Proceedings of the 8th IEEE International Symposium on Intelligent Control, Chicago, IL

September 25-27, 1993,

A SOFTWARE TEMPLATE APPROACH TO BUILDING COMPLEX LARGE-SCALE
INTELLIGENT CONTROL SYSTEMS

Richard Quintero
Robot Systems Division
National Institute of Standards and Technology
Gaithersburg, MD 20899

A. J. Barbera
Advanced Technology and Research Corporation
15210 Dino Drive, Burtonsville, MD 20866-1172

Abstract
This paper presents a task oriented systems

engineering approach for developing complex,
large-scale, integrated, intelligent machine systems
using software templates. This methodology can be
applied to a wide variety of real-time machine
applications. The method presented here is built
upon the Real-Time Control System (RCS)
Reference Model Architecture being defined by
researchers in the Robot Systems Division at the
National Institute of Standards and Technology
(NIST). We believe that the reference architecture
and methodology described here could form the
basis for defining an open-systems architecture for
intelligent control systems applications.

Introduction

This paper is a condensed version of [1]. The
methodology presented here is based upon a task
oriented systems engineering approach originally
conceived by Barbera [2]. The methodology also
complies with the Real-Time Control System
(RCS) Reference Model Architecture published by
Albus (3, 4]. Researchers at the National Institute
of Standards and Technology (NIST) are exploring
several RCS implementation approaches in addition
to this one. Each of these approaches are generally
optimized for a particular class of RCS
applications.

The method described here is particularly well
suited to applications which are rule driven (i.c.,
they employ strategies, tactics, and process
knowledge). Such applications are characterized by
a need to monitor sensory input to detect events and
objects in the intelligent system's environment.
These systems use sensed events to trigger desired

system activiies and to react to exception
conditions. The methodology also accommodates
control systems problems dealing with path
planning, trajectory generation, and control law
algorithms. :

Product Endorsement Disclaimer
References to specific brands, equipment, or
trade names in this document are made to facilitate
understanding and do not imply endorsement by the
National Institute of Standards and Technology.

Background
Early work by Albus [5] and Barbera [2], in the

Automated Manufacturing research Facility
(AMREF) [6], gave rise to the first definition of a
Real-Time Control System (RCS) systems
engineering approach focusing primarily on
software design. This approach was derived from a
control systems engineering perspective rather than
a data processing perspective. The Robot Systems
Division has refined and evolved these techniques
by applying the RCS approach to a number of
robotic problems in manufacturing as well as
robotic applications intended for unstructured
environments (see [3],[41,[71,[81,[9],10], and [11]).

RCS versions have been implemented using the
FORTH, C, and ADA languages and running on
680x0 series processors as well as on 286/386
machines and on Multibus and VME backplanes.
Applications have been built using real-time
operating systems such as: GRAMPS, pSOS, and
VxWorks. RCS applications have also been hosted
within the DOS operating system on personal
computers (PCs).

The approach presented in this paper is based on
our most recent work in applying RCS techniques to

the automation of submarine maneuvering control,
under Advanced Research Projects Agency (ARPA)
sponsorship, and in demonstrating the automation of
a continuous coal mining machine, under the
sponsorship of the U. S. Bureau of Mines. This
work is being carried out by a team of researchers
from NIST and the Advanced Technology and
Research (ATR) Corporation.

What is a Control System Architecture?
The Random House College Dictionary, [12],

defines architecture as "the character or style of
building; the structure of anything". The RCS
Architecture is a style of building real-time
intelligent control systems. These systems generally
include software, hardware, machines, people,
communications, information repositories,
information/knowledge models and real-time
software execution models. The RCS Architecture
defines a highly structured, modular organization of
these control system components.

The basic building block of our implementation
approach is a controller module. A controller
module does not contain any submodules but it may
encapsulate any number of functions, subfunctions,
or processes. A controller module can be viewed as
a systems integration ‘"wrapper" which s
implemented as a template. We encapsulate
software within this wrapper to ensure compliance
with our integration rules. Every module built using
the controller module template inherits a software
execution model, a communications mechanism,
performance measurement capabilities, and debug
mechanisms. All of these properties are discussed
in detail in [1].

The RCS Problem Domain

RCS specifically addresses intelligent machine
control systems problems. We define intelligent
machines to be machines designed to perform
useful physical work while employing in situ
knowledge (sensory input data), and a priori
knowledge, tactics, and strategy. Intelligent
machines use feedback from the physical
environment to manifest "intelligent behavior" in
real-time via computerized real-time control of the
machine's electro-mechanical actuators and sensors.
In addition, we believe that practical intelligent
machines almost always require some level of
human interaction. The definition given above is
intended to include: automation systems,

embedded systems, and robotic systems ranging
from factory floor robots to space vehicles and
planetary exploration robots.
In priority order, our objectives in developing

RCS are to:

1) Improve human understanding of the design.

2) Manage software complexity.

3) Provide for robust, verifiable, efficient,

coordinated, real-time performance.

4) Provide for extensibility, portability, and

software reuse.
Two Robot Systems Division papers [13] and [1]
elaborate on these objectives.

AN INTELLIGENT MACHINE SYSTEM

Siwaton Plamning and

[Asssssmex —] Ewecuon |

EXTRERNAL
EVENTZ ACTIONS
ENVIRONMENT

Figure 1.

The RCS Architecture Reference Model

A comprehensive treatment of the RCS
Architecture is contained in the following
publications: [2],[3].[5].[14],[15], and [16].

Albus models the most primitive form of an
intelligent machine as a closed-loop control system
(see Figure 1.). A closed-loop system is formed in
the machine by inputting sensory data to Sensory
Processing (SP), passing the processed information
off to the World Modeling (WM) function, which
maintains the machine's best estimate of the state of
its world, and finally closing the loop through
Behavior Generation (BG) which plans and
executes actions to be performed through the
machine's actuators. The Behavior Generation
(BG) function is further decomposed into Job
Assignment (JA), Planner (PL), and Executor
(EX) functions. The value system, or the Value
Judgment (VJ) function, is used in goal selection to

direct Behavior Generation in selecting alternative
plans and actions.

. The RCS Reference Architecture, defined by
Albus, extends the notion of an intelligent machine
design containing the basic SP, WM and BG
functions by creating a hierarchy. Each controller
is assigned a set of tasks at an appropriate level of
abstraction and each has a limited range of
authority and responsibility within the chain-of-
command formed by the RCS hierarchy (much like
a human military command structure would be
organized).

The terms, World Model or World View, are
used to describe the intelligent machine's collective
capability to perceive the world in which it
functions (both external and internal).

Global Memory (GM) is the complete collection
of globally defined variables in an RCS application.
In many applications GM is implemented in a
distributed manner.

In RCS, there is a notion of decomposing the
control system design into an indefinite number of
layers or levels of abstraction. See [3] and [1].

RCS Method Tenets

We use the word tenet, here, to mean guidelines
and engineering rules of thumb which characterize
this RCS Methodology approach. Together the
RCS Architecture definition and these tenets form a
basic set of rules or systems integration standards
for building real-time control systems. Tenets 1)
through 5) are generally applicable to all RCS
Methodology approaches while tenets 6) through
10) are expressed in terms of the Barbera approach.
An in-depth discussion of these tenets is presented
n [1].

1) Use task oriented decomposition (driven by
scenarios)

2) Use hierarchical organization and assign
responsibility and authority

3) Organize the control hierarchy around tasks top-
down and equipment bottom-up

4) Partition by an order of magnitude between
levels (spatial and temporal resolution) and
roughly ten decisions or less per plan

5) Use seven + or - two subordinates per
supervisor and only one supervisor at a time

6) SP/WM/BG functions are distributed
throughout RCS and assumed to exist in each
node

7) Allow human I/F at any node
8) Controller modules are finite state machines
communicating through Global Memory
* Use a controller template as the basic building
block
* Use cyclic sampling rather than interrupts for
context switching
* Surround everything with data buffers
* Use non-blocking input/output (I/0)
* Implement Global Memory using a One Writer,
Many Readers Paradigm
* Match the control cycle time to the demands of
the control application
9) Design for concurrent processing
* Measure execution time performance
* Allocate sufficient computing resources
10) Use synchronous control at the lowest levels,
transitioning to asynchronous control at the
highest levels

RCS Plans

An RCS control system can be viewed as an
integrated collection of finite state machines which
are capable of selecting or generating and executing
RCS plans in real-time. The RCS Methodology
described here uses both rule plans and path plans.

RCS Rule Plans are uninstantiated plans (or plan
schemas) which can be represented using some form
of If-Then-Else construct. Rule plans specify
branching conditions and they can be represented by
state transition diagrams. RCS Path Plans are
ordered sets of instantiated poses, knot points,
commands, or other variables specifying a
sequential order of execution. Path plans do not
specify branching conditions. A rule plan is
required to specify conditions to be monitored in
order to interrupt the execution of a path plan for
branching (ie., out-of-tolerance condition
branching). In addition to rule and path plans, RCS
also accommodates goal-point generators or
control-law algorithms. Such algorithms (typically
mathematical) are used to generate the next goal-
point for an actuator movement at the Servo-Level
or the next goal-command for a subordinate module
at other levels of an RCS hierarchy.

We use state graphs and state tables to represent
RCS rule plans as illustrated in Figure 2. These
plans embody strategies, tactics, and process
knowledge. A rule plan is a set of uninstantiated
rules for accomplishing some task. Rule plans are
used throughout the RCS Architecture. Rule plans

are often very simple at the low levels and more
complex at the higher levels.

RCS State Graphs and Tables

g
"
gyeeTnnLey

g52
g5
H

v guty Care St osv Unzaue Stuta Nuwber Ea =v daiyue Svaat duabse

Figure 2.

Implementing a Controller Template, the Basic

RCS Building Block
Building understandable large systems requires

defining systems integration standards. The RCS
implementation approach described here requires
only two basic building blocks: An RCS Controller
Template and a Main Program Template.

Our generic RCS controller module template
provides a software execution structure within
which the basic functions of Sensory Processing,
World Modeling, and Behavior Generation may be
implemented. In addition this model addresses the
interface definitions required to integrate a set of
controllers to form an RCS hierarchy. A controller
module must be able to accept task commands from
its superior and send commands to its subordinates
or to actuators if the controller is at the lowest level
of its branch in the RCS hierarchy. It must be
capable of accepting status from its subordinates
and sending status to its superior. A controller
module must be capable of accommodating a human
interface and it must have the capacity for
communicating with other controllers and the
knowledge base through some set of Global
Memory communications mechanisms. A controller
must also be capable of directly accepting sensor
data for processing.

Since a controller module is a finite state
machine, its response to stimulus is deterministic for
any given execution cycle. Its output is only a
function of its current state and its input event
space. Furthermore, its execution time can be

measured or calculated for every event-state pair in
a given plan.

A controller module built from an RCS
Controller Template performs Preprocessing, then
Behavior Generation (also referred to as Decision
Processing), followed by Post-Processing on each
control cycle.

CPU Main Program Template

i

peratng: :
Run Controiler #1

*

»

Run Controller #n
Run Simulator #1

.
*
»

Run Simulator #n

Communicate: Exchange
GM data with other GPUs

Figure 3.

Multi-Tasking on a Shared CPU, using a Main

Program Template
Multitasking within a shared CPU is implemented

in RCS with a CPU Main Program Template
(Figure 3.). The Main Program allows initialization
of CPU parameters, such as declaring global
variables (externals), and the loading of starting
values in Global Memory.

After initialization the Main Program begins
running the heartbeat control cycle for the CPU.
First, a Debug function runs to check for operator
inputs indicating a change in operating mode (¢.g.,
debug single step, normal run mode, etc.) and to
start a timer to measure control cycle execution
time. Once that completes each RCS controller
module (including simulation modules) runs in
sequence according to the precedence order of the
execution schedule established by the programmer.
Of course, in compliance with the RCS tenets, all of
the controllers must be able to complete their

execution within the established heartbeat control
cycle time. If the controllers overrun the cycle time
then the RCS designer must reassign one or more to
different CPUs or increase the cycle time.

At the end of each control cycle the
communications controller modules are executed to
exchange Global Memory data with other CPUs
within the backplane and over any networks being
used. The total execution time is calculated as a
last step to be sure that the heartbeat control cycle
time has not been exceeded (a debug error is posted
if it ever does). At that point the Main Program
enters a wait loop (or goes to sleep) until time for
the next control cycle.

RCS Target Hardware and Operating Systems
Any multiprocessor backplane hardware suite

may be used (e.g., VME, Multibus, Nubus, etc.) for
implementing an RCS control system. Using this
type of hardware suite in an RCS implementation
makes it very easy to tailor the hardware selection
and the communications network to meet the real-
time requirements of the application. It is also very
easy to extend such systems as the system evolves.

"Hard" real-time applications must respond to the
physical environment within some set of time limits.
Therefore, only operating systems with real-time
(RT) extensions such as memory-locking (e.g.,
VxWorks, Lynx OS, RT-Posix, etc.) or single user
operating systems, like DOS, should be considered
as host environments.

RCS Methodology Development Steps
The methodology described here should be

interpreted as an iterative, "rapid prototyping", real-
time software development method. The steps listed
in Table 1 are roughly in the sequential order of a
first pass through the method to achieve a skeleton
of the overall RCS architecture to be implemented.
Once a skeleton is developed, the developer(s)
should iterate within the steps to develop executable
controller modules in a bottom-up process.

Table 1. Summary of the RCS Methodology Steps

1) Concept Development
A) Gather domain knowledge.
B) Develop the problem description / scenario
C) Conceptualize the Controller Hierarchy, the
Operator I/F System, the Data Management

System, and the Communications Management
System.
2) Design the Hierarchy using Task Decomposition
A) Develop a task tree.
B) Choose a "thread" of tasks spanning the tree.
C) Design by iteratively adding task threads.
D) Design software by adding detail using
generic RCS templates in a bottom-up process.
3) Coding and Testing RCS Software
A) Incrementally develop code for each controller
in a bottom-up fashion.
B) Incrementally develop simulators to drive each
controller in a closed-loop fashion.
C) Develop simulators for the human interfaces.
D) Measure the execution time of each controller.
E) Map the controller modules (software
processes) onto the computer hardware.
4) Port the software to the target hardware system.
5) Incrementally integrate and test the system.
A) Perform lab tests.
B) Perform field tests.
6) Develop a simulator to animate the robotic
system in the envisioned physical environment
(workspace).
7) Design, code and test the Operator I/F System,
Data Management System and the
Communications Management System
8) Integrate the RCS Controller Hierarchy with the
Operator I/F System, Data Management System,
and the Communications Management System.
9) Produce final documentation for the system.
10) Iterate all of the steps above extending the
RCS system, in a "rapid prototyping" fashion, by
adding new controllers and/or processing modules
to execute additional task threads.

Conclusions
In this paper we have attempted to begin to define

a consistent set of systems engineering rules for
building, evolving, and maintaining large, complex,
intelligent control systems. In our approach:

1) We build on the work of Albus, Barbera, and

others over the last two decades.

2) We use task scenarios in the knowledge

engineering process. '

3) We emphasize hierarchical organization as a

powerful method of complexity management.

4) We have selected cyclic sampling and the finite

state machine as our execution model in order to

ensure our designs are deterministic and verifiable.

5) We have emphasized rule plan knowledge
models (state graphs and state tables) which are
compatible with and can be directly executed by
finite statc machines.

6) We use a primitive communications mechanism
(GM) which is compatible with cyclic sampling
and provides for non-blocking I/O.

7) We have defined generic RCS Controller
Module Templates and the RCS Main Program as
our basic systems integration wrapper mechanism
to simplify the development and integration
process.

8) We have presented an outline of a set of rapid
prototyping steps which can be used as a systems
development life cycle approach.

The NIST Robot Systems Division is currently
conducting a long term research program, called the
Intelligent Machines Initiative, which is focusing on
SP and WM for machine vision as well as many of
the other issues not addressed here in detail.

References
[1] R. Quintero and A.J. Barbera, "An RCS
Methodology for Developing Intelligent Control
Systems," NISTIR 4936, October 1992.
[2] AJ. Barbera, J.S. Albus, M.L. Fitzgerald, and
L.S. Haynes, "RCS: The NBS Real-Time Control
System," Robots 8 Conference and Exposition,
Detroit, M1, June 1984.
[3]J.S. Albus, H.G. McCain, and R. Lumia,
"NASA/NBS Standard Reference Model for
Telerobot Control System Architecture
(NASREM)," NIST (formerly NBS) Technical
Note 1235, April 1989 Edition.
[4] J.S. Albus, R. Quintero, H. Huang, M. Roche,
"Mining Automation Real-Time Control System
Architecture Reference Model (MASREM)," NIST
Technical Note 1261 Volume 1, May 1989.
[5] J.S. Albus, Brains, Behavior and Robotics,
BYTE/McGraw- Hill, Petersborough, NH, 1981,
[6] J.A. Simpson, R.J. Hocken, and J.S. Albus,
"The Automated Manufacturing Research Facility
of the National Bureau of Standards," Journal of
Manufacturing Systems, Vol.1, No. 1, pg. 17,
1983.
[7]1 H. G. McCain, et al., "A Hierarchically
Controlled Autonomous Robot for Heavy Payload
Military Field Applications," Proceedings of the
International Conference on Intelligent Autonomous

Systems, Amsterdam, The Netherlands, December
8-11, 1986.

[8] J.S. Albus, "System Description and Design
Architecture for Multiple Autonomous Undersea
Vehicles Project," NIST Technical Note 1251,
September 1988, p. 126.

[9] S. Szabo, H. A. Scott, R. D. Kilmer, "Control
System Architecture for the TEAM Program,”

Proceedings of the Second International Symposium
on Robotics and Manufacturing Research,
Education and Applications, Albuquerque, NM,
November 16-18, 1988.

[10] H. Huang, J. Horst, R. Quintero, "A Motion
Control Algorithm for a Continuous Mining
Machine Based on a Hierarchical Real-Time
Control System Design Methodology," Journal of
Intelligent and Robotic Systems 5: 79-99, 1992,
Kluwer Academic Publishers, Dordrecht, The
Netherlands.

[11] H. Huang, R. Quintero, J.S. Albus, "A
Reference Model, Design Approach, and
Development Illustration toward Hierarchical Real-
Time Control System for Coal Mining Operations,"
Control and Dynamic Systems: Advances in Theory
and Applications Volume 46: Manufacturing and
Automation Systems: Techniques and Technologies,
Part 2 of 5, Edited by C. T. Leondes, Academic
Press,1991.

[12] Random House College Dictionary, 1982,
Revised Edition

[13]J.S. Albus, R. Quintero, R. Lumia, M.
Herman, R.D. Kilmer, K.R. Goodwin, "A Reference
Model Architecture for ARTICS," ASME and IIE
Manufacturing Review Volume 4, Number 3,
September 1991.

[14] J.S. Albus, "Outline for a Theory of
Intelligence," IEEE Journal, Transactions on
Systems, Man and Cybemetics, Volume 21,
Number 3, May/June 1991.

[15] J.S. Albus, "The Role of World Modeling and
Value Judgment in Perception," Proceedings of the

Fifth IEEE International Symposium on Intelligent
Control, Philadelphia, PA., September 5-7, 1990.

[16] J.S. Albus, "Hierarchical Interaction Between
Sensory Processing and World Modeling in
Intelligent Systems," Proceedings of the Fifth IEEE

International Symposium on Intelligent Control,
Philadelphia, PA., September 5-7, 1990.

