecture, tentative decisions should be made for the
issues raised in Sections 4 and 5 of the Feasibility Study. An explicit resolution of each
issue for the joint architecture should be documented. Most issues will have been
resolved, explicitly or implicitly, in the course of defining the joint architecture. If any
issue remains unresolved, it should be examined and a determination made of whether
a resolution is necessary; if so, the joint architecture should be revised or extended, as
necessary.

Reference Architecture Interim Report

50

4.1.2 Define Scenarios

Scenarios should be written for how a system controlled by the joint architecture should
behave under nominal conditions and in a variety of error conditions.

4.1.3 Define Schedule Negotiation Protocol

The details of the Schedule Negotiation Protocol must be defined. Each message must
be worked out in detail and the entire suite must be examined for completeness.
Scenarios for the use of the protocol must be written out and examined for deadlocks
and other undesirable behavior. The details of TCU actions when the RTCU is not able
to perform all the capabilities required for full participation in the Schedule Negotiation
Protocol (see Section 3.2.4.2.3) must be worked out.

Generic Control Architecture

Tier 1
Hierarchical

Control

Tier 2
Discrete Parts

Tier 3
Narrow

Domain A

Tier 5
Implementation
Realization A1a

Tier 4
Implementation

Design A1

Tier 3
Narrow

Domain B

Tier 5
Implementation
Realization B2a

Tier 4
Implementation

Design B2

Figure 5. Tree of Tiers (hypothetical example)

Tier 5
Implementation
Realization A1b

Tier 4
Implementation

Design A2

Tier 5
Implementation
Realization A1c

Tier 4
Implementation

Design B1

Reference Architecture Interim Report

51

4.1.4 Complete Information Models

The information models which are closely tied in with the Schedule Negotiation
Protocol (SNP) must be examined and extended to support the new SNP. It should be
examined whether classes of RTCUs could be defined which have similar functionality
with respect to the Schedule Negotiation Protocol and information sharing behavior. If
this is the case, corresponding classes of TCUs could be created.

All the information models will require additional work to tailor them for the joint
architecture. This is particularly true of the models relating to the communications
system.

4.1.5 Complete Formal Model

The existing formal model of the architecture of the architecture is incomplete in some
places and needs rethinking in others. Many of these places are noted in the preceding
section. Building the formal model will need to keep pace with resolving the issues and
deciding on specific features for the joint architecture.

What language or languages to use to build the formal model the joint architecture
should be considered further. The current formal model is built in EXPRESS, but
EXPRESS may not be adequate for building a complete and useful formal model. In
the current model, we have not used some features of EXPRESS in order to keep the
model as simple as possible. We may be able to fix some shortcomings of the current
model by using EXPRESS features such as multiple supertypes and inverses; both of
those have been avoided in the current model. Other modeling languages should be
examined. If a better one can be found, it should be used.

4.1.6 Check RCS and MSI

The joint architecture is intended to combine the best features of the existing RCS and
MSI architecture. We have not yet given full consideration to several of these features.
RCS, for example, includes provisions for sensory processing, and we are certain that
sensory processing will be required in real_time_control_units, yet no provision for
sensory processing has yet been made in the formal model. We will check that we have
considered the existing architectures carefully as we complete the joint architecture.

4.1.7 Implement

Finally, it should be noted that many issues are not apparent until an implementation of
the architecture is being built. No architecture should be considered complete unless it
has first been tested and made to work in a practical application.

4.2 Programmatic Approach to Completing the Architecture

Work on completing the Joint Architecture is continuing under the Systems Integration
for Manufacturing Applications (SIMA) Manufacturing Systems Environment (MSE)
project here at NIST. The objective of this program is to integrate design, planning and
production applications in the mechanical parts manufacturing domain.

Reference Architecture Interim Report

52

During Fiscal Year 94 and early Fiscal Year 95, a second complete iteration of
architecture design is expected. This entails completing the technical items listed in
Section 4.1.1 through Section 4.1.6. During Fiscal Year 95, an implementation of the
architecture is planned.

Reference Architecture Interim Report

53

References

Albus1] Albus, James S.; McCain, Harry G.; Lumia, Ronald; NASA/NBS Standard
Reference Model for Telerobot Control System Architecture (NASREM); NIST
Technical Note 1235, 1989 Edition; National Institute of Standards and
Technology; April 1989

[Albus2] Albus, James S.; A Theory of Intelligent Systems; Control and Dynamic
Systems; Vol. 45; 1991; pp. 197 - 248

[Albus3] Albus, James S.; RCS: A Reference Model Architecture for Intelligent Control;
IEEE Journal on Computer Architectures for Intelligent Machines; May 1992;
pp. 56 - 59

[Barbera] Barbera, Anthony J.; An Architecture for a Robot Hierarchical Control System;
NBS Special Publication 500-23; National Bureau of Standards; December
1977

[Barkmeyer] Barkmeyer, Edward J.; Ray, Steven; Senehi, M. Kate; Wallace, Evan; Wallace,
Sarah; Manufacturing Systems Integration Information Models for Production
Management; National Institute of Standards and Technology Interagency
Report, 1992, (forthcoming).

[Catron] Catron, Bryan; Ray, Steven R.; ALPS - A Language for Process Specification;
International Journal of Computer Integrated Manufacturing; Vol. 4, No. 2;
1991; pp 105 -113

[EIA] ANSI/EIA/TIA/232-E The Interface between Data Terminal Equipment and
Data Circuit Terminating Equipment Employing Serial Data Binary
Interchange; July 1991. (Available from Global Engineering Documents, 15
Inverness Way, E. Englewood, Colorado 80112-5704.)

[Fiala] Fiala, John; Manipulator Servo Level Task Decomposition; NIST Technical
Note 1255; National Institute of Standards and Technology; October 1988; 37
pages

[Herman] Herman, Martin; Albus, James S.; Real-time Hierarchical Planning for
Multiple Mobile Robots; Proceedings of DARPA Knowledge-Based Planning
Workshop; Austin, Texas; December 1987; pp. 22-1 to 22-10

[ISO1] ISO 10303, Product Data Representation and Exchange, Part 1: Overview and
Fundamental Principles, ISO TC184/SC4/Editing: Document N11 (Working
Draft) (Available from the IGES/PDES/STEP Administration Office, National
Institute of Standards and Technology, Building 220, Room A127,
Gaithersburg, MD 20899.)

[ISO2] ISO 9506, Industrial Automation Systems Manufacturing Message
Specification, Part 1: Service Definition. (Available from the International
Organization for Standardization, Geneva, Switzerland.)

Reference Architecture Interim Report

54

[ISO3] ISO TC184/SC5/WG1: Document N-282 Version 3.0, Framework for
Enterprise Modelling, May 1993 (Working Draft) (Available from National
Electrical Manufacturers Association, 2101 L Street, N.W. Washington, D.C.
20037.)

[Kramer] Kramer, Thomas R.; Senehi, M. K.; Feasibility Study: Reference Architecture
For Machine Control Systems Integration; NISTIR 5297; National Institute of
Standards and Technology Interagency Report; November 1993

[Libes] Libes, Don; NIST Network Common Memory User Manual; NISTIR 90-4233;
National Institute of Standards and Technology; February 1990

[MAP1] Manufacturing Automated Protocol Version 3.0, August 1, 1988. (Available
from North American MAP/TOP Users Group, ITRC, P.O. Box 1157, Ann
Arbor, MI 48106.)

[MAP2] Technical and Office Protocols Version 3.0 August 31, 1988. (Available from
North American MAP/TOP Users Group, ITRC, P.O. Box 1157, Ann Arbor,
MI 48106.)

[McLean1] McLean, C. R.; Interface Concepts for Plug-Compatible Production
Management Systems; Proceedings of the IFIP WG5.7 Working Conference on
Information Flow in Automated Manufacturing Systems; Gaithersburg, MD;
August 1987. Reprinted in Computers in Industry; Vol. 9; pp. 307-318; 1987.

[Quintero] Quintero, Richard; Barbera, Anthony J.; A Real-Time Control System
Methodology for Developing Intelligent Control Systems; NISTIR 4936;
National Institute of Standards and Technology; October 1992

[Ray1] Ray, Steven R.; Wallace, Sarah; A Production Management Information Model
for Discrete Manufacturing; submitted for publication to Production Planning
and Control; September 1992

[Ray2] Ray, S.; “Using the ALPS Process Plan Model,” Proceedings of the
Manufacturing International Conference, 1992, Dallas, Texas.

[Rybczynski] Rybczynski, S.; et al.; AMRF Network Communications; NISTIR 88-3816;
National Institute of Standards and Technology; June 1988

[Senehi1] Senehi, M. K.; Barkmeyer, Edward J.; Luce, Mark E.; Ray, Steven R.; Wallace,
Evan K.; Wallace, Sarah; Manufacturing Systems Integration Initial
Architecture Document; NISTIR 4682; National Institute of Standards and
Technology; September 1991

[Senehi2] Senehi, M.K.; Wallace, Sarah; Luce, Mark E.; An Architecture for
Manufacturing Systems Integration; Proceedings of ASME Manufacturing
International Conference; Dallas, Texas; April 1992

[Simpson] Simpson, J.; Hocken R.; Albus, J.; The Automated Manufacturing Research
Facility; Journal of Manufacturing Systems; Vol. 1; Number 1, 1982

Reference Architecture Interim Report

55

[Spiby] Spiby, Philip; draft STEP Part 11 EXPRESS Language Reference Manual;
April 1991

[Tanenbaum] Tanenbaum, Andrew S.; Computer Networks-Second Edition; Prentice Hall;
Englewood Cliffs, New Jersey; 1988.

[Wallace] Wallace, Sarah; Senehi, M. K.; Barkmeyer, Edward J.; Ray, Steven R.;
Wallace, Evan K.; Manufacturing Systems Integration Control Entity Interface
Specification; NISTIR draft; National Institute of Standards and Technology;
October 1992

[Wavering] Wavering, Albert J.; Manipulator Primitive Level Task Decomposition; NIST
Technical Note 1256; National Institute of Standards and Technology; October
1988

Reference Architecture Interim Report

56

Appendix A - Glossary

With a few exceptions, this glossary is the same as that of the Feasibility Study
analysis

an examination of the constituents of some complex system and how they relate to one
another.

application
a subset of a domain for an architecture.

architectural specification
a prescription of what the pieces (software, languages, execution models, controller
models, communications models, computer hardware, machinery, etc.) of an architecture
are, how they are connected (logically and physically), and how they interact.

architectural unit
an atomic unit or molecular unit that is recognized by an architecture.

architecture
the design and structure of a system. Typically, an architecture consists of a set of
components, together with specifications of how the components work together within the
system, and how they may interact with the environment outside of the system.

aspect
a cross-cutting view of an architecture from some specialized viewpoint, such as
information, communications, or control flow.

atomic unit
an architectural unit of an architecture which the architecture does not break down further
into simpler architectural units.

black box
a subsystem which is described only in terms of its inputs, outputs, and functionality, but
whose internal architecture is unspecified.

broadcast communication
a communications system style in which a communication entity can send a given
message to other communication entities without specifying addressees.

centralized control
a control method in which single controller (usually running on a single computer)
controls everything directly.

command
an instruction from a superior controller to a subordinate controller (or from a client
controller to a server controller) to carry out a task.

command and status exchange
an exchange of messages between a superior (or client) controller and a subordinate (or
server) controller in which the superior tells the subordinate what is to be done by sending

Reference Architecture Interim Report

57

a command and the subordinate sends a status message back.

command-and-status protocol
a specification of the messages which two interacting controllers exchange and the rules
by which they exchange them. There are two types of messages: those which are
commands and those which give the status of the execution of the commands.

component
an implementation of an architectural unit of an architecture.

conformance class
a set of architectures (or implementations) distinguished by a combination of features at a
tier of architectural definition. Different conformance classes may have different and
incompatible choices of features or may correspond to different degrees of conformance to
an architectural requirement.

conceptual data model
a description of a set of information, always giving relationships among the members of
the set, often including the data type of the members of the set, and often including some
of the semantic content of the information.

conformance criteria
criteria which specify how an architectural unit at one tier of an architecture conforms to
the architectural specifications of a higher tier, or how a process for building part of an
architecture conforms to the development methodology given by the architecture for
building that part.

conformance test
a procedure that determines if conformance criteria have been met.

controller
the agent which directs the performance of or performs specific tasks.

cyclic development
development (of a control system, controller architecture, etc.), by doing an initial
implementation, assessing the finished product, and using the results of the assessment as
feedback for refining the system. The assessment and refinement may be repeated several
times.

domain
the class of situations for which an architecture is intended to be used.

domain analyses
analyses of the target domain of an architecture. Commonly used forms of domain
analysis are functional analysis, information analysis, and dynamic analysis.

dynamic analysis
an analysis of the characteristics of the functions and information in a domain which vary
over time during control system operation. It provides qualitative and quantitative
information about the sequence, duration, and frequency of change in the functions and

Reference Architecture Interim Report

58

information of the domain.

dynamic aspects
aspects of a control system which describe how the information and functioning of the
system vary over time.

dynamic reconfiguration
modifying the control hierarchy of a hierarchical control system while the system is
working.

element of architectural definition
a part of the definition of an architecture. The elements of architectural definition are:
statement of scope and purpose, domain analyses, architectural specification,
methodology for architectural development, and conformance criteria.

execution model
a logical view of how the execution of a control system is carried out.

functional analysis
an analysis of all the activities within the scope of an architecture which a conforming
control system is supposed to be able to perform.

functional aspects
aspects of a control system architecture which describe what a system conforming to the
architecture does.

goal
a state of affairs intended to be brought about. Goals are such items as manufacturing a
part, moving a robot arm to a specific place, or navigating a vehicle from one point to
another.

granularity (of a tier of architectural definition of an architecture)
the size of the atomic units which the architectural specification of that tier addresses.

hard real-time (control system)
a control system in which a response must be generated within a fixed time interval.

heterarchical control architecture
a type of control system architecture in which each controller has no superior and no
subordinates, and controllers interact by issuing requests for bids, making bids, and
entering into contracts to do work.

hierarchical control architecture
a type of control system architecture in which controllers are arranged in a hierarchy, each
controller has one superior and zero to many subordinates (except the topmost has no
superior), and controllers interact through a command-and-status protocol.

implementation
the realization of an architecture in hardware and software.

Reference Architecture Interim Report

59

information analysis
an analysis of all the information within the scope of an architecture needed for a
conforming control system to function properly.

information aspects
aspects of a control system architecture which describe the information required for the
operation of a system conforming to the architecture.

information modeling language
a formal language intended to be useful for representing information. Examples are
EXPRESS, NIAM, and IDEF1X.

interoperable (architectures)
two architectures such that a control system built according to the specifications of one
architecture can be used (possibly with minor modifications) in a control system built
conforming to the other architecture.

life cycle
the stages in the life of the system or product.

methodology for architectural development
a set of procedures for applying an architecture.

molecular unit
a combination of atomic units or smaller molecular units recognized by an architecture.

non-persistent data
data which is stored temporarily and which is lost when the system containing it is reset.

operational mode
a style of operation of a controller or control system. Operational modes might include, for
example: debugging (enabled vs. disabled), autonomy (automatic, shared control, or
manual), logging (enabled vs. disabled), single stepping (on vs. off).

operational state
the fitness for operating of a controller or control system. Operational states might include,
for example: down, idle, ready, active.

organizational extent (of an architecture)
the set of related activities of an organization covered by the architecture.

persistent data
data stored on a permanent medium such as files or databases.

plan
a scheme developed to accomplish a specific goal.

planner
an agent which generates or selects plans to accomplish one or more goals.

planning
the activity of making plans. The plans may be process plans, production plans, schedules,

Reference Architecture Interim Report

60

etc.

point to point communication
a communications system style in which a communication entity can send a given
message only to one other communication entity, i.e. communication occurs between pairs
of communication entities.

process
The term is commonly used in several senses. See discussion in Feasibility Study Section
4.4.3.3.

process plan
a specification of the activities (possibly including alternatives) necessary to reach some
goal. A process plan serves as a template, or recipe. Process plans may be distinguished
from production plans and schedules, both of which are derived from process plans.

real-time
the condition that a system must keep pace with events in the environment.

reference architecture
a generic architecture for a specific domain.

resource allocation
assigning resources (temporarily or permanently) for some specific purpose.

resource definition
a description of a resource, usually given in a formal information modeling language.

scheduler
an agent which performs scheduling.

scheduling
the assignment of specific resources and times.

scope
see statement of scope.

soft real-time
requiring real-time response, but not within a specific time interval.

statement of purpose
a statement that identifies what the objectives of an architecture are within the given
scope.

statement of scope
a description of the range of areas (domain) to which an architecture is intended to be
applied.

step (of a plan)
the basic procedural unit of a plan, usually specifying that a single activity (single at some
conceptual level) be carried out (drill a hole, deliver a tray, machine a lot of parts, etc.).

Reference Architecture Interim Report

61

submodule
an internal unit of an atomic unit of an architecture.

synchrony
a fixed relation in time between the execution cycles of two controllers.

task
a piece of work which achieves a specific goal — i.e., actual work, not a representation of
work.

tier of architectural definition
one group in an ordered set of disjoint groups of architectural units of an architecture, such
that whenever two architectural units are related by the first one being an abstraction of the
second, the tier of the first is higher than or the same as the tier of the second.

work element
a generic representation of a type of work, such as moving in a straight line from one point
to another, opening a gripper, or drilling a hole.

world model
a description of the state of the world.

world modeling
the function in a control system of maintaining a world model. This function may also
predict events and sensory data and answer questions about the world model.

Reference Architecture Interim Report

62

Appendix B - EXPRESS Definition of Joint Architecture

(*
INTRODUCTION

This is a model of a proposed joint architecture for the control of mechanical systems. The model
is given using the EXPRESS information modeling language [Spiby] with added conventions
regarding the meaning of the organization of the EXPRESS statements.

This model is a work in progress. The model is syntactically complete, so that EXPRESS parsers
will not find anything missing, but it is not a full description of an architecture. Additions need to
be made to all parts of the model. The most obviously missing parts are the conformance criteria
and methodologies for architectural development.

Typographic and Naming Conventions

In the comments mixed with EXPRESS definitions below, terms from EXPRESS, such as
schema, are given in underlined italics while terms defined in the schemas, such as
control_architecture are given in boldface italics. The EXPRESS statements themselves are
given in helvetica type face. In the rest of this introduction, only the typographic convention for
EXPRESS statements is used.

Many of the names of entitys start with the prefix “j_”. The “j” is an abbreviation of “joint”. Only
entitys specific to the joint architecture have this prefix.

Organization of the Model

This model provides a schema for generic_control_architecture plus a separate EXPRESS schema
for each tier of architectural definition. Thus, this model contains six schemas, since the joint
architecture has five tiers. Each schema (except the generic_control_architecture schema) uses the
previous schema. This seems to be the most useful way to match decreasing abstraction in the
tiers of the architecture to decreasing abstraction in the representation of the architecture.

Each schema representing a tier is divided into five sections corresponding to the five elements of
architectural definition required by an architecture. The sections are simply marked as such by
comments, so the sectioning is invisible to EXPRESS parsers. In each section, the definitions are
arranged in subsections by type. The order of subsections is: type, entity, function. Within each
subsection, definitions are given alphabetically.

Wherever possible, the notion of decreasing abstraction in moving from tier to tier has been
implemented by having more abstract entitys in higher tiers be supertypes of less abstract entitys
in lower tiers. Exceptions to this include the handling of: tier, analyses, architectural
specifications, methodology, and conformance criteria. These are all defined as entitys in the
generic_control_architecture schema. Tier is represented by schemas (not subtypes) in the rest of
the model, while the other exceptions are handled as sections of schemas.

Reference Architecture Interim Report

63

The bottom three tiers contain little of substance. They are included here as shells which can be
filled out for specific applications.

This model has been written in “DIS” EXPRESS, which is the August 31, 1992 version. The
latest version of the NIST EXPRESS parser handles this version of EXPRESS. The model passes
through the NIST EXPRESS parser without error or warning.

Where subtypes without attributes are used, the idea is usually that there may be other subtypes
that could be defined and usefully distinguished (preferably by having different attributes) from
the subtype that has been defined.

The model has been written so that it contains no multiple inheritance; only tree structures are
found in the inheritance scheme. All subtypes of each entity are given in the supertype statement
for the entity. For many entitys in the model, however, a supertype statement is included and
commented out, implying the entity is a supertype of an entity in another schema. Including the
supertype statement has been done to make it easy to trace through the model. Commenting out
has been done to avoid getting error messages from the NIST EXPRESS parser. The rules of
EXPRESS do not allow explicit supertype statements when subtypes are in other schemas.

The term tier_of_architectural_definition has been abbreviated to tier in many places, though not
in any EXPRESS statements.

Possible Alternatives

It would be possible to define an entire tree of schemas, rather than a single series. Each path
through the tree would represent an alternative to the joint architecture that would be the same as
the joint architecture at the root of the tree, but diverged from the joint architecture at some tier.
Note that a path into the tree of any length starting at the root node would be an architecture. A
path of zero length would consist of the root node only.

Another alternative approach would be to have independent trees for the major facets of the
architecture (control, communications, and data, for example), and have an architecture consist of
a set of paths, one through each tree.

Model Assumptions

This model assumes that all direct interactions are between two identified parties. Thus, for
example, there are no one-to-many, many-to-one, or three-way direct interactions, and in no
interaction is the identity of either party a variable.

Some Items Not Modeled

The terms “atomic unit” and “molecular unit” are useful in describing architectures but do not
appear to be required or useful in modeling an architecture.

Reference Architecture Interim Report

64

An atomic unit is an architectural unit of an architecture which the architecture does not break
down further into simpler architectural units. A molecular unit is a combination of atomic units or
smaller molecular units recognized by an architecture. Atomic units and molecular units could be
identified in the architecture defined by this model.

Usability of EXPRESS

EXPRESS is not fully adequate for defining architectures. There are many concepts about
architectures that are hard to state using the EXPRESS language.
One major drawback of EXPRESS for modeling an architecture is that it is not possible to define
an entity (such as tier), instantiate the entity, and then model the instantiated entity in more detail
(by adding attributes or making subtypes, for example).

This model contains some features that were adopted so that EXPRESS would be usable. The
convention of using separate schemas for separate tiers of architectural definition was adopted to
work around the fact that there did not seem to be another good way to handle tiers. There is no
formal method in EXPRESS for saying that the schemas included in the model for the individual
tiers correspond to the tier entity defined in the generic_control_architecture schema.

Dividing the schemas in sections with comments is a second work-around. A third oddity is that
no instantiation of any entitys from the model in a STEP exchange file is required for using the
model, as is the normal method for using an EXPRESS model.

All in all, the work-arounds included in this model constitute a large departure from the normal
use of EXPRESS. It would be better to use a language tailored for describing architectures, but if
such a thing exists, we have not been able to identify it.

The template mechanism that has been proposed as an extension of EXPRESS would be useful in
several places (the definitions of scope and purpose, for example). It has not been used since it is
not a standard part of EXPRESS.

*)

(***
**
**)

Reference Architecture Interim Report

65

SCHEMA generic_control_architecture;

(***
TYPES
*)

(* message_protocol_purpose
A message_protocol_purpose is a string giving the purpose of a message_protocol.
*)

TYPE message_protocol_purpose = STRING;
END_TYPE;

(* purpose_restriction
A purpose_restriction is a statement restricting the purpose of a
tier_of_architectural_definition. The purpose_restrictions of a tier must not conflict with one
another. This constraint is not currently modeled here in EXPRESS. Usually the purpose of a tier
will be strictly narrower than that of the tier above, but it is possible to narrow one of scope and
purpose without narrowing the other.
*)

TYPE purpose_restriction = STRING;
END_TYPE;

(* scope_restriction
A scope_restriction is a statement restricting the scope of a tier_of_architectural_definition. The
scope_restrictions of a tier must not conflict with one another. This constraint is not currently
modeled here in EXPRESS. Usually the scope of a tier will be strictly narrower than that of the
tier above, but it is possible to narrow one of scope and purpose without narrowing the other.
*)

TYPE scope_restriction = STRING;
END_TYPE;

(***
ENTITIES
*)

(* access_scheme
An access_scheme is a kind of architectural_unit which applies to an
indirect_interaction_specification. An access_scheme describes the reading and writing access
of interactive_units to the various stored_data_units involved in the
indirect_interaction_specification. It also describes any locking mechanism that may be used.
None of these details are currently modeled here in EXPRESS.

Reference Architecture Interim Report

66

*)

ENTITY access_scheme
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* analyses
analyses are a kind of element_of_architectural_definition. At each tier, at least three kinds of
analyses should be considered: information_analyses, functional_analyses, and
dynamic_analyses. A fourth kind, other_analyses, is included here, but may not be needed.
*)

ENTITY analyses
SUBTYPE OF (element_of_architectural_definition);
information_analyses: SET [0:?] OF information_analysis;
functional_analyses: SET [0:?] OF functional_analysis;
dynamic_analyses: SET [0:?] OF dynamic_analysis;
other_analyses: SET [0:?] OF other_analysis;

END_ENTITY;

(* analysis
An analysis is an examination of the components of some complex system and how they relate to
one another [from Glossary].

In the context of this schema for generic_control_architecture, at least three subtypes of analysis
are important: information_analysis, functional_analysis, and dynamic_analysis. A fourth,
other_analysis subtype has been provided here, as well; it may not be needed.
*)

ENTITY analysis
SUPERTYPE OF (ONEOF (dynamic_analysis,

functional_analysis,
information_analysis,
other_analysis))

SUBTYPE OF (architectural_unit);
END_ENTITY;

(* architectural_specification
An architectural_specification is a prescription of what the pieces (software, languages,
execution models, controller models, communications models, computer_hardware, machinery,
etc.) of an architecture are, how they are connected (logically and physically), and how they
interact. [from Glossary]

An architectural_specification is a kind of architectural_unit.

Reference Architecture Interim Report

67

Several subtypes are provided here. Additional explicit subtypes may be desirable.

The model given here needs improvement. Several things which are subtypes of
architectural_unit (such as control_hierarchy, and communication_method) should be subtypes
of one of the subtypes of architectural_specification, instead. For example, a control_hierarchy
should be a subtype of functional_specification.

*)

ENTITY architectural_specification
SUPERTYPE OF (ONEOF (communications_specification,

functional_specification,
hardware_specification,
information_specification,
language_specification,
other_specification))

SUBTYPE OF (architectural_unit);
END_ENTITY;

(* architectural_specifications
architectural_specifications are a kind of element_of_architectural_definition consisting of a
list of communications_specifications, a list of functional_specifications, a list of
hardware_specifications, a list of information_specifications, a list of language_specifications,
and a list of other_specifications.

The aggregates of various types of specification given here should be sets, since they should not
have duplicates, but the order is irrelevant. However, lists (in which the order is relevant) are
easier to use (since they allow one to place requirements on the entry at a specific position), so
lists are used here.
*)

ENTITY architectural_specifications
SUBTYPE OF (element_of_architectural_definition);
communications_specifications: LIST [0:?] OF communications_specification;
functional_specifications: LIST [0:?] OF functional_specification;
hardware_specifications: LIST [0:?] OF hardware_specification;
information_specifications: LIST [0:?] OF information_specification;
language_specifications: LIST [0:?] OF language_specification;
other_specifications: LIST [0:?] OF other_specification;

END_ENTITY;

(* architectural_unit
An architectural_unit is an atomic unit or molecular unit that is recognized by an architecture.

Reference Architecture Interim Report

68

[from Glossary]

architectural_units make up the architectural_specifications of a control_architecture. Thus,
architectural_unit is the supertype of all entitys used in describing architectural_specifications.
architectural_units are not used for defining the other element_of_architectural_definitions.

architectural_unit might reasonably be defined as a select type, but it is more convenient as an
entity, since subtypes can be added without changing the definition of an entity but not a type
defined with select. Also, if there turns out to be an attribute, it can be inserted easily.
*)

ENTITY architectural_unit
SUPERTYPE OF (ONEOF (access_scheme,

analysis,
architectural_specification,
communication_method,
conformance_criterion,

(* control_hierarchy, *)
data_unit,
generic_interaction_specification,
interaction_setup,
interactive_unit,
message_protocol,
planning_model,

(* resource, *)
(* superior_and_subordinates, *)

system_activity));
END_ENTITY;

(* communication_method
A communication_method is a kind of architectural_unit which specifies a method of getting
messages from one interactive_unit to another.
*)

ENTITY communication_method
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* communications_specification
A communications_specification is a kind of architectural_specification which specifies some
aspect of communications.
*)

Reference Architecture Interim Report

69

ENTITY communications_specification
SUBTYPE OF (architectural_specification);

END_ENTITY;

(* conformance_criteria
conformance_criteria are criteria which specify how an architectural_unit at one
tier_of_architectural_definition of an architecture conforms to the architectural_specifications
of a higher tier, or how a process for building part of an architecture conforms to the development
methodology given by the architecture for building that part [from Glossary].

conformance_criteria are a kind of element_of_architectural_definition which consists of a set
of conformance_criterions.
*)

ENTITY conformance_criteria
SUBTYPE OF (element_of_architectural_definition);
criteria: SET [0:?] OF conformance_criterion;

END_ENTITY;

(* conformance_criterion
A conformance_criterion is a kind of architectural_unit. See the definition of
conformance_criteria.
*)

ENTITY conformance_criterion
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* control
control is the activity control_units perform. This definition should probably be expanded.

control is a kind of system_activity.
*)

ENTITY control
SUBTYPE OF (system_activity);

END_ENTITY;

(* control_architecture
The general approach to defining control_architecture used here is that a control_architecture
consists of a series of tier_of_architectural_definitions plus a
methodology_for_architectural_development. The idea of an overall methodology is that there
may be a general approach, such as “work bottom up” to architectural development which lies
outside of any single tier and is applicable to the architecture as a whole.

Reference Architecture Interim Report

70

Each successive tier_of_architectural_definition should have a lower degree of abstraction than
the previous one. This is modeled implicitly by having each tier in a separate schema
*)

ENTITY control_architecture
(* SUPERTYPE OF (ONEOF (hierarchical_control_architecture)) *);
tiers: LIST [1:?] OF tier_of_architectural_definition;
overall_methodology: methodology_for_architectural_development;

END_ENTITY;

(* control_unit
A control_unit is a kind of functional_unit which performs control of task execution - as
opposed to planning, information handling, sensory processing, etc.
*)

ENTITY control_unit
SUBTYPE OF (functional_unit);

END_ENTITY;

(* data_interaction_protocol
A data_interaction_protocol is a kind of direct_interaction_protocol in which all the
message_protocols are data_message_protocols.
*)

ENTITY data_interaction_protocol
SUBTYPE OF (direct_interaction_protocol);
SELF\direct_interaction_protocol.message_protocols:

SET [1:?] OF data_message_protocol;
END_ENTITY;

(* data_interaction_setup
A data_interaction_setup is a kind of interaction_setup in which the message_protocols of the
interaction_specification consist solely of data_message_protocols, the first_party of the
interaction_setup is an interactive_unit and the second_party is a data_store_manager.

All data access activities are modeled as though there is a data_store_manager taking part. Even
if the activity is reading or writing a shared variable in a single computer process, where it is
usually not considered that there is data_store_manager, there seems to be no harm or loss of
generality in imagining there to be one. The advantages of modeling this way are: 1. a single
model will do for all forms of data access, 2. in case of a change in data handling, only the identity
of the data_store_manager need change.
*)

Reference Architecture Interim Report

71

ENTITY data_interaction_setup
SUBTYPE OF (interaction_setup);
SELF\interaction_setup.second_party: data_store_manager;
SELF\interaction_setup.interaction_specification: data_interaction_protocol;

END_ENTITY;

(* data_message
A data_message is a kind of message concerning data. It may be a specific item of data, a query,
an instruction to a data_store_manager, or any other message concerning data. A data_message
does not directly cause system functioning.

The definition states that there are only two subtypes of data_message, both requiring that either
the sender or the receiver of the message be a data_store_manager. This is implicitly excluding
having two functional_interactive_units sending data_messages to one another.

This could also be modeled as a type which is a select either message_from_data_store_manager
or message_to_data_store_manager, which would be direct subtypes of data_message.
*)

ENTITY data_message
SUPERTYPE OF (ONEOF (message_from_data_store_manager,

message_to_data_store_manager))
SUBTYPE OF (message);

END_ENTITY;

(* data_message_protocol
A data_message_protocol is a kind of message_protocol in which all the messages are
data_messages.
*)

ENTITY data_message_protocol
SUBTYPE OF (message_protocol);
SELF\message_protocol.messages: LIST [1:?] OF data_message;

END_ENTITY;

(* data_store
A data_store is a kind of data_unit which stores data. It may be short-lived (dying with a
computer process in which it resides, for example) or long-lived (a file system, for example).

Every data_store is managed by a data_store_manager. That is not currently modeled here in
EXPRESS. A data_store stores stored_data_units. That is also not modeled. Both unmodeled
items could be modeled with inverse statements.
*)

Reference Architecture Interim Report

72

ENTITY data_store
SUBTYPE OF (data_unit);

END_ENTITY;

(* data_store_manager
A data_store_manager is a kind of interactive_unit which gets incoming data_messages and
sends outgoing data_messages and uses the data_store in some way in dealing with the
messages. Every data_store is assumed to have a data_store_manager which has control of the
data_store.

In the case of many database systems, the data_store_manager may be an identifiable process
recognized by the operating system. Even if the data link is composed of reading or writing a
shared variable in a single computer process, where it is normally considered that there is no
data_store_manager, there seems to be no harm or loss of generality in imagining there to be one.
In the case just described, the computer instruction executor is acting as the data_store_manager,
and the data_store is RAM memory.
*)

ENTITY data_store_manager
SUBTYPE OF (interactive_unit);
managed_store: data_store;

END_ENTITY;

(* data_unit
A data_unit is a kind of architectural_unit which consists of any kind of data.

data_unit is a supertype of data_store, message, message_information, plan, and
stored_data_unit.
*)

ENTITY data_unit
SUPERTYPE OF (ONEOF (data_store,

message,
message_information,
plan,
stored_data_unit))

SUBTYPE OF (architectural_unit);
END_ENTITY;

(* direct_interaction_protocol
A direct_interaction_protocol is a kind of generic_interaction_specification. A
direct_interaction_protocol describes the continuing interaction between two interactive_units.
It consists of a first_party and a second_party, both of which are interactive_units, and a set of
message_protocols.

Reference Architecture Interim Report

73

The first_party and second_party of all the message_protocols must be the same as the
first_party and second_party of the direct_interaction_protocol. This is not currently modeled in
EXPRESS.
*)

ENTITY direct_interaction_protocol
SUPERTYPE OF (ONEOF (data_interaction_protocol,

functional_interaction_protocol))
SUBTYPE OF (generic_interaction_specification);
first_party: interactive_unit;
second_party: interactive_unit;
message_protocols: SET [1:?] OF message_protocol;

END_ENTITY;

(* dynamic_analysis
A dynamic_analysis is an analysis of the characteristics of the functions and information in a
domain which vary over time during control system operation. It provides qualitative and
quantitative information about the sequence, duration, and frequency of change in the functions
and information of the domain. [from Glossary]

A dynamic_analysis is a kind of analysis.
*)

ENTITY dynamic_analysis
SUBTYPE OF (analysis);

END_ENTITY;

(* element_of_architectural_definition
A element_of_architectural_definition is a part of the definition of an architecture. The
element_of_architectural_definitions are statement of scope and purpose, domain analyses,
architectural_specifications, methodology_for_architectural_developement, and
conformance_criteria. [from Glossary]
*)
ENTITY element_of_architectural_definition

SUPERTYPE OF (ONEOF (scope,
purpose,
analyses,
architectural_specifications,
methodology_for_architectural_development,
conformance_criteria));

END_ENTITY;

(* functional_analysis

Reference Architecture Interim Report

74

A functional_analysis is an analysis of all the activities within the scope of an architecture which
a conforming system is supposed to be able to perform. [from Glossary]

A functional_analysis is a kind of analysis.
*)

ENTITY functional_analysis
SUBTYPE OF (analysis);

END_ENTITY;

(* functional_interaction_protocol
A functional_interaction_protocol is a kind of direct_interaction_protocol in which all the
message_protocols are functional_message_protocols.
*)

ENTITY functional_interaction_protocol
SUBTYPE OF (direct_interaction_protocol);
SELF\direct_interaction_protocol.message_protocols:

SET [1:?] OF functional_message_protocol;
END_ENTITY;

(* functional_interaction_setup
A functional_interaction_setup is a kind of interaction_setup in which the first_party and
second_party are both functional_units, and all the message_protocols of the interaction_setup
are functional_message_protocols.

*)
ENTITY functional_interaction_setup

SUBTYPE OF (interaction_setup);
SELF\interaction_setup.first_party: functional_unit;
SELF\interaction_setup.second_party: functional_unit;
SELF\interaction_setup.interaction_specification: functional_interaction_protocol;

END_ENTITY;

(* functional_message
A functional_message is a kind of message, such as a command or a status, used directly to
perform the functions of the system. This constraint on the nature of the message is not currently
modeled here in EXPRESS. Only functional_units can send functional_messages, and that is
modeled.
*)

Reference Architecture Interim Report

75

ENTITY functional_message
(* SUPERTYPE OF (ONEOF (command, status)) *)
SUBTYPE OF (message);
SELF\message.sender: functional_unit;
SELF\message.receiver: functional_unit;

END_ENTITY;

(* functional_message_protocol
A functional_message_protocol is a kind of message_protocol in which all the messages are
functional_messages.
*)

ENTITY functional_message_protocol
SUBTYPE OF (message_protocol);
SELF\message_protocol.first_party: functional_unit;
SELF\message_protocol.second_party: functional_unit;
SELF\message_protocol.messages: LIST [1:?] OF functional_message;

END_ENTITY;

(* functional_specification
A functional_specification is a kind of architectural_specification. A functional_specification
describes part of the functioning of a control system.
*)

ENTITY functional_specification
SUBTYPE OF (architectural_specification);

END_ENTITY;

(* functional_unit
A functional_unit is a kind of interactive_unit directly involved in the functions of a control
system. A functional_unit may be a control_unit or a planner but may not be a
data_store_manager.
*)

ENTITY functional_unit
SUPERTYPE OF (ONEOF (control_unit,

planner))
SUBTYPE OF (interactive_unit);

END_ENTITY;

(* generic_interaction_specification
A generic_interaction_specification is a kind of architectural_unit. A
generic_interaction_specification describes a continuing interaction between interactive_units.
A generic_interaction_specification may be a direct_interaction_protocol (in which two

Reference Architecture Interim Report

76

interactive_units interact via message_protocols) or an indirect_interaction_specification (in
which sets of interactive_units interact via shared data)
*)

ENTITY generic_interaction_specification
SUPERTYPE OF (ONEOF (direct_interaction_protocol,

indirect_interaction_specification))
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* hardware_specification
A hardware_specification is a kind of architectural_specification that describes the hardware of
a control system.
*)

ENTITY hardware_specification
SUBTYPE OF (architectural_specification);

END_ENTITY;

(* indirect_interaction_specification
An indirect_interaction_specification is a kind of generic_interaction_specification. An
indirect_interaction_specification describes a continuing interaction between two sets of
interactive_units via a set of stored_data_units managed by one or more data_store_managers,
and mediated by an access_scheme. It consists of readers and writers (both of which are sets of
interactive_units), permitted_data_units (which is the set of stored_data_units which may be
accessed by the readers and writers), a scheme (which is an access_scheme), and managers
(which is a set of data_store_managers).

Note that an indirect_interaction_specification does not specify messages. Messages might well
flow between the data_store_managers managing the stored_data_units and the various
interactive_units which have access to the permitted_data_units, but that is not relevant here.

The permitted_data_units must all be in the data_stores managed by the managers. That is not
currently modeled here in EXPRESS.

It might be useful to add a purpose to the definition of an indirect_interaction_specification.

*)

Reference Architecture Interim Report

77

ENTITY indirect_interaction_specification
SUBTYPE OF (generic_interaction_specification);
readers: SET [1:?] OF interactive_unit;
writers: SET [1:?] OF interactive_unit;
permitted_data_units: SET [1:?] OF stored_data_unit;
scheme: access_scheme;
managers: SET [1:?] OF data_store_manager;

END_ENTITY;

(* information_analysis
A information_analysis is an analysis of all the information within the scope of an architecture
needed for a conforming control system to function properly. [from Glossary]

An information_analysis is a kind of analysis.
*)

ENTITY information_analysis
SUBTYPE OF (analysis);

END_ENTITY;

(* information_specification
An information_specification is a kind of architectural_specification.
*)

ENTITY information_specification
SUBTYPE OF (architectural_specification);

END_ENTITY;

(* interaction_setup
An interaction_setup is a kind of architectural_unit. An interaction_setup describes the
continuing interaction between two interactive_units. It consists of a first_party and a
second_party, both of which are interactive_units, a link_method which is a
communication_method, and an interaction_specification which is a
direct_interaction_protocol. The first_party and second_party of the interaction_setup are the
same as those of the direct_interaction_protocol.

It might be feasible to simplify the definition of interaction_setup by leaving out the first_party
and second_party, since they are identified in the direct_interaction_protocol, but it seems more
natural to keep them.

The first_party and second_party must be different; that is not currently modeled here in
EXPRESS.

An interaction_setup is persistent and is modeled as a static part of a control_architecture. The

Reference Architecture Interim Report

78

current model provides no explicit support for changing interaction_setups, i.e., dynamic
reconfiguration. Explicitly providing for dynamic reconfiguration will require large changes in the
model.

*)

ENTITY interaction_setup
SUPERTYPE OF (ONEOF (data_interaction_setup,

functional_interaction_setup))
SUBTYPE OF (architectural_unit);
first_party: interactive_unit;
second_party: interactive_unit;
link_method: communication_method;
interaction_specification: direct_interaction_protocol;
WHERE

first_party_same: first_party :=: interaction_specification.first_party;
second_party_same: second_party :=: interaction_specification.second_party;

END_ENTITY;

(* interactive_unit
An interactive_unit is a kind of architectural_unit that interacts with other interactive_units of
the architecture. interactive_units are software running on computers, not hardware.
*)

ENTITY interactive_unit
SUPERTYPE OF (ONEOF (functional_unit,

data_store_manager))
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* language_specification
A language_specification is a kind of architectural_specification which specifies the use of
some particular language for modeling or programming.
*)

ENTITY language_specification
SUBTYPE OF (architectural_specification);

END_ENTITY;

(* message
A message is a kind of data_unit which is used to carry information from one interactive_unit
(the sender) to another (the receiver).

The sender and receiver must be different; that is not currently modeled here in EXPRESS.

Reference Architecture Interim Report

79

Note that this is implicitly excluding broadcasting. If it is deemed desirable to model
broadcasting, the definition of message could be made more general and the entity defined here
could be called a point_to_point_message.

As modeled here, a message is intended to serve as a prototype for instances of itself. It may be
useful to define message_instance, but this has not yet been done.
*)

ENTITY message
SUPERTYPE OF (ONEOF (data_message,

functional_message))
SUBTYPE OF (data_unit);
sender: interactive_unit;
receiver: interactive_unit;
contents: message_information;

END_ENTITY;

(* message_from_data_store_manager
A message_from_data_store_manager is a kind of data_message in which the sender is a
data_store_manager.
*)

ENTITY message_from_data_store_manager
SUBTYPE OF (data_message);
SELF\message.sender: data_store_manager;

END_ENTITY;

(* message_information
A message_information is the information of a message.

As modeled here, message_information has no structure. It is expected that structured subtypes
will be defined as needed.
*)

ENTITY message_information
SUBTYPE OF (data_unit);

END_ENTITY;

(* message_protocol
A message_protocol is a kind of architectural_unit. A message_protocol is the specification of
one or more messages which are exchanged between two interactive_units (the first_party and
the second_party) in order to accomplish some specific purpose. Either the first_party or the
second_party of the message_protocol must be the sender or receiver of each message,

Reference Architecture Interim Report

80

depending on the direction in which the particular message is going. It would be nice to add a
where clause to make this relationship explicit in the definition.

As modeled here, message_protocol has two subtypes, data_message_protocol (the messages of
which are all data_messages) and functional_message_protocol (the messages of which are all
functional_messages). It might turn out to be useful to allow message_protocols with messages
of mixed kinds.

The first_party and second_party must be different; that is not currently modeled here in
EXPRESS.

The messages of a message_protocol are modeled here as a list, but they might have more
structure than a list, since which messages are sent might depend on the circumstances. A simple
example is that in response to a command, a subordinate controller might send an indeterminate
number of status messages (one each cycle until the command was carried out). This definition
should be improved to handle more complex cases.
*)

ENTITY message_protocol
SUPERTYPE OF (ONEOF (data_message_protocol,

functional_message_protocol))
SUBTYPE OF (architectural_unit);
first_party: interactive_unit;
second_party: interactive_unit;
purpose: message_protocol_purpose;
messages: LIST [1:?] OF message;

END_ENTITY;

(* message_to_data_store_manager
A message_to_data_store_manager is a kind of data_message in which the receiver is a
data_store_manager.
*)

ENTITY message_to_data_store_manager
SUBTYPE OF (data_message);
SELF\message.receiver: data_store_manager;

END_ENTITY;

(* methodology_for_architectural_development
A methodology_for_architectural_development is a set of procedures for applying an
architecture. [from Glossary]

A methodology_for_architectural_development is a kind of
element_of_architectural_definition.

Reference Architecture Interim Report

81

*)

ENTITY methodology_for_architectural_development
SUBTYPE OF (element_of_architectural_definition);

END_ENTITY;

(* other_analysis
An other_analysis is a kind of analysis which is not an information_analysis,
functional_analysis, or dynamic_analysis. This entity may not be needed.
*)

ENTITY other_analysis
SUBTYPE OF (analysis);

END_ENTITY;

(* other_specification
An other_specification is a kind of architectural_specification.
*)

ENTITY other_specification
SUBTYPE OF (architectural_specification);

END_ENTITY;

(* plan
A plan is a scheme developed to accomplish a specific goal. [from Glossary]

A plan is a kind of data_unit.
*)

ENTITY plan
(* SUPERTYPE OF (ONEOF (process_plan,

production_managed_plan,
schedule)) *)

SUBTYPE OF (data_unit);
END_ENTITY;

(* planner
A planner is an agent which generates or selects plans to accomplish one or more goals. [from
Glossary]

A planner is a kind of functional_unit which produces plans. It is not clear that a planner should
be a subtype of functional_unit, since plans are data. Also, the EXPRESS definition makes it
appear that the output is a single plan, whereas the intent is to identify the type of output. This
needs more thought.

Reference Architecture Interim Report

82

*)

ENTITY planner
(* SUPERTYPE OF (ONEOF (process_planner,

production_management_planner,
schedule_planner)) *)

SUBTYPE OF (functional_unit);
output: plan;

END_ENTITY;

(* planning
planning is the activity of making plans. The plans may be process_plans,
production_managed_plans, schedules, etc.

planning is a kind of system_activity.
*)

ENTITY planning
(* SUPERTYPE OF (ONEOF (process_planning,

production_management_planning,
schedule_planning)) *)

SUBTYPE OF (system_activity);
END_ENTITY;

(* planning_model
A planning_model is a kind of architectural_unit which describes how planning is done in the
architecture.
*)

ENTITY planning_model
(* SUPERTYPE OF (ONEOF (j_planning_model)) *)
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* purpose
A purpose is a kind of element_of_architectural_definition applicable to a
tier_of_architectural_definition. The purpose serves as a statement of what the architecture is
intended to help accomplish within the scope of that tier.

In this model, one entity which is a subtype of the purpose of the preceding tier is included in
each tier. Each such entity includes an attribute which is a further restriction of the purpose of the
architecture.

As used in this model, purposes are tied only to tier_of_architectural_definitions.

Reference Architecture Interim Report

83

The behavior of the purpose element_of_architectural_definition with respect to the entire
model given here is interesting. The purpose element_of_architectural_definition does not
change in level of abstraction between tiers, so narrower and narrower purposes are conveniently
modeled as subtypes. The scope entity shares this property, but the other
element_of_architectural_definitions in the model do not; they generally change level of
abstraction between tiers.
*)

ENTITY purpose
(* SUPERTYPE OF (ONEOF (j_purpose_one)) *)
SUBTYPE OF (element_of_architectural_definition);

END_ENTITY;

(* scope
A scope is the range of areas to which an architecture is intended to be applied. [from Glossary]

A scope is a kind of element_of_architectural_definition.

In this model, one entity which is a subtype of the scope of the preceding tier is included in each
tier. Each such entity includes an attribute which is a further restriction of the scope of the
architecture.
*)

ENTITY scope
(* SUPERTYPE OF (ONEOF (j_scope_one)) *)
SUBTYPE OF (element_of_architectural_definition);

END_ENTITY;

(* stored_data_unit
A stored_data_unit is a kind of data_unit. A stored_data_unit describes a stored unit of data. It
consists of a manager which is a data_store_manager, which manages the data_store in which
the stored_data_unit resides.

Our current thinking is that, at any one time, a stored_data_unit has sets of readers and writers,
both of which are composed of interactive_units, which can access the data. The readers and
writers may change dynamically, so they are not modeled as part of the stored_data_unit, but
rather as part of an interaction specification.

It might be a good idea to add an attribute here giving the type of the data which is stored. It
might also be useful to add an attribute giving the data_store in which the stored_data_unit is
stored, but this information is already available through knowing the data_store_manager. It
could be added as a derived attribute.

Reference Architecture Interim Report

84

A concept not currently included in this conceptual model is that of a
“stored_data_conglomerate”. A stored_data_conglomerate would consist of a set of
stored_data_units, each of which is intended to represent the same data as all the others. Each
representation would be in a different data_store. This would put a formal handle on the common
problem of keeping different representations of the same data the same.
*)

ENTITY stored_data_unit
SUBTYPE OF (data_unit);
manager: data_store_manager;

END_ENTITY;

(* system_activity
A system_activity is a kind of architectural_unit. It would be feasible to define system_activity
more fully by adding attributes. The IDEF0 concepts of activity could be used, ICOM in
particular (inputs, outputs, controls, means). This takes us a bit far afield from the topic of
control_architecture, so it has not been done. It would probably be better in a separate schema.

Currently, the only subtypes of system_activity are control and planning. It might be better to
have functional_activity be a subtype of system_activity and control be a subtype of
functional_activity.
*)

ENTITY system_activity
SUPERTYPE OF (ONEOF (control,

planning))
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* tier_of_architectural_definition
A tier_of_architectural_definition is one group in an ordered set of disjoint groups of
architectural_units of an architecture, such that whenever two architectural_units are related by
the first one being an abstraction of the second, the tier of the first is higher than or the same as the
tier of the second. [from Glossary]

A tier_of_architectural_definition consists of the six element_of_architectural_definitions:
scope, purpose, analyses, architectural_specifications,
methodology_for_architectural_development, and conformance_criteria.
*)

Reference Architecture Interim Report

85

ENTITY tier_of_architectural_definition;
tier_scope: scope;
tier_purpose: purpose;
tier_analyses: analyses;
tier_architectural_specifications: architectural_specifications;
tier_methodology: methodology_for_architectural_development;
tier_conformance_criteria: conformance_criteria;

END_ENTITY;

(***
FUNCTIONS
*)

END_SCHEMA;

(**

***)

Reference Architecture Interim Report

86

SCHEMA tier1_hierarchical_control;

(* This schema gives the first tier of the joint architecture. It restricts the scope of the architecture
to hierarchical control of mechanical systems and specifies a hierarchical_control_architecture
(the generic_control_architecture is not necessarily hierarchical).

This schema includes the following main ideas which are specific to hierarchical control:
superior_and_subordinates, control_hierarchy, command_and_status_protocol.

This schema does not include any concepts concerning resources.

As noted earlier, this tier uses all of the concepts of the generic_control_architecture schema.
*)

USE FROM generic_control_architecture;

(***
**
SCOPE
*)

(***
ENTITIES
*)

(* j_scope_one
A j_scope_one is a kind of scope which is the scope of the first tier of the joint architecture.

The scope is restricted to hierarchical control of mechanical systems.
*)

ENTITY j_scope_one
(* SUPERTYPE OF (ONEOF (j_scope_two)) *)
SUBTYPE OF (scope);
restriction1: scope_restriction;
WHERE restriction1 = ’hierarchical control of mechanical systems’;

END_ENTITY;

(***
**
PURPOSE
*)

(***

Reference Architecture Interim Report

87

ENTITIES
*)

(* j_purpose_one
A j_purpose_one is a kind of purpose which is the purpose of the first tier of the joint
architecture.

The purpose is to provide a control architecture which will encompass all applications which one
or both of RCS and MSI can currently handle.
*)

ENTITY j_purpose_one
(* SUPERTYPE OF (ONEOF (j_purpose_two)) *)
SUBTYPE OF (purpose);
restriction1: purpose_restriction;
WHERE restriction1 = ’The purpose of this tier is to provide a control architecture

which will encompass all applications which one or both of RCS and MSI can
currently handle.’;

END_ENTITY;

(***
**
ANALYSES
*)

(***
**
ARCHITECTURAL SPECIFICATIONS
*)

(***
ENTITIES
*)

(* command
A command is an instruction from a superior controller to a subordinate controller (or from a
client controller to a server controller) to carry out a task. [from Glossary]

A command is a kind of functional_message in which the sender is a control_unit and the
receiver is a control_unit. A command is an instruction from the sender to the receiver; this
constraint on the message is not modeled here in EXPRESS.

In this model, a functional_message is not called a command if the sender or receiver is a
functional_unit (such as a planner) which is not a control_unit. It might be nice to have a name

Reference Architecture Interim Report

88

for functional_messages which are not commands.
*)

ENTITY command
SUBTYPE OF (functional_message);
SELF\message.sender: control_unit;
SELF\message.receiver: control_unit;

END_ENTITY;

(* command_and_status_protocol
A command_and_status_protocol is an exchange of messages between a superior (or client)
controller and a subordinate (or server) controller in which the superior tells the subordinate what
is to be done by sending a command and the subordinate sends a status message back. [from
Glossary]

A command_and_status_protocol is a kind of functional_interaction_protocol in which all
messages for which the first_party of the functional_interaction_protocol is the sender of the
message are commands, and all messages for which the second_party of the
functional_interaction_protocol is the sender of the message are status messages. This is not
currently modeled here in EXPRESS.
*)

ENTITY command_and_status_protocol
SUBTYPE OF (functional_interaction_protocol);

END_ENTITY;

(* control_hierarchy
A control_hierarchy is a kind of architectural_unit. It describes an arrangement of control_units
which is a tree, with one control_unit at the top with at least one subordinate. Each of the
subordinates of the top control_unit may have zero to many subordinates, each of which may
also have zero to many subordinates, and so on. Each of the subordinates has only one superior.

The control_hierarchy is modeled as a list of superior_and_subordinates, with the restriction
that any one control_unit may appear at most once in the role of subordinate, and every
control_unit that appears in the role of superior, except the superior in the first entry in the list,
must appear earlier in the list in the role of subordinate. These restrictions are not currently
modeled here in EXPRESS. By using the superior_and_subordinates entity as the building block
for control_hierarchy, the requirement that there be a command_and_status_protocol between a
superior and each of its subordinates is automatically imposed.

A nicer modeling technique might be to define hierarchy more abstractly, using a superior-
subordinate relationship, and then use the command_and_status_protocol (or an abstraction of it)
as the relationship.
*)

Reference Architecture Interim Report

89

ENTITY control_hierarchy
SUBTYPE OF (architectural_unit);
superior_subordinate_sets: LIST [1:?] OF superior_and_subordinates;

END_ENTITY;

(* hierarchical_control_architecture
A hierarchical_control_architecture is a kind of control_architecture in which the
control_units are arranged in a control_hierarchy and interact via a
command_and_status_protocol.

Note that functional_units of the architecture which are not control_units are not necessarily
arranged in a hierarchy.
*)

ENTITY hierarchical_control_architecture
SUBTYPE OF (control_architecture);
WHERE
control_units_in_a_hierarchy(SELF\control_architecture);

END_ENTITY;

(* status
A status is a kind of functional_message in which the sender and receiver are control_units. The
content of a status message should be to give the status of the execution of a command or the
status of health of the sender of the status message. This constraint on the nature of the message
is not currently modeled here in EXPRESS. It might be useful to relax the constraint that the
sender and receiver both be control_units to require only that they both be functional_units.
*)

ENTITY status
SUBTYPE OF (functional_message);
SELF\message.sender: control_unit;
SELF\message.receiver: control_unit;

END_ENTITY;

(* superior_and_subordinates
A superior_and_subordinates is a kind of architectural_unit. It consists of a superior (which is
a control_unit), a list of subordinates (each of which is a control_unit and occurs only once in the
list) and a list of command_and_status_protocols. In each of the
command_and_status_protocols the first_party must be the superior and the second_party must
be the subordinate in the corresponding place in the list of subordinates; this constraint is not
currently modeled here in EXPRESS.

Reference Architecture Interim Report

90

This entity serves as the building block from which control_hierarchy is made.

The subordinates attribute could be derived from the protocols, but the model seems more
natural as it is given now.
*)

ENTITY superior_and_subordinates
SUBTYPE OF (architectural_unit);
superior: control_unit;
subordinates: LIST [1:?] OF UNIQUE control_unit;
protocols: LIST [1:?] OF command_and_status_protocol;

END_ENTITY;

(***
FUNCTIONS
*)

(* control_units_in_a_hierarchy
This function is currently a stub (always returns TRUE) for a function which tests whether the
control_units of a control_architecture are arranged in a control_hierarchy. The real version of
the function will return the logical value TRUE if so and FALSE if not.

The function is used by the hierarchical_control_architecture entity.
*)

FUNCTION control_units_in_a_hierarchy (input: control_architecture) : LOGICAL;
RETURN (TRUE);

END_FUNCTION;

(***
**
METHODOLOGY
*)

(***
**
CONFORMANCE CRITERIA
*)

END_SCHEMA;

Reference Architecture Interim Report

91

(***
**
**)

Reference Architecture Interim Report

92

SCHEMA tier2_discrete_parts;

(* This schema gives the second tier of the joint architecture. It restricts the scope of the
architecture to discrete parts manufacturing. This schema includes the following main ideas
which are needed in discrete parts manufacturing: real_time_control_unit,
scheduled_control_unit, transition_control_unit (which combines features of the other two
types of control_unit), a melded_control_hierarchy using the three types of control_unit, a three
phase planning_model (with process_planning, production_management_planning, and
scheduling), and resources (which is not yet done).

As noted earlier, this tier uses all of the concepts of the previous tier.
*)

USE FROM tier1_hierarchical_control;

(***
**
SCOPE

(***
ENTITIES
*)

*)
(* j_scope_two
A j_scope_two is a kind of j_scope_one which is the scope of the second tier of the joint
architecture.

The scope is restricted further to discrete parts manufacturing.
*)

ENTITY j_scope_two
(* SUPERTYPE OF (ONEOF (j_scope_three)) *)
SUBTYPE OF (j_scope_one);
restriction2: scope_restriction;
WHERE restriction2 = ’discrete parts manufacturing’;

END_ENTITY;

(***
**
PURPOSE
*)

(***
ENTITIES

Reference Architecture Interim Report

93

*)

(* j_purpose_two
A j_purpose_two is a kind of j_purpose_one which is the purpose of the second tier of the joint
architecture.

The purpose is to be restricted further.
*)

ENTITY j_purpose_two
(* SUPERTYPE OF (ONEOF (j_purpose_three)) *)
SUBTYPE OF (j_purpose_one);
restriction2: purpose_restriction;
WHERE restriction2 = ’tbd’;

END_ENTITY;

(***
**
ANALYSES
*)

(***
**
ARCHITECTURAL SPECIFICATIONS
*)

(***
ENTITIES
*)

(* melded_control_hierarchy
A melded_control_hierarchy is a kind of control_hierarchy in which the control_unit at the top
of the hierarchy is a scheduled_control_unit, the subordinates of each scheduled_control_unit
are either scheduled_control_units or transition_control_units, and the subordinates of
transition_control_units are all real_time_control_units. This constraint is not currently
modeled here in EXPRESS.
*)

ENTITY melded_control_hierarchy
SUBTYPE OF (control_hierarchy);

END_ENTITY;

(* j_planning_model

Reference Architecture Interim Report

94

A j_planning_model is a kind of planning_model with three phases. The first phase is
process_planning, the second phase is production_management_planning, and the third phase
is schedule_planning.

The intent is that the j_planning_model should serve for all controllers in a control_hierarchy
which has MSI-type scheduled_control_units in the upper hierarchical levels (requiring resource
allocation and scheduling) and RCS-type real_time_control_units in the lower hierarchical levels
(running in real time and doing sensory processing). The MSI-type require all three phases before
plan execution is possible. The RCS-type require only process_planning. That is why the second
and third planning phases are marked OPTIONAL in the EXPRESS.
*)

ENTITY j_planning_model
SUBTYPE OF (planning_model);
phase1: process_planning;
phase2: OPTIONAL production_management_planning;
phase3: OPTIONAL schedule_planning;

END_ENTITY;

(* process_plan
A process_plan is a specification of the activities (possibly including alternatives) necessary to
reach some goal. A process_plan serves as a template, or recipe. process_plans may be
distinguished from production_managed_plans and schedules, both of which are derived from
process_plans. [from Glossary]

A process_plan is a kind of plan.
*)

ENTITY process_plan
SUBTYPE OF (plan);

END_ENTITY;

(* process_planner
A process_planner is a kind of planner which makes process_plans.
*)

ENTITY process_planner
SUBTYPE OF (planner);
SELF\planner.output: process_plan;

END_ENTITY;

(* process_planning
process_planning is a kind of planning in which process_plans are produced.
*)

Reference Architecture Interim Report

95

ENTITY process_planning
SUBTYPE OF (planning);

END_ENTITY;

(* production_managed_plan
A production_managed_plan is a kind of plan. It is derived from a process_plan.
*)

ENTITY production_managed_plan
SUBTYPE OF (plan);
antecedent_process_plan: process_plan;

END_ENTITY;

(* production_management_planner
A production_management_planner is a kind of planner which makes
production_managed_plans.
*)

ENTITY production_management_planner
SUBTYPE OF (planner);
SELF\planner.output: production_managed_plan;

END_ENTITY;

(* production_management_planning
production_management_planning is a kind of planning in which production_managed_plans
are produced.
*)

ENTITY production_management_planning
SUBTYPE OF (planning);

END_ENTITY;

(* real_time_control_unit
A real_time_control_unit is a kind of control_unit which operates in hard real time. In addition,
it is expected that a real_time_control_unit will not require scheduling. The restrictions on
real_time_control_unit are not currently modeled here in EXPRESS.
*)

ENTITY real_time_control_unit
SUBTYPE OF (control_unit);

END_ENTITY;

(* resource

Reference Architecture Interim Report

96

A resource is a kind of architectural_unit.

This is currently a stub definition.
*)

ENTITY resource
SUBTYPE OF (architectural_unit);

END_ENTITY;

(* schedule
A schedule is a kind of plan which includes the assignment of specific resources and times. It is
derived from a production_managed_plan
*)

ENTITY schedule
SUBTYPE OF (plan);
antecedent_managed_plan: production_managed_plan;

END_ENTITY;

(* schedule_planner
A schedule_planner is an agent which performs scheduling. [from Glossary - scheduler]

A schedule_planner is a kind of planner which makes schedules.
*)

ENTITY schedule_planner
SUBTYPE OF (planner);
SELF\planner.output: schedule;

END_ENTITY;

(* schedule_planning
schedule_planning is a kind of planning.
*)

ENTITY schedule_planning
SUBTYPE OF (planning);

END_ENTITY;

(* scheduled_control_unit
A scheduled_control_unit is a kind of control_unit which will support being scheduled and does
not necessarily run in hard real time.

The restrictions on scheduled_control_unit are not currently modeled here in EXPRESS.
*)

Reference Architecture Interim Report

97

ENTITY scheduled_control_unit
SUBTYPE OF (control_unit);

END_ENTITY;

(* transition_control_unit
A transition_control_unit is a kind of control_unit which may be one of the subordinates of a
scheduled_control_unit and the superior of a real_time_control_unit.

The restrictions on transition_control_unit are not currently modeled here in EXPRESS.
*)

ENTITY transition_control_unit
SUBTYPE OF (control_unit);

END_ENTITY;

(***
**
METHODOLOGY
*)

(***
**
CONFORMANCE CRITERIA
*)

END_SCHEMA;

(***
**
**)

Reference Architecture Interim Report

98

SCHEMA tier3;

(* This schema describes the third tier of the joint architecture. It is currently a shell.
*)

USE FROM tier2_discrete_parts;

(***
**
SCOPE
*)

(***
ENTITIES
*)

(* j_scope_three
A j_scope_three is a kind of j_scope_two which is the scope of the third tier of the joint
architecture.

The scope is to be restricted further, possibly in this model, but that has not been done yet.
*)

ENTITY j_scope_three
(* SUPERTYPE OF (ONEOF (j_scope_four)) *)
SUBTYPE OF (j_scope_two);
restriction3: scope_restriction;

END_ENTITY;

(***
**
PURPOSE
*)

(***
ENTITIES
*)

(* j_purpose_three
A j_purpose_three is a kind of j_purpose_two which is the purpose of the third tier of the joint
architecture.

The purpose is to be restricted further.
*)

Reference Architecture Interim Report

99

ENTITY j_purpose_three
(* SUPERTYPE OF (ONEOF (j_purpose_four)) *)
SUBTYPE OF (j_purpose_two);
restriction3: purpose_restriction;

END_ENTITY;

(***
**
ANALYSES
*)

(***
**
ARCHITECTURAL SPECIFICATIONS
*)

(***
**
METHODOLOGY
*)

(***
**
CONFORMANCE CRITERIA
*)

END_SCHEMA;

(***
**
**)

Reference Architecture Interim Report

100

SCHEMA tier4;

(* This schema describes the fourth tier of the joint architecture. It is currently a shell.
*)

USE FROM tier3;

(***
**
SCOPE
*)

(***
ENTITIES
*)

(* j_scope_four
A j_scope_four is a kind of j_scope_three which is the scope of the fourth tier of the joint
architecture.

The scope is to be restricted further, possibly in this model, but that has not been done yet.
*)

ENTITY j_scope_four
(* SUPERTYPE OF (ONEOF (j_scope_five)) *)
SUBTYPE OF (j_scope_three);
restriction4: scope_restriction;

END_ENTITY;

(***
**
PURPOSE
*)

(***
ENTITIES
*)

(* j_purpose_four
A j_purpose_four is a kind of j_purpose_three which is the purpose of the fourth tier of the joint
architecture.

The purpose is to be restricted further.
*)

Reference Architecture Interim Report

101

ENTITY j_purpose_four
(* SUPERTYPE OF (ONEOF (j_purpose_five)) *)
SUBTYPE OF (j_purpose_three);
restriction4: purpose_restriction;

END_ENTITY;

(***
**
ANALYSES
*)

(***
**
ARCHITECTURAL SPECIFICATIONS
*)

(***
**
METHODOLOGY
*)

(***
**
CONFORMANCE CRITERIA
*)

END_SCHEMA;

(***
**
**)

Reference Architecture Interim Report

102

SCHEMA tier5;

(* This schema describes the fifth tier of the joint architecture. It is currently a shell.
*)

USE FROM tier4;

(***
**
SCOPE
*)

(* j_scope_five
A j_scope_five is a kind of j_scope_four which is the scope of the fifth tier of the joint
architecture.

The scope is to be restricted further in applications of the architecture, but not in this model.
*)

ENTITY j_scope_five
SUBTYPE OF (j_scope_four);
restriction5: scope_restriction;

END_ENTITY;

(***
**
PURPOSE
*)
(* j_purpose_five
A j_purpose_five is a kind of j_purpose_four which is the purpose of the fifth tier of the joint
architecture.

The purpose is to be restricted further.
*)

ENTITY j_purpose_five
SUBTYPE OF (j_purpose_four);
restriction5: purpose_restriction;

END_ENTITY;

(***
**
ANALYSES

Reference Architecture Interim Report

103

*)

(*
**
**
ARCHITECTURAL SPECIFICATIONS
*)

(***
**
METHODOLOGY
*)

(***
**
CONFORMANCE CRITERIA
*)

END_SCHEMA;

