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Abstract

In this paper, it is shown that a second order least-mean-square-fit (LMSF) smoothing filter of in-
finite length may be expressed in the form of an o—p—y filter. The relationships for o, B, ¥, are de-

rived such that equivalency to a LMSF is achieved.

1. Introduction

One method for filtering a time sequence is to perform a least squares fit of the previous values of
the sequence to a polynomial function of time. Such a procedure is sometimes referred to as a
least-mean-square-fit (LMSF) filter [1]. Usually such a least squares fit is computed over a finite
length of previous samples of the sequence with equal weighting of the samples. However, if the
polynomial is quadratic and the fit is computed over the entire infinite sequence of previous sam-
ples with an exponential decay weighting, the steady-state response of the resulting IIR filter can
be shown to be equivalent to that of an o~y filter. In this paper, this equivalency is established
and the relationships for o, B, y are derived in such a filter. In the development that follows, it is

assumed that the sample period (7) is 1.

2. LMSF filter specification

To fit a 2" order polynomial to previous values of a time sequence, a least squares residual, J, is
minimized through choice of a, a;, ay:

I = % x"(xm(r) - (a,(, +at+ a2t2))2 M

t=—oo

where

t is the time (current time: ¢ = (J), in sample periods



X,(t) are the measured values of the time sequence

ay, a;, a, are the polynomial coefficients

An exponential decay profile is achieved in (1) by multiplying previous terms by increasing pow-

ers of A where 0<A<1.

The computed values, a,, 4,, 4, , that minimize J can then be used to generate the filtered values of

the time sequence:

X _pusp(t10) = &g+t + &2t2 @

This formulation can be used for both prediction, ¢>0, and smoothing, ¢<0.

3. o—By filter specification
For the case where the sample period is 1, the state equations for the o—p—y filter [2][3], are:

Prediction

xp(k) =x(k-1) +v (k-1) +%as(k-—1), vp(k) =v (k-1) +a (k-1), ap(k) =a,(k-1). 3)

Smoothing
x (k) = x,(k) +a[x, (k) ~x, ()], v (k) =v,(k) +B[x, (k) -x,(H], @)

5
a, (k) = a,(k) +%[xm(k) ~x,(B)]. )

To use the o—B—y filter to predict the position x,_, at some future time ¢, the following equation
is used:
X apl@1B) = %, 6) + (1= D), () + 5 (- ) 7, (k). ®)

4. LMSF equivalency to a—p—y filter

To show that the LMSF and o—f—y filter formulations are equivalent, a frequency domain repre-



sentation is used. Converting (1) to the z-domain and expressing it in matrix form gives:

J= (b-Ha)"W(b —Ha) = b"Wb -20"WH a +a H'WHa 0
1 00 . .
ag 1 -1 1 A .
a=|a H=11 2 4 W= 2 b= 22 b = bX,(2) ®)
o 1 -39 -~

To minimize J with respect to a, the derivative of J with respect to a is set to zero and solved for

a:
Y _HWy +H WHa = 0 ®
da
a= (HTWH)_IHTWme(z) (10)

Substituting a into (2) gives the filtered output Xr1msr(2):

1 ! 11
X, pysp® = da= dT(HTWH)_ H'Wex ;) d= ‘ an
t
The transfer function relating the measured values to the filtered values is then given by:
X - F(Z) T T -1 T
Tomsr® = -f—f’*"% =d (H WH) H'Wb (12)
o~ i “.i“.Z"- —”X"-
PILIED IS W) 2(;)
i=0 i=0 i=0 i=0
HWH= -3 al $24 -3 &) Hwe = |3 (%) (13)
i=0 i=0 i=0 i=0
RIS WU ¥ 3 iz(%)i
i=0 im0 i=0 ] [i=0 i

Each of the summations in (13) can be expressed in terms of the product of a function of A and an

arithmogeometric series of the form:

s=a+(a+d)r+ (a+2d)r’ + (@+3d)r +. ..
14)



which has the following closed form solution:

a rd
s = +

A 15)

Making substitutions based on (15) into (13) and then substituting the result into (12) gives the

following form for the LMSF transfer function:

X z
Tyysr® = -L“Y’*%‘”() = (1-x3+1.5:(1_x_xz+x3)+o.5:2(1_3x+3x2_>?)
+z_1(—37.+3)~3—2t( 1—31.2+2)~3)+t2(—1+37L—37L2+13)) (16)

+z‘2(3xz_3x3 +0.5:(1 +37L_97.2+5x3)+o.5:2(1_3x+3>3-x3)))/(1_3xz“ +3>.2z‘2_>?z‘3)

Similarly the frequency response for an o—B-y filter, (3), (4), (5), (6), is given by:

2 2 2
T o e ) e Gt e taad S ™
TapY(Z) = fia(ﬂz) =

l+(a+B+%—3)z_l +(g—2a—B+3)zﬁz+ (e-1) 3

This is computed by arranging the state equations (3), (4), (5), (6) of the filter into a signal flow

graph and using Mason’s general gain rule [4] to compute the transfer function.

Equivalency between (16) and (17) is achieved with the following choices:

3
o=1-% B =15-151-1522+152° y=2-6a+627-22>  (18)

This can be verified by substitution of (18) into (17).

These relationships for o, B, and ¥ can be used to minimize the sum of the exponentially-weighted
squared errors of position estimates for all prior samples. Alternative relationships for o, 3, and ¥

can be chosen using other techniques [5][6].
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