To be presented at the 8th IEEE International Symposium on Intelligent Control,
Chicago, IL, August 25-27, 1993.

Task Decomposition

James S. Albus
Robot Systems Division
National Institute of Standards and Technology

Abstract

A hierarchical reference model architecture for real-time intelligent control has been defined. At
each level generic task decomposition modules accept commands and use stored task knowledge
to decompose the commands into subcommands to be sent to subordinate task decomposition
modules. Both spatial and temporal task decomposition are addressed.

Introduction

A task is an activity performed by one or more agents on one or more objects in order to
achieve a goal. Task decomposition is the process that the agent(s) perform(s) in order to achieve
a goal. Task decomposition consists of three elements: spatial decomposition, temporal
decomposition, and execution.

1) Spatial decomposition consists of the assignment of agents to jobs, and the allocation of

resources to agents, for the duration of the task.

2) Temporal decomposition consists of each agent planning a sequence of subtasks to

accomplish its respective job assignment.

3) Subtask execution consists of each agent implementing its respective plans.

A reference model architecture for real-time intelligent control has been defined [1,2,3].
The architecture is hierarchically layered, with computational nodes consisting of sensory
processing, world modeling, behavior generating, and value judgment modules at each level. The
hierarchical layers are defined by:
1) temporal and spatial decomposition of tasks into levels of detail,
2) spatial and temporal integration of sensory data into levels of abstraction, and
3) spatial resolution of objects and maps, and temporal resolution of events and trajectories in
the representation of knowledge in the world model.

Temporal resolution is defined by sampling rate, state-change intervals, and loop
bandwidth. Spatial resolution is defined by the size of pixels in visual and tactile receptor arrays,
the signal-to-noise ratio in analog sensors, and the number of resolution elements in analog-to-
digital converters.

Temporal integration is defined by length of historical memory traces and planning
horizons. Spatial integration is defined by clustering of pixels into regions, features into objects,
and objects into groups.

In the reference model architecture, task decomposition is performed by task decomposition
modules, each of which consists of:

1) aJob Assignment submodule that performs spatial decomposition,

2) a set of Planners that generate plans for the agents, and

3) a set of Executors that execute the plans for the agents.

Figure 1 is a diagram of a generic task decomposition module at level(i). The Executor
submodule from level(i+1) computes a task command and a probable next task command based on
its inputs, which are the current step in its plan plus the current feedback from its view of the world
model. The world model feedback informs the Executor of the current best estimate of the state of
the world, including the state of the control system itself.

1

The Job Assignment (JA) submodule at level(i) performs a spatial decomposition resulting
in a job assignment wherein each agent is assigned a job and the resources required for that job.
The job assignment operation is a process, and the job assignment itself is a data structure.

The job assignment data structure for the current and probable next task, together with
feedback from the world model forms the input to the agent Planners. Feedback from the world
model allows the planners to perform real-time planning. If there is no feedback from the world
model to the Planners, then the planning process can be done anytime prior to task execution. In
the case of off-line planning, there is no requirement for real-time feedback from the world model.

Feedback

Level(i+1)

\ -
\ Task Command
-) Probable Next Task Command
To Level(i)

\
\
D JA

Feedback

Feedback

N

Feedback

Level(i)

\ Task Command

~% Probable Next Task Command
~_)
To Levai(i-1)

Figure 1. A generic task decomposition level. Rectangular boxes represent
processes. Circles and ovals represent data structures. Arrows indicate
the flow of data or of control.

In Figure 1, the Planners are shown as a single process, rather than as a set of individual
processes, one for each agent. This is because there are often mutual constraints, or requirements
for coordination, between plans for the set of agents assigned to a task. For example, the agent
may need to time-share their assigned resources, or they may need to synchronize their planned

2

sequence of actions in order to accomplish the goal of their mutual task. This implies
communication between planning processes for each of the agents that is indicated in the diagram
by a single Planners process box.

The activity of the Planners is a process. The resulting plan, or set of coordinated plans for
each of the agents, is a data structure. Most plans can be represented by a state-graph.
Coordinated plans for multiple agents can be represented by cross-coupled state-graphs, in which
the edges (or conditions for state transition) in the state-graph of one agent are defined by states or
edges in the state-graphs of other agents.

For each agent at level(i), there is an Executor that computes a task command and a
probable next task command for level(i-1) based on its inputs The inputs of each Executor
submodule consist of the current state in its plan state-graph, plus the current feedback from its
view of the world model.

When the world model indicates to an executor that a subtask in its current plan is
successfully completed, the executor steps to the next subtask in that plan. When all the subtasks
in the current plan are successfully executed, the executor steps to the first subtask in the next plan.
If the feedback indicates the failure of a planned subtask, the executor branches immediately to a
preplanned emergency subtask. Its planner simultaneously begins work selecting or generating an
error recovery sequence which can be substituted for the former plan which failed.

Output subcommands produced by Executors at level(i) become input commands to Job
Assignment submodules in TD modules at level(i-1).

Planners constantly operate in the future, each generating a plan to the end of its planning
horizon. The Executors always operate in the present, at time t=0, constantly monitoring the
current state of the world reported by feedback from the world model. At each level, each
Executor submodule closes a reflex arc, or servo loop, and the Executor submodules at the various
hierarchical levels form a set of nested servo loops. The Executor loop bandwidth decreases about
an order of magnitude at each higher level. Each hierarchical level has a typical frequency of
execution that is determined by the dynamical properties of the system being controlled.

Task Knowledge

Fundamental to task decomposition is the representation and use of task knowledge. A
task is a piece of work to be done, or an activity to be performed. For any TD module, there
exists a set of tasks that the TD module knows how to do. Each task in this set can be assigned a
name. The task vocabulary is the set of task names assigned to the set of tasks each TD module is
capable of performing.

Knowledge of how to perform a task may be represented in a frame data structure. An
example task frame is shown in Figure 2. The name of the task is a string that identifies the type
of activity to be performed. The goal may be a vector that defines an attractor value, set point, or
desired state to be achieved by the task. The goal may also be a map, graph, or geometric data
structure that defines a desired "to-be" condition of an object, or arrangement of components. The
object is an identifier that points to a database that may describe the geometry, position,
orientation, surface characteristics, material composition, physical properties, and class to which
the object belongs.

The parameters are properties of the task. The requirements define the information
required from the world model during the task. This may consist of alist of state variables,
maps, and/or geometrical data structures that convey actual, or "as-is" conditions that currently
exist in the world. Requirements may also include resources, tools, materials, time, and
conditions needed for performing the task.

The procedure section contains either a set of pre-computed plans or scripts for
decomposing the task, or one or more planning algorithms for generating a plan, or both. For
example, the procedure section may contain a set of IF/THEN rules that select a plan appropriate to
the “as-is” conditions reported by the world model. Alternatively, the procedure section may

TASKNAME Name of the task

Goal Event or condition that successfully terminates the task
Object Identification of thing to be acted upon
Parameters Priority

Status (e.g. active, waiting, inactive)

Timing (e.g. speed, completion time)
Coordinate system in which task is expressed
Tolerances

Agents Identification of subsystems that will perform the task

Requirements Feedback information required from the world model during the task
Tools, time, resources, and materials needed to perform the task
Enabling conditions that must be satisfied to begin or continue the task
Disabling conditions that will interrupt or abort the task activity

Procedures Pre-computed plans or scripts for executing the task
Planning algorithms
Functions that may be called
Emergency procedures for each disabling condition

Figure 2. Anexample of a task frame.

contain a planning algorithm that computes the difference between "to-be" and "as-is" conditions.
This difference may then be treated as an error that the task planner attempts to reduce, or null
through “Means/Ends Analysis” or A* search. Each subsystem planner would then develop a
sequence of subtasks designed to minimize its subsystem error over an interval from the present to
its planning horizon. In either case, each executor would act as a feedback controller, attempting
to servo its respective subsystem to follow its plan. The procedure section also contains
emergency procedures that can be executed immediately upon the detection of a disabling
condition.

For tasks of real-world complexity, task knowledge is typically difficult to discover, but
once known, can be readily used and duplicated. For example, the proper selection of tools,
materials, speeds, feed rates, and forces required to mill a pocket, drill a hole, or fixture a part may
be difficult to derive from first principles. However, once such knowledge is known and
represented in a task frame, it is relatively easy to transform into executable code.

The library of task frames that reside in each TD module define the capability of the TD
module. The names of the task frames in the library define the set of task commands that TD
module will accept. There, of course, may be several alternative ways that a task can be
accomplished. Alternative task or job decompositions can be represented by an AND/OR graph in
the procedure section of a single task frame, or by multiple task frames.

The agents, requirements, and procedures in the task frame specify for the TD module
"how to do" commanded tasks. This information is a-priori resident in the task frame library of
the TD module. The goal, object, and parameters specify “what to do”, “on what object”, “when”,
“how fast”, etc. This information is conveyed to the task decomposition module by a task
command. When a TD module inputs a task command, it searches its library of task frames to find
a task name that matches the command name. Once a match is found, the goal, object, and
parameter attributes from the command are transferred into the task frame. This activates the task
frame, and as soon as the requirements listed in the task frame are met, the TD module can begin
executing the task plan that carries out the job of task decomposition.

Figure 3 is a more detailed view of the functions performed by each of the reference model
task decomposition modules. An input command instantiates a task frame. The task knowledge
contained in the task frame is used by the Job Assignment spatial planner along with feedback from
the world model to assign jobs and resources to agents. The spatial planner hypothesizes potential

4

Pun nae(i3)

F

Agene/Object par kv

Cerr1d Metet Reply(t
Warld Mcdel
Enihly frames

=5
o

tria Model QueryTTYyg

emporal Fianer

Temporal Planner |

131 Flan(L3.)

Plan stato(i.3.m.6)

V aRbe Jud) il 3
Selecnon Lred
valusicn Funciio
Sewcton Crn)

5

Task Frune

it

)
i
i

Sequential Plaj) for Agent(i.1)
> Subtask(L1)

Figure 3. A diagram of a generic task decomposition module showing the spatial and
temporal planners, and the interaction between the planners and task frames.

assignments, the world model predicts the results of each assignment, and the value judgment
module evaluates the cost and benefit of each result. The plan compiler selects the best hypothesis
as the Job Assignment for the task. The Job Assignment may define Job Commands directly to
each agent planner, or consist of a set of IF/THEN rules that make the Job Commands dependent
on conditions reported by the world model.

Similarly, the temporal planner for each agent Planner has a hypothesis generator, world
model results predictor, value judgment evaluator, and plan compiler. The plan compiler selects
the most cost effective plan for each agent. The coordination requirements and mutual constraints
between temporal agent planners takes place via the world model, where the results of planning
hypotheses are computed. The output of each temporal planner is a state-graph representation of
the plan for the agent.

Figures 1 and 3 suggest a strong similarity between spatial and temporal decomposition. In
some implementations of RCS, the spatial and temporal task decomposition are accomplished by
the same generic TD template [4,5].

Summary and Conclusions

Task decomposition is central to intelligent control. A reference model architecture that
partitions the real-time control problem into hierarchical layers has been defined. In this
architecture, task decomposition modules at every level decompose higher level tasks into
coordinated concurrent sequences of lower level tasks to be performed by one or more agents on
one or more objects.

Robotic systems based on this architecture have been implemented for a wide variety of
applications that include loading and unloading of parts and tools in machine tools, controlling
machining workstations, performing robotic deburring and chamfering, and controlling space
station telerobots, multiple autonomous undersea vehicles, unmanned land vehicles, coal mining
automation systems, postal service mail handling systems, and submarine operational automation
systems. A methodology for designing open-architecture real-time intelligent control systems
based on this reference model is currently being developed by the Robot Systems Division at
NIST.

References

(1] J.S. Albus, “RCS: A Reference Model Architecture for Intelligent Control,” IEEE Journal
on Computer Architectures for Intelligent Machines, May, 1992.

[2] 1.S. Albus, “Outline for a Theory of Intelligence,” IEEE Trans. on Systems, Man, and
Cybernetics, Vol.21, No.3, May/June 1991.

[3] J.S. Albus and A.A. Meystel, S. Ussaman, “Nested Motion Planning for an Autonomous
Robot,” to be published in Proceedings of 1993 IEEE Conference on Aerospace Control
Systems.

[4] H.M. Huang, R. Hira, and P. Feldman, “A Submarine Simulator Driven by a Hierarchical
Real-Time Control System Architecture,” NISTIR 4875, National Institute of Standards
and Technology, Gaithersburg, MD, July 1992.

[5S] H.M.Huang, R. Quintero, and J.S. Albus, “A Reference Model, Design Approach, and
Development Illustration toward Hierarchical Real-Time System Control for Coal Mining

Operations,” a chapter in Advanced in Control & Dynamic Systems, Academic Press, July
1991.

