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Abstract

Most optical flow algorithms assume local 2-D translational motion. For
image sequences with significant expansion or rotation, these methods are
not adequate. We present a new model that encompasses both translation
and expansion, as induced by any 3-D relative translation. The formulation
of the model requires an extra parameter for expansion. Therefore, we
establish an algorithm based on Hermite polynomial differentiation filters,
whose orthogonality and Gaussian derivative properties insure numerical
stability. In this way, we extend the filter design to higher orders so as to
improve accuracy in estimation. The use of higher order differentiation
filters is justified by the algorithm’s reliable performance. We tested our
algorithm using an evaluation scheme established by Barron et al.,
involving extensive comparisons with other existing algorithms. The tests
show that our algorithm performs consistently well over a wide variety of

images, especially diverging ones.



1. Introduction

Most optical flow algorithms assume a simple translational image motion in local image neigh-

borhood as in (1):

I(x,y,t) = F(x—ut, y-vt) (D
This assumption is only acceptable if the neighborhood is small. Unfortunately, a small local
neighborhood limits the information that can be used for estimation and also the extent of smooth-
ing. We are thus motivated to find a more general motion model that represents real world situa-

tions and meets practical computational requirements.

Generally, image plane motion in the form of translation, divergence, curl, and deformation all
need to be modelled. We take a step forward by modeling motion that is both translational and

expanding (contracting), as depicted in Fig 1. We formalize the model in the next section.
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Fig 1.1 Translation only Fig 1.2 Translation plus Divergence

However, this model poses a new difficulty in the computation since we need to solve not only for
translation parameters but also an expansion parameter. To overcome this, we must use more fil-
ters to derive additional equations. The selection of the filters determines the reliability of the flow
results. We formulate a theory of derivative filters using 3-D Hermite polynomials and develop an
algorithm based on the theory. There are three reasons to justify the choice of 3-D Hermite poly-
nomial filters: first, the orthogonality and Gaussian properties of the filters insure numerical sta-
bility; second, it is extensible to the higher order derivatives that we desire; and third, numerous
physiological models[7,13,23] support the theory that the visual receptive field can be modeled by

Gaussian derivatives of various widths.



Finally, to demonstrate the reliability of our flow results, we evaluate our algorithm using the
scheme established by Barron et al.[2] Extensive comparisons with existing algorithms show that

our algorithm performs consistently well over a wide set of images.

2. The Generalized Motion Model

We extend the image motion from simple translation to translation and expansion. A 3-D point at
position P= (X,Y,2) *, under perspective projection, projects to a point in 2-D image plane,
(*y),

x=fX/7
y = fY/Z, where f is the focal length of the projection. (2)

Suppose there is relative 3-D translational motion P (1) = (X+Uyt, Y+ Uyt,Z-U,t) . A con-
ventional algorithm would assume small translation Ut relative to the distance Z and arrive at

equation (1)'. While preserving the assumption, we still desire to account for the expansion effect
of this micro translation. Hence, (x(¢),y(#)) becomes

x(t) = f(X+Uyt)/(Z-U,t)

y(@) = f(Y+Upt) /(Z-Uyt) - (3)

Brightness constancy and (3) yield

I(x,y,8) = F(x(l —%Zt) —f%(t, y(l—%zt) —JiU—ZYt). (4)

Equation (4) is the formulation of our new motion model, for which the optical flow is derived as

(ax ay) fUy Upx  fUy Uyzy
(u9 V) = N, = + ’ +
ot’ dt Z-Uyt Z-UpZ-Uyp Z-Uyt

fUy Uzx fUy Uzy)
( A AN A A AS)

.Uy : . (fUx fUy
Let the expansion A be denoted by s, and the 2-D translation velocity S ANA by (p,9q) -

*. In an observer-centered coordinate frame; Z is the axis along the line of sight.
t. Using the brightness constancy assumption.



Rewrite (4) and (5) as

I(x,y,8) = F(x(1-st) —pt,y(1-st) —q1) (6)
(u,v) = (p+sx,q+sy) (7

Intuitively, (7) states that optical flow has two components: translation (p, q) , and expan-

sion (sx, sy) . Translation is induced by (U yx Uy) only, and expansion by U, only. Note that
when s = 0, then (u,v) = (p,q) and (6) becomes (1).

To complete the model, note that the Focus of Expansion (FOE) is not always at the image origin.

In fact, when we perform local estimation with this motion model, the position of the FOE rela-

tive to the origin, which is the center of the current window, is changing with a moving window.
Therefore, (6) and (7) should be rewritten as

I(x,y,1) = F((x=xp) (1-58) =pt+x5 (y—yy) (1-5t) —gqt+y,) )]

(u,v) = (p+s(x-x5),q+s(y=yy)) > )]

where (x,,y,) is the location of the FOE relative to the current window center. Since we will

find (%, v) as awhole, the introduction of (x,, y,) does not complicate the computation.

In the model, there are expansion as well as flow parameters to be estimated. It certainly demands
more elegant techniques to achieve high accuracy relative to the conventional algorithms. Next,

we introduce the theory of Hermite polynomial filters and its application in our model.

3. Hermite Polynomial Filters

3.1 Hermite Polynomials

The nth Hermite polynomial H, (x) is a solution of

2
dH"de”zH 0 10
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The H, (x) are derived by Rodrigues’ formula [9]
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H (x) = (-1)'e - . (11)
dx

The computation of H, (x) is especially easy using the following recursive relations:

H,  ,(x) = 2xH (x) -2nH, | (x) (12)
Hy(x) =1
H (x) = 2x

2
By substituting G(x) for e in (11), we generalize to Hermite polynomials with respect to the

Gaussian function. Let these Hermite polynomials be denoted by H (%)

H,(x) = ()" (-2

dx"

(G (x)) (13)

Note that H n (x) differs from H, (x) by a scaling product:

H,(x) = (21/120')an(21§20) (14)

where ¢ is the standard deviation of G(x).

The scalar product of two functions and the L,-norm of a function with G(x) as a weight function

are defined as follows:

(a,b) = jG(x)a(x)b(x)dx

lall = (a, &)""*
The orthogonality of (H » (x) } can be expressed in the following way[9]:

—2n

(H,,H) =0 "nd (15)

mn’

The 3D case of Hermite polynomials is especially simple because they are separable. Thus the

polynomial withordern =i +j + kis

Hy(x,5,t) = H;(x) - H;(y) - Hy (1) (16)



3.2 Derivation of Gradient Constraint Equations

One of the most important properties of Hermite polynomials is the property of Gaussian deriva-
tives. It is with the aid of this property that we are able to establish gradient constraint equations.

This property is manifested in the following theorem[14].

Theorem 1: A one dimensional signal I(x) can be expanded in terms of Hermite polynomials as

o Hp(x)
10 = LR
k
Then I, = (I, HY = (I, Hy) where 7, 1 and I® = a1
e = \LHp) = , Hy) where Hy(x) = 1 an s (17

Recall our motion model,

I(x,y,1) = F((x=-xg) (1-5t) =pt+xg (y=yy) (1-51) —qt+y,),
Expand both sides with Hermite polynomials,

2 Z Z UkllHUTP = 2 z 2 F”k"_UTIZ then I, = (I, ﬁijk) = Fiy = (F, ﬁijk) (18)
i=0i=0k= ijk l]k

i=0j=0k=0

Equating 7, j1 to F, i1 and using Theorem 1, we derive (see Appendix A)

I. =-

i1 uI(l.+ 1)].0—vli(j+ 10~ (i+7) injO where (u,v) are defined in (9). (19)

The extensibility of Hermite polynomial filters to higher order is clear from equation (19). It may
be observed that orthogonality of the filters makes it numerically stable, Gaussian smoothing
improves resistance to noise, and all the equations are linear. The theory indeed suggests local,

simple and parallel computation, as presented in the next section.

4. Implementation

4.1 Algorithm

From (19), we derive six equations up to the third order. Within a 3-D local window, we estimate

{1 jk} with the discrete approximation {ij (x,y,t) }, and write the equations in the matrix form



for obtaining a linear least square estimate:

E = min|Af+ b||, where (20)
Lo Tono 0 Tooy w, 00 0 0 0
Too Tr10 1100 Lo 0w, 000 0
1o Too 1 “ 1 0 0w, 000
A=W A110 A020 ?10 ,f= V7b=WA011 ,W= 3 (21)
1300 1210 21200 s 1201 0 0O W4 0 0
In10 Tra0 21110 Ly 000 0ws0
_j 120 To3o 27020_ _i021_ |00 0 0 0wy

W is a weight matrix that is used to compensate for the different scales of equations due to differ-

ent Hermite polynomial norms. We make the following selection:

wy = [Hool, wy = [Hi] wy = |Houl w, = |Hoon]. ws = [Hyp, w = | Hoa| (22)

For the center pixel of the window, we solve (20) using QR decomposition.

A = QR,and E = min|QRf+b| = min|Rf+ 0"b|, where Q is unitary. (23)

R can be denoted by [RS} , where R_ is an upper triangular matrix; and QHb is {bs] , correspond-
0 r

ingly. Equation (23) becomes

E = min (||Rj+ bs” +7)
=r if R_ is not singular. (24)
The solution is computed from R f+b = 0 (25)

Note that the above process can run on all image pixels in a parallel fashion.
In the actual implementation, we use floating point computation; as a result, R_ is rarely singular.
However, the behavior of R determines the accuracy of the solution. The residual r is also a good

indicator of the reliability of the solution. We devote the next subsection to the discussion of the

accuracy of the computed optical flow and associated confidence measures.



4.2 Confidence Measures

Our algorithm provides ample information about the behavior of the system equations. It includes

the residual r, the condition number and the determinant of R - They can be shown [14] to signi-

fy certain image phenomena, e.g., occlusion, the aperture problem, etc., which present difficulties
for optical flow computation. Therefore, they can be utilized to locate high error areas and suggest
subsequent improvement methods. For the sake of evaluation in Section 6, we simply use them as
confidence measures or threshold values to extract more accurate data. Following is how we inte-

grate these different confidence measures.

If the image sequence contains numerous moving objects or the brightness changes significantly,
residuals should be used as confidence measures. The residual is unique in the sense that it cap-

tures these problems that no other measure does.

The condition number and the determinant together signify the relationship between numerical in-

stability and the potential aperture problem. We suggest the multiplicative combination of these

two, det (R;) /x (R,) . In the conventional algorithm where there are only two flow parameters

(u,v), this is equivalent to using {A|,; [14]. In our algorithm, [A| . sometimes shows even

min in

stronger performance than either det (R;) or 1/x (R,) empirically. The use of |A| . has been

min

proposed by Girosi et al.[6] in a similar context and was used in Barron’s implementation [2] of

Lucas and Kanade’s optical flow algorithm.

5. Previous Approaches And Our Contributions

In his approach to a generalized gradient method for optical flow, Srinivasan [19] demonstrated
his algorithm on a simple translational motion model, and also on a simple rotation and expansion
model, in which the focus of expansion (and rotation) is assumed to be known. The limitation of
his algorithm is that it did not deal with translation plus expansion motion. In fact, “Erroneous

results can occur if a translatory motion is superimposed upon the rotation or expansion”[19]. On



the contrary, our algorithm not only computes flow but also expansion at the same time.

Campani and Verri [4] recognized the limitations of the uniform flow field assumption in image
neighborhood and the noise sensitivity of pointwise flow estimates. They extended the conven-
tional motion with a weaker constraint, namely, flow generated by a rigid body motion is a piece-

wise linear vector field in a relatively large patch. It was formulated as, in their notation,

v = Vy+M(x+x,) where Mij ==—,i,j=12 (26)

Note that the linear optical flow field suffices to model elementary local image motions including
translation, expansion, and rotation. They estimated flow in a patchwise manner with the first
order gradient constraint equations plus the linear flow field constraint. The flow results were used

to demonstrate qualitative motion analysis and applications.

Our work is initiated with the same motivation. Our new motion model also prescribes a piece-

wise linear flow field as can be seen from equation (7). We both use a relatively larger window to
carry out flow estimation, and both algorithms compute divergence* in addition to flow.

However, there are fundamental differences in our approaches. Imposing constraints on the solu-
tion (flow) is a powerful engineering technique, but we are tempted to model the physical phe-
nomena (motion) in a more comprehensive way and let the solution reflect the constraint by itself.
Modeling a flow field is essentially a 2-D process, whereas modeling motion is a 3-D process, that
is, motion over the time domain, which is relatively difficult, but there is a reward: we can impose
temporal smoothing in an integrated theoretical framework based on Hermite polynomials. More-

over, a major algorithmic advantage of our approach is that we are still able to perform pointwise

flow estimation', with which our algorithm computes more accurate flow because more informa-

tion is used per pixel.

*_ In our algorithm, divergence can be computed from expansion § . Campani and Verri’s algorithm is also
capable of computing curl and deformation.

. It is also feasible to implement our algorithm differently to perform patchwise flow estimation, whereas it
is not possible for their algorithm to perform pointwise estimation.



Fleet and Jepson also attempted to cope with non-translational motion in [5]. They showed that
the phase response, instead of the amplitude response, of the velocity-tuned filters is robust to
image affine transformation or photometric deformation. Their algorithm is based on constant
phase contours and tends to be more accurate but produces sparse flow field. On the contrary, we

can often output dense results, which are very handy as far as motion segmentation is concerned.

Workhoven and Koenderink’s [22] is our theoretical predecessor. They assumed an infinitesimal
affine flow filed and derived similar motion equations. Again, we start with a 3-D motion model

and contribute a numerically more feasible algorithm, as supported by experimental results.

6. Experiments

Based on the work of Barron, Fleet, and Beauchemin[2], we conducted extensive comparisons be-
tween our algorithm and other current optical flow algorithms, including those by Horn and
Schunck[11], Lucas and Kanade[15], Uras et al. [20], Nagel[17], Anandan[1], Singh[18], Hee-
ger[10], Waxman et al. [21], Fleet and Jepson[5]. The synthetic image sequences we used for

comparison are Sinusoid, Translating tree, Diverging tree, and Yosemite fly-by. The real image

sequences we used for demonstration are NASA and HMMWYV. All of these images* were pro-

vided by J.L. Barron.
The error statistic utilized is the angle error between the computed optical flow time-space direc-
tion (u,v, 1) and the ground truth flow time-space direction (u o Ve 1) averaged over the

whole image. Refer to [2] for more details. The error statistics and associated density for the com-

parison algorithms were obtained from Barron et al. [2].

6.1 Sinusoid

This is a synthetic image sequence (Fig 2) of a spatial sinusoidal wave traversing toward the up-

per right side. For our method we chose a window size large enough (17x17x7 for x,y,f) to prevent

*. Except HMMWYV, which was provided by Gombash of Army Research Lab, and stabilized by Dr. Q.
Zheng at the Center for Automation Research, University of Maryland.

10



aliasing. [1/7] was used as the confidence measure in Table 1. Fig 3.1 shows the true optical flow,
while Fig 3.2 shows the flow computed with our method. Our algorithm performs better than all

of the other algorithms except Fleet and Jepson’s.

Fig 2. Traversing sinusoid
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Fig 3.1True optical flow for sinusoid Fig 3.2 Computed optical flow (100%)

Table 1: Summary of Sinusoid Error Statistics

Our Algorithm Other Algorithm
Density Average | Standard || Average | Standard Technique by
Error | Deviation|| Error | Deviation

100% 0.63° 0.08° 4.19° 0.50° [Horn & Schunck (original unthresholded)
2.55° 0.59° |Horn & Schunck (modified unthresholded)
247 0.16° [Lucas and Kanade (unthresholded)
2.59° 0.71°  |Uras et al. (unthresholded)
2.55° 0.93° |Nagel
30.80° 5.45° |Anandan
2.24° 0.02° [Singh (step 1 unthresholded)
0.03° 0.01° [Fleet and Jepson

12.8% 0.63° 0.08° 64.26° 26.14° |Waxman et al.

11



6.2 Translating and Diverging Tree

The translating and diverging tree sequences are two realistic synthetic sequences simulating the
motion of simple translation (Fig 4.1) and expansion (Fig 4.2), respectively, of a poster. The win-

dow size used in our method is 19x19x11 for the translating tree and 17x17x9 for the diverging

Fig 4.1 Translating tree Fig 5.2 Diverging tree
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Fig 6.1 Computed flow for translating tree (90%) Fig 6.2 Computed flow for diverging tree (90%)
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tree. Due to the lack of texture in some background areas, we used |\

sure. Fig 5 and Fig 6 show the results. Only Uras’s and Fleet and Jepson’s algorithms perform bet-

ter than ours for the translating tree sequence (Table 2, page 13). For the diverging tree sequence,

min

our results are second only to Fleet and Jepson’s (Table 3, page 13).

Table 2: Summary of Translating Tree Error Statistics

Our Algorithm Other Algorithm
Density Average | Standard || Average | Standard ]
Error | Deviation|| Error | Deviation Technique by
100% 0.92° 0.94° 38.72° 27.67° |Horn & Schunck (original unthresholded)
2.02° 2.27°  [Horn & Schunck (modified unthresholded)
0.62° 0.52°  |Uras et al. (unthresholded)
2.44° 3.06° [Nagel
4.54° 3.10° {Anandan
1.64° 2.44°  |Singh (step 1 unthresholded)
1.25° 3.29° [Singh (step 2 unthresholded)
99.6% 0.91° 0.92° L.11° 0.89° |Singh (step 2)
74.5% 0.69° 0.51° 0.32° 0.38°  |Fleet and Jepson
53-57% 0.59° 0.39° 32.66° 24.50° |Horn & Schunck (original)
5.63° 2.78° |Heeger (level 1)
1.89° 2.40° |Horn & Schunck (modified)
49.7% 0.57° 0.37° 0.23° 0.19°  |Fleet and Jepson
44.2% 0.55° 0.34° 8.50° 13.50° [Heeger (level 0)
40-42% 0.53° 0.33° 046° 0.35° {Urasetal.
0.72° 0.75° |Singh (step 1)
0.66° 0.67° [Lucas and Kanade
26.8% 0.48° 0.28° 0.25° 0.21°  |Fleet and Jepson
13.1% 0.42° 0.24° 0.56° 0.58° |Lucas and Kanade
1.9% 0.35° 0.19° 6.66° 10.72° |Waxman et al.

Table 3: Summary of Diverging Tree Error Statistics

Our Algorithm Other Algorithm
Density | Average | Standard || Average | Standard Technique by
Error | Deviation|| Error | Deviation

100% 1.84° 1.33° 12.02° 11.72° |Horn & Schunck (original unthresholded)
2.55° 3.67° |Horn & Schunck (modified unthresholded)
4.64° 3.48° |Uras et al. (unthresholded)
2.94° 3.23° [Nagel
7.64° 496" |Anandan
17.66° 14.25° |Singh (step 1 unthresholded)
8.60° 4,78  |Singh (step 2 unthresholded)

99% 1.82° 1.28° 8.40° 478"  [Singh (step 2)

as the confidence mea-
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Table 3: Summary of Diverging Tree Error Statistics

Our Algorithm Other Algorithm
Density Average | Standard || Average | Standard

Error | Deviation|| Error | Deviation Technique by
73.8% 1.59° 1.12° 4.95° 3.09° |Heeger (combined)
60-61% 1.49° 1.02° 0.99° 0.78°  |Fleet and Jepson

8.93° 7.79° |Horn & Schunck (original)
3.83° 2.19° [Urasetal.

46-48% 1.40° 0.92° 2.50° 3.89° |[Horn & Schunck (modified)
0.80° 0.73°  |Fleet and Jepson
1.94° 2.06° [Lucas and Kanade
28.2% 1.28° 0.79° 0.73° 0.46° |Fleet and Jepson
24.3% 1.24° 0.77° 1.65° 1.48° {Lucas and Kanade
3.9-4.9% 1.09° 0.66° 13.69° 11.83° |Waxman et al.

5.62° 6.16°  |Singh (step 1)

6.3 Yosemite Fly-by

The Yosemite Fly-by sequence is a realistic synthetic image sequence (Fig 7). The flight scene is
simulated from actual aerial photos and digital-terrain maps, and artificial sky and clouds. Since
the clouds in the sky change brightness over time, it poses difficulties for all algorithms. Based on
our previous analysis, we used |1/ as the confidence measure to eliminate those data points
which correspond to a large blank area in the sky and at motion boundaries in Fig 8.2. Since the
motion is rather fast in some areas, we used a larger window (21x21x7). Error statistics are shown
in Table 4, page 14. Again, the clouds account for the large magnitude error. Our algorithm is the
best. From this we believe our algorithm should work well with real images, as shown later.

Table 4: Summary of Yosemite Fly-by Error Statistics

Our Algorithm Other Algorithm

Density | Average | Standard || Average | Standard
Error | Deviation|| Error | Deviation
100% 9.06° 13.23° 3243° 30.28° |Horn & Schunck (original unthresholded)
11.26° 16.41° |Horn & Schunck (modified unthresholded)
10.44° 15.00° |Uras et al. (unthresholded)

11.71° 10.59° |Nagel

15.84° 13.46° |Anandan

18.24° 17.02° |Singh (step 1 unthresholded)

13.16° 12.07° |Singh (step 2 unthresholded)

97.8% 8.46° 12.43° 12.9° 11.57° |Singh (step 2)

64.2% 3.70° 5.84° 20.89° 34.26° |Heeger (level 0)

Technique by
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Fig 7. Yosemite fly-by image
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Fig 8.1 True optical flow field for Yosemite fly-by Fig 8.2 Computed optical flow for Yosemite fly-by (75%)

Table 4: Summary of Yosemite Fly-by Error Statistics

N S S A

el el P AL A A4
ettt R L A A A

Our Algorithm Other Algorithm
Density | Average | Standard || Average | Standard .
Error | Deviation|{ Error | Deviation Technique by
59.6% 3.42° 5.36° 25.41° 28.14° |Horn & Schunck (original)
44.8% 291° 4.44° 11.74° 19.04° |Heeger (combined)
33-35% 2.66° 4.04° 4.10° 9.58° [Lucas and Kanade
4.29° 11.24° |Fleet and Jepson
5.48° 10.41° |Horn & Schunck (modified)
30.6% 2.62° 3.96 4.95° 12.39° |Fleet and Jepson




Table 4: Summary of Yosemite Fly-by Error Statistics

Our Algorithm Other Algorithm
Density Average | Standard || Average | Standard .
Error | Deviation|| Error | Deviation Technique by
15% 2.45° 3.83° 10.51° 12.11° [Heeger (level 1)
6.74° 16.01° |Urasetal.
8.7% 2.44° 3.95° 3.05° 7.31° [Lucas and Kanade
7.4% 2.40° 3.86° 20.32° 20.60° |Waxman et al.
2.2-2.4% 2.37° 4.00° 11.51° 11.83° |Heeger (level 2)
16.29° 25.70° |Singh (step 1)

6.4 Comparison Summary
We also compare the results with those of the Hermite polynomials algorithm based on translation

motion. As expected, for dense output, it shows an 11%~37% drop* in average angle error for di-
verging images (Diverging trees, Yosemite) while showing no significant improvement on trans-
lating images. Fleet and Jepson’s algorithm is also very competitive. But it does not always have
the capability of producing 100% density of output. Furthermore, our relatively small standard
deviation reflects noise insensitivity, which can be attributed to using 3-D Hermite polynomials.
To conclude, our algorithm performs well over a wide set of images, especially diverging images,

it offers flexibility in terms of output density, and it is relatively less sensitive to noise.

6.5 Real Images Demonstration

Current optical flow algorithms often have difficulty with real image sequences. The reasons in-
clude camera jitter, nonrigidity of objects, and brightness changes. We demonstrate our algorithm
with two diverging real images, Fig 10 and Fig 9. The nature of coherent or “clean” flow field is

evident. The optical flow output of these images has undergone thresholding based on two confi-

dence measures, [1/7] and [A| . .

*_For other than 100% density data, the drop in error reaches 57%. This is due to better a confidence mea-
sure.
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Fig 9.1 HMMWY sequence
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Fig 9.2 HMMWYV flow field (64%)
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Fig 10.1 NASA sequence

Fig 10.2 NASA flow field (75%)

7. Conclusion

The optical flow problem is difficult and sometimes ill-posed; the simple translational motion
model is problematic; and gradient based methods often suffer from noise sensitivity in numerical

differentiation. We tackle these problems with a combined effort of a generalized motion model
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and Hermite polynomial filters. The new model enables us to estimate more reliable flow, but also
demands higher order differentiation. Hermite polynomial theory comes to the rescue with its
many elegant properties, including orthogonality, extensibility, Gaussian smoothing, etc. Contrary
to general belief, the behaviors of these high order (up to 3) differentiation filters are quite insen-
sitive to noise. This is justified by the excellent performance of the flow results. Simplicity adds
yet another dimension to the strength of this algorithm—making real-time implementation possi-
ble. We realize that a general 3-D motion including rotation is yet to be modeled so that optical
flow can be estimated even more accurately. We hope that this work prompts more efforts in this

direction.
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Appendix. A
We prove equation
Ljy==ul ;i 1yjo=Vi e 1y0= (E+1) s
First, from (12) and (14), we establish
xH, (x) = 62H, .1 (x) +nH,_; (x). 27)
and using Theorem 1,

Equating / i1 to F, i1

o~
I

g1 = Fy = (F Hy) = (57, Hijo)

s(x-xy) +p\or s(Y-yo9) +9YoI =
-<(T)a+(_‘i‘—‘5t—)$”"'f"> 28)

Practically, s « 1 so 1 —st= 1. Equation (28) can be approximated by

(s (xmxp) +P) G+ (503 + ) 5o Fye) or = (x4 Tk (4 T ) 29)

Using Theorem 1 again, we derive



ol — ol —
—ul i onjo=Viigeno~ s<5;’ xHjjo) — S<§§, yH,jo)- (30)
Equation (30) and (27) yield

—ul ;oG yo— G+ s’ijo‘“’2 Tivnjotligeno (31
The last term in (31) involves higher order differentiation, which often suffers from quantization
error due to limited filter support. Furthermore, it is very small in smooth images. We choose to

ignore it in practice. Hence, we have proved equation (19).
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