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Abstract -- The Cerebellar Model
Articulation Controller (CMAC) is a neural
net model for computation in the brain.
The Real-time Control System (RCS) is a
reference model architecture for intelligent
control that evolved out of the CMAC
paradigm. RCS has been used in a number
of intelligent control applications at NIST
and elsewhere.

L. INTRODUCTION

The Cerebellar Model Articulation Controller
(CMAC) is a neural net model that can compute a
variety of vector functions of the form

P(t+dt) = H(S (1))
RCS is a reference model for intelligent control that
can (in principal) be constructed entirely from
modules that compute such functions.

In CMAC the function H is the product of
two functions F and G such that

A =FE)
P(t+dt) = G(A(1)
and

S(t) represents a vector of firing rates s(i,t)
on a set of input fibers at time t

A(t) represents a vector of firing rates a(j,t)
of a set of association cells at time t

P(t+dt) represents a vector of firing rates
p(k,t+dt) on a set of output fibers at time t+dt

The function F is fixed, serving as an
address decoder {or recoder) that transforms the
input vector S into an association cell vector A.
The number of association cells in vector A is
typically two orders of magnitude larger than the
number of input fibers. This increases the
dimensionality of the A space. However, only a
few percent of the association cells are non-zero for
any particular input vector. Therefore, the A vector
is sparse. As a result, CMAC can store, or
recognize, a large number of non-linear functions

(1).

The function G depends on the values of a
matrix of synaptic weights w(j,k) that connect the
association cells to the output cells. The weights
w(j,k) may be modified during the learning process
so as to modify the function G, and hence the
overall function H.

II. DISCUSSION

CMAC neural nets can be designed to
compute many kinds of functions of the form P =
H(S). For example, H may be an arithmetic or
logical function, where the input S consists of real,
integer, or Boolean variables, and the output P is the
value of the function expressed in real, integer, or
Boolean variables. On the other hand, H maybea
memory recall function, where the input § is an
address, and the output P is the contents of the
address. The process of training the CMAC is the
process of storing a value in a memory address. H
may also be a list processing function, where S is an
address, and P is a pointer to the next address in the
list. H may be a pattern recognition function,
where S represents the attributes of an object, and P
1s the name of the object. H may be a database
function, where S is the name of an object, and P its
attributes.

In cases where one or more of the output
variables in P loops back to become a part of the
input §, the input is a function of the previous
output, i.e., it contains state variables. In this case,
the S vector consists of input and state
information, and the CMAC neural net can function
as a finite state automaton (fsa). If the H function in
a CMAC fsa performs a summation, the output P
may contain the integral of the input. If the H
function of a CMAC fsa performs a difference, the
output P may contain the temporal differential of the
input.

If the input part of S to the fsa consists of
both command and sensory feedback variables, the
CMAC fsa can perform task decomposition. If the
input part of S contains both a planned action and a



world state vector, the output P may contain the
predicted result of the planned action. If the input S
is a predicted result, the output P can be an
evaluation of S. If the input S consists of both
sensory observations and world model predictions,
the output P can be a correlation or a difference
function, or a recognition function.

A single neuron can function as a delay
element, and a series of delay elements can be
configured as a tapped delay line. Pairs of neurons
can compute either a temporal or spatial difference
function, and hence temporal or spatial gradients.

Combinations of CMAC neural nets can
compute the vector product of two input vectors,
and can sum over any number of products so as to
compute the correlation between two signals, or the
convolution of a signal with a filter. Correlations or
convolutions can be performed in either the temporal
or spatial domains, or both.

CMAC neural nets can produce image
shifting and scaling operations, and can transform
coordinates for either iconic maps or symbolic
entitics. Iconic map coordinate transforms can be
performed by computing for each pixel, the address
of its new position under the transform, and moving
its present value to the new address. A symbolic
entity is transformed by adding an off-set vector to
its current position and orientation attributes. A
transformation of coordinates for an iconic map is
equivalent to an image warping or scrolling
operation.

Given the above capabilities, a network of
CMACs can perform regressions, and recursive
estimations such as Kalman filtering, Fourier
transforms, and compute coefficients for any
number of series approximations such a Taylor
series, Bessel functions, Hermite polynomials,
Hankel functions, etc.

Even with these capabilities, however, the
question remains of how to organize this processing
capacity so as to produce the phenomena of
intelligent behavior. This question is addressed by
the NIST Real-time Control System (RCS)
Reference Model Architecture for intelligent control

[2].

RCS evolved out of the attempt to build
intelligent control systems out of modules that could
(at least in principal) be constructed from CMAC
neural nets. RCS defines the elements of
intelligence as task decomposition, world modeling,
sensory processing, and value judgment. Tt defines
a hierarchy of nodes containing these elements, and
a set of data pathways interconnecting the nodes.
The RCS architecture demonstrates how task

decomposition, world modeling, sensory
processing, and value judgment functional modules
can be interconnected so as to produce intelligent
behavior. Each layer of the RCS hierarchy has a
characteristic loop bandwidth, planning horizon, and
short term memory interval. Each layer also has a
characteristic range and resolution on cognitive
maps.

RCS suggests how CMAC neural net
modules could be used to generate planning and
control functions for task decomposition, how
models of the world could be stored, retrieved, and
correlated with observations, as well as used to
predict the results of planned actions, and how
visual, acoustic, and tactile patterns could be
recognized, and how value judgments could be
computed.

It should be noted that learning is not the
most important property of the CMAC neural net or
of the RCS architecture. Computation is more
important. RCS predicts that intelligent behavior is
the product of a complex set of computational
processes operating on a set of state variables
representing both internal goals and priorities, and
sensory observations of the external world.
Learning is merely one means by which world
model data is updated, motor and perceptual skills
are acquired, and values are developed.

RCS has been used in a number of
applications of intelligent machine systems, in
factories, mines, telerobotics, and unmanned
vehicles. An outline for a theory of intelligence
based on CMAC and RCS was recently published

[3].
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