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 ABSTRACT

Due to delays in image acquisition and processing, prediction is a critical factor for successful visual tracking of moving
objects (both for humans and for vision machines). This paper explores some alternative techniques for predicting object motion
for the purpose of tracking with an active camera system. In particular, one of our goals is to develop a system that will track
an object undergoing “random” motion quite well, but that will track much better (at higher speeds with less lag) if the object
settles into a periodic motion of some kind. Rather than identify parameters for specific signal models to accomplish this, we
propose to use a finite set of previous samples of the target signal for the signal model. The advantages and problems associated
with this approach are discussed. Results of experiments using different prediction algorithms with TRICLOPS, a high-perfor-
mance active vision system, are also presented.

1.  INTRODUCTION

Image acquisition and processing delays are present in all animal and machine vision systems. If no effort is made to com-
pensate for these delays, visual tracking performance is severely limited. The difficulties of image processing delays in visual
servoing systems and proposals for mechanisms which intend to alleviate the problem have been presented by a number of re-
searchers.2,6,7,15,16,19 Any visual tracking system which attempts to make the system perform as if the image processing delay
did not exist must incorporate a mechanism for predicting the motion of the target. Typically this involves the use of a predictive
filter, such as one of the constant-coefficient Kalman filters for kinematic models (α−β and α−β−γ filters4,11), along with some
assumptions about the target motion (e.g., it will be smooth and limited in acceleration). A similar technique involves perform-
ing a least-mean-square fit [LMSF] of a polynomial function of time to a sequence of previous target positions.17 The LMSF
polynomial may then be extrapolated to obtain estimates of future target positions. Both the constant-coefficient Kalman and
polynomial LMSF predictive filters perform acceptably for low frequencies, but exhibit problems such as overshoot when the
target motion contains higher frequencies. A quite different approach, called Target-Selective Adaptive Control (TSAC) is pro-
posed by Bahill and McDonald2,15 for tracking predictable targets without latency. In this approach, the waveform of the target
motion is compared with a number of possible candidates of periodic motions. If there is a match, parameters of the target wave-
form are identified from the target motion signal, and the resulting signal model is used to perform zero-latency tracking.

The purpose of this paper is twofold. First, we will examine the capabilities and limitations of “conventional” (fixed-pa-
rameter) predictive filters by looking at their predicting performance in the frequency domain. Second, we will present a hybrid
system in which low frequency motions are tracked using a conventional predictive filter, while higher frequency periodic mo-
tions are tracked using a TSAC-inspired approach. However, instead of using predefined waveform types, our proposed ap-
proach for tracking periodic motions will use previous samples of the target signal itself as the model for target motion, and
autocorrelation will be used to determine when the target motion is predictable. With this approach, there is more flexibility in
the tracking of different target motion waveforms.

1.1.  BACKGROUND

Before proceeding, it will be helpful to provide some background information regarding the experimental visual tracking
hardware and general tracking algorithm to be used with the prediction techniques discussed in this paper. The predictive track-
ing algorithms which will be discussed have been developed for use with a high-performance active vision system which was
designed and built at the National Institute of Standards and Technology. The system, called TRICLOPS (The Real-time Intel-
ligently-ControLled Optical Positioning System),9,14,21 employs a direct-drive design to achieve high-bandwidth position servo
control and dynamic performance comparable to the human eye. A photo of TRICLOPS is shown in Fig. 1. TRICLOPS is a
four degree-of-freedom device, and it has three cameras; a center wide-angle field-of-view camera and a pair of outboard high-
resolution vergence cameras. In the tracking algorithms discussed in this paper, only the outer vergence cameras are used. The
system is controlled with a VME-based multiprocessing system. Additional details regarding the design, performance, and con-
trol and image processing hardware and software of TRICLOPS may be found in Fiala et al,9 Lumia,14 and Wavering et al.21

A block diagram of the general approach to visual tracking is given in Fig. 2. The visual tracking described in this paper
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Fig. 1. TRICLOPS active vision system.

Fig. 2. Block diagram of tracking algorithm..
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uses triangulation to determine the position of the target. To reduce the image processing delay, this example application uses
simple thresholding to locate a high-contrast target in each camera image. Image centroids are obtained at a rate of 30 Hz, and
they have an approximate image acquisition and processing latency of 0.084 s (i.e., in the figure d = 0.084). In order to compute
the target position with respect to a fixed (with respect to the base of TRICLOPS) coordinate system, delayed values of the joint
position feedback which correspond in time to the centroid data are required. After triangulation, a delayed estimate of the target
position is available (Xold). This value is used as the input to a predictive filter, the performance of which is the focus of the
current paper. The joint angles required to point the cameras at the predicted target position are then determined using inverse
kinematics. The joint goal positions, which are updated at 30 Hz, are linearly interpolated into subcommands to the joint servos
which are updated at a rate of 2 kHz. This interpolation means that it will take approximately 0.033 s to execute the motion to
the new goal position, so the prediction should provide a total of approximately 0.084 + 0.033 = 0.117 s. The tracking approach
described above has also been advocated by Murray et al.16

As with the system proposed by Robinson19 to explain human oculomotor behavior, the effect of the inherent negative vi-
sual feedback is cancelled in the above approach to create an effectively open-loop system with regard to the visual determina-
tion of the object position. The inclusion of positive feedback of the delayed joint positions accomplishes this,10 which (if the
estimate of image processing delay is accurate) effectively decouples the estimate of the target position from the motion of the
cameras. Instead of relying on an open-loop plant to execute the desired pointing motions, however, a high-bandwidth joint
position controller is used. This is a special case of the Smith predictor20 approach proposed by Brown et al6,8 and Bahill.3 How-
ever, in these previous systems (and the classic Smith predictor) a model of the controlled plant is required since the delay in
the system is assumed to be distributed between the controller and the plant. Because the time response of the joint servos of
TRICLOPS is very small compared with the visual delays in the system, a model of the controlled plant is not needed—the
actual joint positions obtained from the real plant are used instead.



1.2.  IMPORTANCE OF ACCURATE DELAY DETERMINATION

It is extremely important to recognize the sensitivity of the system to inaccuracies in the estimate of the visual delay to be
used in the joint position feedforward path (triangulation). If the delay estimate is accurate, then the measurement of the target
position is minimally affected by motions of the cameras, and it does not matter if the cameras are pointing directly at the target
or not, as long as the target is visible to the cameras. In this case, the system is effectively open-loop with respect to the visual
information, and the high-bandwidth joint servos track the stream of goal positions as if the target position estimates were com-
ing from an external measurement system. As a result, the positive phase introduced by the predictive filter will not cause the
system to become unstable. In fact, if the delay estimate is accurate enough, it is possible to maintain stability even if greater
prediction than is necessary is applied—in which case the system will lead the target. However, any errors in the delay estimate
applied to the joint positions will result in coupling between the joint motions and the predicted position. A feedback loop is
created in which the feedback loop gain is equal to the delay error times the velocity7. If the gain of this loop is negative (caused
by underestimating the delay), then the effect is primarily increased tracking error. However, if the visual delay is overestimat-
ed, a positive feedback loop is created which can cause instability. Our observations (both in simulations and on the real system)
have indicated that overestimation will result in instability if the full amount of prediction is used. However, if the prediction
is decreased and the delay error is small, stability can often still be achieved. The necessity of reducing prediction to maintain
stability has also been noted by other authors.8

Since accurate estimation of the visual delay is so critical to the stability of the system, we have recently implemented a
mechanism by which time stamps are used to measure the delay for each sample, rather than relying on an average empirically-
determined or calculated value. This measured delay is then used to retrieve the corresponding delayed joint values (to a reso-
lution of 0.5 ms) from a queue of previous joint positions maintained in a common memory communications buffer. Using this
mechanism for delay compensation, the system does in fact remain stable even if more than the required amount of prediction
is applied.

Given the use of high-bandwidth joint position servos and accurate determination of the target position using delayed po-
sition feedback, performance of the visual tracking system is determined predominately by the adequacy of the predictions sup-
plied by the predictive filter. To get an idea of the frequency response characteristics of the tracking system, then, we can ex-
amine the magnitude and effective prediction (phase) of the predictive filter in isolation. The next section will provide such an
analysis for two classes of predictive filters; constant coefficient Kalman filters (α−β and α−β−γ filters) and polynomial least-
mean-square fit (LMSF) filters. A discussion of how the frequency response of the tracking system can be extended for predict-
able signals by adding correlation-based tracking is also included. The performance of the prediction techniques when imple-
mented on the experimental hardware is presented in Section 3.

2.  FREQUENCY RESPONSE CHARACTERISTICS OF PREDICTIVE FILTERS

Although predictive filters have been widely used in visual servoing and target tracking applications,1,4,8 relatively little
attention has been given to their frequency response characteristics. This is particularly true for the case where the filter is ac-
tually used to predict, rather than to just smooth. The analyses presented in this section provide insight to the two most salient
difficulties of predictive filters: 1) magnitude overshoot at high frequencies and 2) frequency-dependent prediction time.

2.1.  The α−β and α−β−γ Filters

The α−β and α−β−γ filters are constant-coefficient Kalman filters which are intended to be used to model and predict target
motion based on assumptions of constant velocity and acceleration (respectively) between sampling intervals. Using the nota-
tion of Blair et al5 the filter equations for the α−β filter are given by the following:

Prediction

(1)

Smoothing

(2)

where
 = smoothed position at time k  = predicted position at time k
 = smoothed velocity at time k  = predicted velocity at time k
 = measured position at time k  = time period between measurements,

 = filter coefficient for position  = filter coefficient for velocity.
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To use the filter to predict the position  at some future time , the following equation is used:

(3)

Three dimensional predictive filtering is accomplished using a separate filter for each dimension.

The optimal relationship between α and β in (2) is given11 by

(4)

For the α−β−γ filter, the state equations are

Prediction

(5)

Smoothing

(6)

(7)

where
 = smoothed acceleration at time k  = predicted acceleration at time k

 = filter coefficient for acceleration.

To use the α−β−γ filter to predict the position  at some future time , the following equation is used:

(8)

The optimal value of γ is given11 by

(9)

To examine the frequency response of the α−β and α−β−γ filters, the filter transfer functions must be determined. To do
this, the state equations for each filter were represented in the form of a signal flow graph, and then the transfer function was
determined using Mason’s general gain rule (as given in reference 12). This is the same procedure used in Blair et al5 to deter-
mine the frequency of a two-stage α−β−γ filter. The resulting transfer functions are

(10)

for the α−β filter and

(11)

for the α−β−γ filter. The α−β and α−β−γ filters are seen to be infinite impulse response (IIR18) filters.

Given the filter transfer functions, the magnitude and phase response can be computed for different combinations of filter
gains (α) and prediction amounts (τ) using standard discrete Fourier transform (DFT/FFT) techniques.18 The resulting magni-
tude and phase curves for several different combinations of parameters are given in Figures 3-6. The frequency scale for these
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Fig. 3. Magnitude response of α−β filter. Fig. 4. Prediction characteristics of α−β filter.
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Fig. 5. Magnitude response of α−β−γ filter. Fig. 6. Prediction characteristics of α−β−γ filter.
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curves is in terms of fractions of the Nyquist frequency13

(12)

For each value along the frequency axis in Fig. 4 and Fig. 6 the phase response has been plotted in terms of effective prediction
using the relationship

(13)

where
 = effective prediction in sample periods

 = phase in radians and
f = frequency in Hz.

One of the most prominent characteristics that emerges from these plots is the peak in the magnitude ratio which occurs
for all combinations of parameters for both the α−β and the α−β−γ filters, even when the amount of prediction is zero (in this
case the filters just smooth the data). The height of the magnitude ratio peak is closely related to how much prediction is being
performed. Therefore, large amounts of prediction can be expected to result in much overshoot at higher frequencies. High
peaks in the amplitude response also indicate increased sensitivity to noise in that frequency range, as well. The higher-order
α−β−γ filter has a higher peak in the amplitude response when compared with an α−β filter using the same gains, but it also
gives a wider range of flat frequency response.

Increasing the filter gains results in a somewhat wider range of flat magnitude response, but it also increases the sensitivity
to measurement noise. This is consistent with the notion of the tracking index,11 which is proportional to the ratio of the position
maneuverability, or signal, uncertainty to the position measurement uncertainty. The tracking index is central to the develop-
ment of the optimal gain relationships (4) and (8). The optimal value of α increases as the tracking index increases, in which
case the uncertainty in the target motion becomes relatively more significant than the position measurement uncertainty. If the
target maneuverability and measurement noise characteristics are known, they may be used to compute the optimal Kalman
filter gains directly. In practical applications of these filters for visual tracking, however, the parameter α is typically adjusted
empirically to find the largest value which will give acceptable performance in the presence of the measurement noise.

Since these filters are intended for use in prediction, there is often a tacit assumption that they have constant prediction vs.
frequency characteristics. As indicated in Fig. 4 and Fig. 6, however, this is not the case. The phase characteristics of the pre-
dictive filters result in prediction performance which is frequency-dependent. The α−β filter provides the desired amount of
prediction at low frequencies, but the amount of prediction rolls off starting at about 1-3% of fNyquist. The α−β−γ filter also starts
off with the correct prediction, and rolls off at higher frequencies, but in the transition region there is an increase in the effective
prediction up to a peak value. The height of the prediction peak is determined primarily by the nominal amount of prediction,
and secondarily by the value of α. This prediction peak can be beneficial in that less than full prediction can suffice at low fre-
quencies (the target will be tracked with some lag but will remain in the field-of-view) and then as the frequency increases,
tracking will become more accurate. Using reduced prediction is beneficial in terms of reducing the sensitivity to noise.

2.2.  Polynomial LMSF Filters

Another straightforward approach to predictive filtering is to perform a least-squares fit of a finite-length vector of previous
position data to a polynomial function of time. When used to filter data (without performing any prediction), such a procedure
is sometimes referred to as a least-mean-square-fit (LMSF) smoother.17 Let

(14)

where

 = vector of N samples of measured positions

 = vector of polynomial coefficients

 = vector of residual errors (  denotes the transpose operation)
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and the N×(M+1) matrix H is given by

 with T = the sample time as before.

The least-squares solution to the determination of the polynomial coefficients17 is

(15)

When the filter is used to predict a future position at time τ, the output equation for the filter is

(16)

From (16) it is clear that the polynomial LMSF equations may be written in the z-domain as

which is the form of a finite impulse response (FIR) filter18. The vector of filter coefficients is given by

(17)

As an example, the filter equation for a quadratic polynomial (M = 2), fitted to N = 6 position samples, with sample time
T = 1.0 s, and predicting τ = 2.0 s into the future is

(18)

As with the α−β and α−β−γ filters before, the magnitude and prediction response of the polynomial LMSF predictive filters
may be computed using the DFT. Figures 7-10 give the response characteristics for quadratic and cubic polynomial filters for
different combinations of N and prediction time (in terms of the number of sample periods, τ/Τ). These plots show that the
LMSF filters share many of the same general characteristics of the α−β and α−β−γ filters. There is a peak in the magnitude ratio
response which increases with the amount of prediction (Fig. 7, Fig. 9). The prediction response also exhibits a peak in the tran-
sition region (Fig. 8, Fig. 10). As with the gain parameter α, the parameter N in the LMSF filter is chosen to provide a compro-
mise between being able to track highly uncertain targets and being able to perform well in the midst of measurement uncer-
tainties. The parameter N is selected by decreasing the value to the smallest which will give acceptable performance given the
amount of measurement noise present. Increasing the order of the filter extends the flat response band, but results in higher mag-
nitude peaks and greater noise sensitivity. Specific comparisons between the constant-coefficient Kalman and LMSF filter types
are somewhat difficult to make, because the filter parameters α and N are not directly comparable. However, some generaliza-
tions can be made. The magnitude response peaks of the LMSF filters are higher, but narrower than those which occur with the
α−β and α−β−γ filters. The peak in the LMSF filter prediction vs. frequency curve is quite a bit larger than that for the α−β and
α−β−γ filters. The frequency range for flat magnitude response of the LMSF filters tends to be wider than that obtained with
the α−β and α−β−γ filters.

2.3.  Prediction of Periodic Motions Using Autocorrelation

The polynomial LMSF and α−β−γ filters do a good job of predicting signals which are have relatively low frequency con-
tent. These techniques may be the best one can do for signals which are unpredictable, but smoothly-changing. However, if the
signal is truly predictable (periodic, or nearly so), then it should be possible to identify the periodic waveform and use the data
of the previous cycle(s) to track at higher frequencies without latency or overshoot. This is the general idea behind the Target-
Selective Adaptive Controller (TSAC) proposed by Bahill and McDonald.2,15

In the TSAC approach, two methods are suggested for adaptively computing the signal to track. The first requires the iden-
tification of the target waveform from a menu of possible selections (triangular, sinusoidal, parabolic, etc.), and the subsequent
automatic determination of waveform parameters such as target amplitude and frequency. The second method uses a second-
order difference equation to compute the synthesized signal. It is desirable to be able to adapt to and predict signals in such a
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Fig. 7. Magnitude response of quadratic LMSF filter. Fig. 8. Prediction characteristics of quadratic LMSF filter.

Fig. 9. Magnitude response of cubic LMSF filter. Fig. 10. Prediction characteristics of cubic LMSF filter.
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way that the structure of the signal does not need to be identified a priori. One way to do this is to compute an autocorrelation
function on the target signal. In this technique, a window of sampled data is incrementally shifted back in time and compared
with previous sample windows. For each value of time delay, a correlation function is computed between the two sample win-
dows. A strong correlation indicates a periodic target signal. This is analogous to looking for stereo matches in left and right
camera images. If there is a good match, then the “future” state from the previous occurrence can be used to predict the future
state for the current situation. If the signal follows the previous pattern, then the prediction will be made without overshoot or
latency.

An implementation of this type of prediction has been developed. To determine the correlation with time-shifted values of
past positions, the sum of the squared errors between corresponding samples in the two windows is computed, as given below:

(19)

where
ED = the sum of the squared errors for a time shift of D sample periods,
x(k) = kth sample in sample window (with x(0) = the most recent sample),
D = number of sample periods of time shift, and
N = number of samples in window interval.

Using this correlation for prediction of periodic motions involves the following steps:

1. Compute ED for integer values of D in the range N ≥ D ≥ 1
2. Identify the minimum ED
3. If ED is less than a threshold value, then use x(D- Nτ) for the predicted value (where Nτ = the number of cycles
to predict ahead). Otherwise, use one of the conventional predictive filters discussed previously.

There are several modifications to this basic approach which enhance its operation. First, an array of ED values is main-
tained from cycle-to-cycle, and individual elements of this array are computed recursively to reduce the computation required.
Second, since the resolution of time shift is about T/2 = 0.01667 s, which is not sufficient for accurate high-speed tracking, syn-
thesized subsample data are introduced using linear interpolation between actual measured values. Also, if Nτ is not an integer
value, linear interpolation is used to compute the predicted value. With these modifications, simulations show that the correla-
tion prediction technique works quite well for periodic waveforms. As an example, Fig. 11 shows the simulated response of the
correlation prediction for a 4.7 Hz sinusoidal input (0.31 times the Nyquist frequency, which is 15 Hz for this example). The
target signal is corrupted by noise with a uniform distribution between -0.01 and 0.01. This plot shows that, even at relatively
high frequencies, correlation-based prediction can provide accurate and latency-free estimates of target positions. Since the pre-
vious motion samples are used as the model, there is no overshoot. Thus, for higher-frequency predictable target motions, such
an approach is preferable to the more conventional predictive filters discussed previously. Experimental results using correla-
tion-based prediction for high-frequency periodic motions in conjunction with a polynomial LMSF filter for lower frequency
random motions (switching between the two based on the correlation) will be presented in the next section, along with results
for the other predictive filters.

3.  EXPERIMENTAL RESULTS

In this section, some experimental tracking data are presented to verify the results of the previous section. For these tracking
experiments, the redundancy of TRICLOPS (4 degrees of freedom for a 3 degree-of-freedom pointing task) is used to create
apparent motion from a stationary target. A fixed target was visually tracked using the tilt and vergence axes while a sinusoidal
motion of the TRICLOPS base rotation joint was performed. This results in apparent motion of the target in an arc about the
base rotation axis. The frequency of the base motion was increased linearly with time, and the magnitude of the commanded
base motion was +/-0.175 rad (+/-10 deg). The target was placed at a distance of 0.9144 m (36 in), so the resulting nearly-sinu-
soidal motion of the target along the (horizontal) X axis of a coordinate frame fixed with respect to the rotating tilt/vergence
platform was 0.175×0.9144 = +/-0.16 m. The response plots will show the actual X position of the target with respect to the tilt/
vergence platform and the X component of the tracked position (i.e., where the cameras were pointing) as determined by ap-
plying forward kinematics to the tilt and vergence axes. Since image centroid updates are obtained at 30 Hz, fNyquist = 15 Hz.

First, we will present tracking results for two examples using conventional predictive filters. For these two examples, the
frequency of the base motion goes from 0 Hz to 1.5 Hz in 10 s. The example parameters which have been chosen are those
which give about the widest range of flat response combined with acceptable behavior in the presence of noise. To meet this

ED x k( ) x k D+( )–( )2.
k 0=

N 1–

∑=



goal, an α−β−γ filter with α = 0.75 and a cubic polynomial LMSF filter with N = 12 were used. For both of these filters, the
amount of prediction applied was τ/T = 0.088/0.0333 = 2.6 samples. This is less than the theoretical amount of prediction re-
quired for complete compensation (0.117 s—see section 1.1). Here we have taken advantage of the additional prediction at high-
er frequencies provided by both of the filters, and have reduced the nominal amount of prediction to reduce the sensitivity to
noise.

The measured response of the system with the α−β−γ filter is shown in Fig. 12. Good tracking without overshoot is ob-
tained up to almost 0.75 Hz. The maximum overshoot at 1.5 Hz is about 56% (magnitude ratio of 1.56), which puts it just above
curve 4 (α = 0.75, τ/T = 2.0) at 0.1 on the frequency scale in Fig. 5. This is expected, since the amount of prediction in the
experiment is a bit greater than 2 samples. The response of the cubic polynomial LMSF filter to the same target motion is pre-
sented in Fig. 13. For the parameters given, this LMSF filter tracks without overshoot up to about 1 Hz, and the peak overshoot
is 40% at 1.5 Hz. This corresponds to a magnitude ratio of 1.4 at 0.1 times the Nyquist frequency, which places it just above
curve 3 in Fig. 9 as expected. Both of these filters are clearly having difficulty tracking at 1.5 Hz, and the target is lost from the
field of view of the cameras at higher frequencies.

Next, we will present some preliminary results using the correlation-based prediction technique. For the correlation-based
prediction, the frequency was increased from 0 Hz to 3 Hz over a period of 60 s. The frequency is increased more slowly in this
case so that there will be good correlation over the window of samples. The window size N in (19) was 30, with two synthetic
data points between each measured sample. The cubic polynomial LMSF filter described above was used for low-frequency
tracking, with the correlation-based tracking becoming active when the minimum ED dropped below the threshold value (at
about 1 Hz). The threshold value for ED was 0.1 m2 for this test. Fig. 14 shows a 2-second recording of the tracking performance
near the end of this frequency sweep. The motion frequency for the data in the figure is about 2.5 Hz. As shown in the figure,
the target motion is tracked very well, without any overshoot, even at this comparatively high frequency (and using the full
amount of prediction—0.117 s). There is only a very small amount of latency, due to the fact that the target motion is increasing
in frequency, rather than exactly periodic. If the target motion decreases in frequency, there is a corresponding slight overpre-
diction. This effect does not have a significant effect on tracking as long as the frequency changes slowly enough. If the fre-
quency changes quickly, however, ED will be too large and tracking will be lost.

Although steady-state tracking of periodic targets works quite well with the correlation-based prediction, there are some
limitations with the technique in its current state of implementation. The most significant problem is the method used to switch
between the LMSF filter and the correlation-based tracking. At frequencies near the transition to correlation-based tracking the
system jumps back and forth between the two prediction techniques, which causes some jumpiness in tracking. Also, the ex-
perimental system does not track at frequencies as high as simulation studies indicate should be possible.

Fig. 11. Simulated response of correlation prediction technique. Fig. 12. Experimental performance of α−β−γ filter.
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4.  CONCLUSIONS

Prediction is necessary to obtain high-performance tracking in the face of large image acquisition and processing delays.
This paper has examined the frequency response characteristics of constant-coefficient Kalman filters and polynomial LMSF
filters when used for prediction. It is demonstrated that these filters may be reformulated to be in standard IIR and FIR (for
constant-coefficient Kalman filters and polynomial LMSF filters, respectively) forms. All of these predictive filters have a mag-
nitude peak at higher frequencies, which indicates that overshoot will occur. This is true even for the case where the filters are
used just for smoothing, without any prediction at all. Larger amounts of prediction and increased smoothing (decreased α for
α−β and α−β−γ filters, increased N for polynomial filters) result in lower peaks in the magnitude curve, but also decrease the
frequency range for flat magnitude response. Higher-order filters (α−β−γ and cubic polynomial LMSF) are seen to have higher
peak magnitude values, but also have a wider bandwidth of flat response. All of the filters except the α−β filter also have a peak
in the effective prediction vs. frequency plot. They provide the desired amount of prediction up to about 1-3% of the Nyquist
frequency, and then provide a larger amount of prediction until it starts tapering off starting at 6-10% of the Nyquist frequency.
The peak in the amount of prediction can serve to extend the effective range of tracking, since the nominal amount of prediction
can be reduced (lower frequencies can be tracked with a reduced amount of prediction and still remain within the camera fields-
of-view). This results in less overshoot and noise sensitivity, and gives accurate tracking at higher frequencies. If accurate low-
frequency tracking is desired, an α−β filter might be more appropriate, since this filter does not have a peak in the prediction
vs. frequency curve. The stability and accuracy of the tracking algorithms described in this paper strongly depend on being able
to match the correct joint position feedback data to the image data. This is only possible if the image acquisition and processing
delay is accurately determined, preferably by direct timing.

A method of tracking higher frequency predictable motions without overshoot or latency based on autocorrelation of the
target signal is also discussed. This method is similar to the TSAC approach of Bahill and McDonald2, except that previous
samples of the target, rather than adaptively-determined parameters for a specific waveform type, serve as the model of the mo-
tion signal. This method has been used to track sinusoidal target motions in excess of 2.5 Hz. It is desirable to combine the
conventional predictive filter with a periodic motion prediction technique, such that both random motions with low frequency
content and higher-frequency predictable motions can be tracked successfully with automatic switching between the two tech-
niques. This has been accomplished with some success, but difficulties remain; particularly in performing smooth transitions
between the two techniques. For example, if the system is tracking a high-frequency periodic signal which then ceases to be-
come periodic, what should the system do? The prediction provided by a conventional predictive filter cannot be used, since
the overshoot will be too great. Probably the best which can be done in this situation is to attempt to follow the periodic trajec-

Fig. 13. Experimental performance of cubic LMSF filter. Fig. 14. Experimental performance of correlation prediction.
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tory for a few cycles, but then stop tracking altogether. Peripheral vision (provided by the center camera of TRICLOPS) could
also play an important role in this case, by keeping the target in the field of view without attempting to track its motions accu-
rately, and by indicating when the target motions have slowed down enough to enable tracking by the vergence cameras. This
is an area for future investigation.
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