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ABSTRACT

In this paper, we describe a visual processing algorithm
that supports autonomous road following. The algorithm re-
quires that lane markings be present and attempts to track the
lane markings on both lane boundaries. There are three stag-
es of visual processing computation: extracting edges,
matching extracted edge points with a geometric model of
the road, and updating the geometric road model. A fourth
stage computes a steering command for the vehicle based on
the updated road model. All processing is confined to the 2D
image plane. No information about the motion of the vehicle
is used. This algorithm has been used as part of a complete
system to drive an autonomous vehicle, the High Mobility
Multipurpose Wheeled Vehicle (HMMWYV). The system
has been used to successfully drive the vehicle on roads
within the grounds of the National Institute of Standards and
Technology (NIST) at speeds up to 90 km/h as well as in
simulation on a wide variety of video taped road scenes. It
performs robustly for video tapes of both highways and rural
roads. The algorithm runs at a sampling rate of 15 Hz and
has a worst case latency of 139 milliseconds (ms).

1. Introduction

There has been increasing interest in the development of
autonomous vehicles in recent years. Interest has included
high-speed driving on highways, urban driving, and naviga-
tion through less structured off-road environments. The pri-
mary challenge in autonomous driving is the development of
perception techniques that can cope with the variability of
outdoor conditions and road appearances in any of these en-
vironments. Roads can be smooth and well marked, riddled
with cracks and potholes, or not marked at all. Shadows,
glare, varying illumination, dirt or foreign matter, other ve-
hicles, rain, snow, etc. also affect road appearance.

Perception for autonomous driving has been approached
with a wide variety of vision based techniques. Among the
methods used are statistical classification methods, feature
tracking methods, image flow methods and neural network
based methods. Statistical classification methods [1], [2],
[31, [41, [51, [6], [7), [8] have been applied to the road per-
ception problem. These methods share a similar paradigm.
This approach involves classifying each pixel in the scene as
either road or non-road using classical techniques of super-
vised or unsupervised statistical classification [22]. Road
shape is usually then determined by finding the closed re-
gion that contains the highest concentration of “road” pixels.

Feature tracking is another perception method used in au-
tonomous driving systems. These methods track prominent

features (e.g. lane markers) from image to image. Systems
which use feature tracking include [9], [10], [11], [12], [13],
[14], [15]). Image flow techniques are described in [16] and
neural networks in {17].

We use a feature tracking method. Our processing con-

sists of three stages of visual computation:

1) Extracting edge point position and orientation.

2) Matching extracted edge points to the road model.

3) Updating the road model.
A steering command is computed based on the updated
road model in a fourth stage of processing. This command
is used by the vehicle in an autonomous driving situation.
The sequence of operations is repeated for each new image.
The input to Stage (1) (Figure 1) consists of scenes of a
driver’s view of the road ahead as the vehicle is driven.
Stages (2) and (3) require an explicit geomeiric model of
the road. Stage (2) attempts to match the extracted edge
points obtained from stage (1) with the road model. Stage
(3) updates the geometric model of the road using the
matched edge points.

We choose not to reconstruct the 3D scene at this level of
processing. Although 3D information is necessary to com-
mand navigation of the vehicle, we belicve there are advan-
tages to avoiding the transformation from 2D to 3D in the
feature tracking feedback loop as shown in Figure 2. In this
way, our approach differs from that taken by other feature
trackers (e.g. [9], [10], [11], [121, [13]). Their approaches
convert the matched features from 2D to 3D before updating
the road model. The 3D road model is then backprojected
into 2D for the matching process. By updating the model in
2D, our feature tracking algorithm is unaffected by any er-
rors, approximations, or assumptions that might be incurred
in doing 3D reconstruction and backprojection. In 3D recon-
struction, assumptions are often made about flat roads and
small angles, etc. 3D reconstruction also requires camera
calibration which can introduce errors.

Our method for updating the model is different from oth-
er road following approaches in the manner in which we
combine data temporally. As in other approaches, we use a
form of recursive estimation to update the parameters of our
geometric road model. However, by restricting our repre-
sentation to the 2D image plane, we are able to combine both
spatial and temporal information in one estimation formula-
tion. Under this formulation, the weight assigned to the data
from each image implicitly depends on the number of data
points matched between the image and the model. If the lane
marking momentarily disappears, few edge points will
match the model and the weight of this data will be relative-
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Figure 1. Processing Overview

ly insignificant compared to data from an image in which
lane markings are visible.

Other feature trackers do not seem to differentiate in im-
age confidence when combining images temporally. They
do not seem to distinguish between images where lane
markers are strong and images where lane markers are
weak. This will adversely affect performance in situations
where lane marker visibility is momentarily weak. For ex-
ample, the method used in [9], [10], [11] first computes
least squares estimates of a set of geometric parameters us-
ing only the data from the current image. These parameters
are then smoothed over time using a Kalman filter. In using
the Kalman filter, the weighting of new data is controlled
by the relative choices of the model covariance and the
measurement variance. [9], [10], [11] do not explain how
these covariances in their Kalman filter are modeled or
chosen, or even if they are chosen to vary as a function of
the image. If they are chosen as constants, all images would
receive equal weighting.

Section 2 discusses our road following algorithm. Sec-
tion 3 describes our hardware and development environ-
ment. Section 4 describes system performance.

2. Road Feature Tracking Algorithm

In this section we describe our road feature tracking al-
gorithm in detail. In 2.1 we describe our geometric repre-
sentation of the road. In 2.2, we describe how the model is
initialized to a road scene. In 2.3 we describe the edge ex-
traction algorithm. In 2.4 we describe the algorithm that
maiches edge points with the road model. In 2.5 we de-
scribe the algorithm that updates the road model.

2.1. Road Model

We model the road using the left and right lane bound-
aries in the lane of travel. Physically, these boundaries cor-
respond to the white or yellow lane markers painted on the
road. Lane markers may consist of either solid or striped
lines. We represent each of these lane boundaries by a qua-
dratic model (equation 1) in the image plane:

0

The parameters, ay, a5, as, govern the shape, position and
orientation of the lane marker as it is viewed in the image.

2.2. Initial Conditions

Our algorithm requires an initially accurate model of the
road. The initial model is established by a teleoperator who
manually positions models of both lane markers to align
them with the lane boundaries in the image. On the visual
display, the models of the lane markers are represented to
the teleoperator as graphic overlays on the video image. In
this way, the teleoperator establishes the initial values of
the parameters ay, a,, a3 for both quadratics.

2.3. Edge Extraction

The first processing step performs edge extraction on
the input scene (stage (1) in Figure 1). In order to enhance
the contrast of the edges formed by the lane markers on the
road, we place a yellow filter in front of the camera lens.
The filter is designed for spectral transmission of wave-
lengths from 510 nanometers (nm) into the infrared. The
effect is to intensify the contrast of the yellow and white
markers against the road.
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For every point in the image, edge magnitude and
edge orientation are computed using a two-dimensional
3 X 3 spatial gradient operator. The direction, 8, of each
point in the image is defined to be perpendicular to the
direction of the gradient of the intensity function f{x,y) at
that point:
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The magnitude of each edge pixel, mag, is given by:

mag = J(V x£)2(x,y) + (V y£)2(x, y) €)

Using a non-maximum suppression algorithm, those
edge pixels whose magnitude is greatest in the direction
across the edge are selected as edge points. A description
of the non-maximum suppression edge extraction algo-
rithm can be found in [21]. A binary edge image is pro-
duced by thresholding the edge points. The threshold
level is set to a value which removes weak edges and
edges caused by camera noise. The output from this pro-
cessing stage consists of a list of the image coordinates
of all edge points above the threshold value and the ori-
entation of these points. It should be noted, at this stage
of operation, no effort is made to distinguish road edges
from other edges present in the input image. Execution of
this algorithm is completely data-driven.

To reduce the amount of data processed by algorithms
in stages (2) and (3) in Figure 1, we exclude all edges that
fall outside a window of interest. This window of interest
is chosen to include the entire portion of the visible road
but to exclude, as much as possible, the rest of the image
(e.g. the hood of the vehicle, trees, grassy shoulders,
houses, etc.). Figure 3a is a typical image of a road
viewed from a camera mounted on a vehicle. Figure 3b
is a window of interest. Figure 3¢ represents the results
of masking the original road scene with the window of
interest. During execution, the lateral position of the win-
dow of interest shifts in order to keep it centered on the
road. In addition to centering, the shape of the window of
interest changes as a function of the current road curva-

Figure 3a. Road Scene

ture. We are currently using seven masks: one mask rep-
resenting zero road curvature (figure 3b), three masks
representing increasing road curvature to the left, and
three masks representing increasing road curvature to the
right. All masks are generated off-line but are instantiat-
ed in real-time for the actual image processing. Our mask
selection algorithm changes masks when one of the lane
marker models intersects either of the vertical bound-
aries of the current mask. For example, if a lane marker
intersects the left boundary, the mask giving the next
larger increment of curvature to the left is chosen.

2.4. Edge Matching

In this stage of processing we match the edge data
against the existing model of the road. The purpose of
this edge matching algorithm is twofold. The first pur-
pose is to associate edge points with the appropriate lane
marker. The second purpose is to eliminate edge points
that do not seem to be associated with either lane marker.
For example, shadows, pot holes, or other vehicles can
appear in the selected window and will contribute to the
edge information. We wish to exclude this “spurious”
edge data from the road model update computation.

The edge matching algorithm compares each edge
pixel to the model of each lane marker. An edge pixel is
either accepted or rejected depending upon its similarity
to the model. The labelling process is based on two crite-
ria. The first criterion is the two-dimensional spatial
proximity of an edge point to the model. The second cri-
terion is the similarity of direction of the edge point with
the angular orientation of the model.

To facilitate this process, the quadratics representing
each lane marker are approximated by a set of consecu-
tive line segments. This is achieved using a simplified
version of the iterative endpoints algorithm [22]. The
conglomerate of these lines is used as the model in the
matching procedure. The first step in this procedure
compares the edge direction of the candidate edge point
with the angular direction of each of these model lines:
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If this angular disparity is within an acceptable range,

Figure 3b. Window of Interest Figure 3c. Window of interest

applied to road scene



8, for any model line, the distance d is computed between
the point at image coordinate (x;, y;) and each model line;
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Where (Agx + Byy + C, = 0) is the equation for the k™ line
in the model.

The minimum of these distances is used to determine if
that point is less than a distance threshold, {, from the
model. The point is labelled as belonging to the model
when both the spatial proximity and orientation conditions
are satisfied. Under these matching criteria, an edge point
will rarely be associated with both lane markers except
possibly at the vanishing point of the road.

2.5. Road Model Update

Each of the two quadratic lane marker models is updated
separately. The parameters of each model a;, a;, a3 in
equation (1), are updated by an exponentially weighted re-
cursive least squares computation (see [23]) using the
matched edge points as input data.

In this estimation method, the estimated model parame-
ters are based not just on the current image, but on data ac-
quired over the entire sequence of previous images. The
maiched edge data from any one image alone may not be
sufficient to obtain an accurate model of the lane markers.
This data may be contaminated by noise or the edges due to
actual lane markers may be too weak to be detected. In ei-
ther case, the estimate of a lane marker model can be im-
proved by using data over a sequence of images.

The success of exponentially weighted recursive least
squares is based on the assumption that the appearance of
the road changes gradually over a sequence of images.
There are, however, limits at which the assumption of con-
tinuity fails. We must therefore choose a method of weigh-
ing new data with respect to old in order to achieve a com-
promise between responsiveness and robustness. For ex-
ample, if new data is weighted relatively heavily, the
algorithm will be very responsive to changes in the road.
However, the algorithm will also be more susceptible to the
ill-effects of noise and sparse data. On the other hand, if
new data is weighted less heavily, the algorithm will be
more robust in the presence of noise, but more inert in re-
sponding to actual changes in the image of the road.

In exponentially weighted recursive least squares, the
trade-off between new and old data is controlled by speci-
fying the value of the exponential weighting factor, A (also
called the forgetting factor). The weight assigned to each
image is:

ln-m (6)
00<h<10
n is the current time
m s the time the image was sampled

For example, if A = 0.5, all edge points in the current image,

time m=n, have a weight of 1.0. All edge points in the im-
age read attime m = n - 1 have a weight of 0.5; edge points
from time m = n - 2 have a weight of 0.25, etc. Values of A
anywhere in the range 0.5 < A < 0.75 produced acceptable
tracking for our road scenes.

The least squares problem is formulated as follows. To
determine values of a;, a, az in equation (1) which will
provide the best least squares fit to a batch of N data points
(xi, y;), the least squares residual in x is minimized:

N
2
J= 3 [x- (a +ayy;+azy))] ¥))
i=1

In recursive least squares, the data includes the current
image as well as all previous images. The data from previ-
ous images is weighted by increasing powers of the expo-
nential weighting factor. Therefore we solve for a;, ay, a3,
by minimizing the exponentially weighted recursive least

squares residual:

=z

2
I = [x; ;= (a +“2>’j,i+a3yj2, D1+ @®

i

H
—

=

-1
2
2
AD Ixi_yi—(ay+apy;_y ;+asyi g )] +
i

"
—

N,

2
2
}»22 [xj g, (@1 +a3y;_5 ;+a3¥7_5 )] +...
i=1

Jj - Time at which image was sampled
N; - Number of matched edges points in image j

Each summation represents the data from one image. In
this residual, the weight of each image j is also implicitly a
function of the number of edge points matched, N;. An im-
age that matches many edge points will carry more weight
than an image which matches few edge points. Therefore,
if a lane marker momentarily disappears, few edge points
will match the model and the estimate will not be greatly
perturbed. Also, since the variance of a least squares esti-
mate decreases as the number of data points increases (see
[19], [20]) we are in effect giving more weight to data in
which there is a higher confidence.

To efficiently solve equation (8) for a;, a,, a3 such that
the residual is minimized, we use the square root informa-
tion filter (SRIF) algorithm[24]. The SRIF provides an ef-
ficient, numerically stable, closed form solution to the least
squares problem. Itis also a recursive algorithm. That is the
model is updated as new data becomes available without
having to explicitly store old data. The algorithm also has
the advantage in that it is “recursive in batches.” Whereas
other recursive estimation algorithms combine new infor-
mation one measurement at a time, this algorithm can effi-
ciently combine multiplies of measurements at once. Since



each image yields a batch of edge points, this algorithm is
well suited for our problem. The SRIF algorithm is de-
scribed in [24][25].

3. Hardware and Developmental Testbed

Our development environment consists of a Sun
SPARC?2 workstation, a Pipelined Image Processing En-
gine (PIPE), a VME-based multiprocessor system!, and a
VHS video cassette recorder (VCR).

Our image data was collected from a camera mounted
on the hood of a HMMWYV [35] aimed to capture the driv-
er’s view of the road ahead. For simulation purposes, re-
cordings were made of both highway scenes and rural roads
as the vehicle travels at speeds varying between 40 kilome-
ters per hour (km/h) and 88 km/h The HMMWYV was occa-
sionally driven in an erratic fashion (weaving back and
forth, etc.) to create challenging image sequences. For au-
tonomous driving, live camera input from the camera
mounted on the HMMWYV hood is used.

Image data is read into PIPE either from the live camera
or the VCR playback mode. The incoming images are dig-
itized to provide 8-bit grayscale images that are 242x256
pixels in size. Edge extraction is performed on the images
in PIPE which then converts the information from an image
format to a symbolic list. The corresponding edge direction
values are mapped onto the memory of one of the micro-
processors via a specialized PIPE-VME interface board.

The remaining processing is divided among micropro-
cessors in the VME backplane. Most computations -- com-
munication with the PIPE, edge matching, updating the
model, and computing a graphical overlay -- are pipelined.
The model updates for each lane marker are computed in
parallel on separate processors. All inter-processor com-
munication is done through semaphored global memory.
For a detailed description of our software engineering prac-
tices refer to [36].

The display process provides graphic overlays of the
window of interest, the geometric model of the lane bound-
aries and the computed lane center on the live video image.
These graphic overlays are used for debugging purposes
and to provide a qualitative measure of performance. A
Matrox VIP 1024 board is used to implement the graphic
overlays on the video signal.

All program development for the VME-based multipro-
cessor system is done on a Sun SPARC2 workstation. All
code on this system is written in the Ada programming lan-
guage. Program development for PIPE is done on a person-
al computer using the PIPE graphical programming lan-
guage, ASPIPE [37].

1. Certain commercial equipment, instruments, or materials
are identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by NIST, nor does it imply
that the materials or equipment identified are necessarily best
for the purpose.

4. System Evaluation

We tested the system and algorithms described using
both live camera input and input from videotaped sequenc-
es of road scenes We have integrated and tested the algo-
rithm with the steering control algorithm described in [35]
on the HMMWYV and have successfully demonstrated this
closed loop autonomous driving system on the NIST
grounds. We have achieved autonomous driving at speeds
of 90 km/h under weather conditions varying from sunny
conditions to heavy rain.

In simulation, on a limited access multilane highway,
the algorithm successfully maintained tracking over a 3
mile section of road. The vehicle was travelling in the right
lane at approximately 88 km/h The lane markings consisted
of a dashed line on the left and a solid line on the right.
Tracking was maintained while other cars passed in the ad-
jacent lane. Tracking was lost when the vehicle changed
lanes to exit.

Again in simulation, the algorithm successfully tracked
over a distance of approximately 2 miles on a four lane lo-
cal road. The vehicle was driving in the left lane at a speed
of approximately 65 km/h The lane markings consisted of
a solid line on the left and widely spaced stripes on the
right. The algorithm was robust in maintaining tracking
through two intersections in which the lane markings dis-
appeared. Tracking was also maintained while driving be-
neath an underpass and over two bridges. The pavement
texture and color changed from a dark asphalt to a light ce-
ment on the bridges. On other portions of this road, the al-
gorithm could not always maintain tracking through inter-
sections in which the lane of travel split into two lanes (a
turning lane and a lane for going straight). Also tracking
could not be maintained when the vehicle changed lanes.

On a two lane rural road, tracking was maintained over
a distance of 1.5 miles. The vehicle travelled at speeds be-
tween 40 and 65 km/h The lane markings consisted of a
double solid line on the left and a single solid line on the
right. Tracking was robustly maintained on travel up and
down hills with on-coming traffic, through sharp curves,
through moderate shadows, and through four intersections
in which lane markings disappeared. Tracking was tempo-
rarily lost when the vehicle travelled through a sharply
curved portion of road that was shadowed by a heavily
wooded area.

The image sampling rate of our system is 15 Hz and the
worst case latency is 139 milliseconds (ms). Edge extrac-
tion was performed every 66.7 ms. The number of edge
points extracted varies from scene to scene and the process-
ing times for the algorithms in stages (2) and (3) varies de-
pending on the number of data points present. For a repre-
sentative road scene containing approximately 300 edge
points, the edge matching is performed in 21 ms and the
road model update is performed in 51 ms. The graphic
overlay process, which is not part of the feedback loop, is
updated in approximately 5 ms.



5. Conclusion and Future Work

We have described a system of algorithms that robustly
follows roads that one might expect to find on state high-
ways. We assume that the lane boundaries are well marked
with either solid, double, or dashed lines. All visual pro-
cessing is done in two dimensional image coordinates. Pro-
cessing is performed in sequential stages: extracting edges;
matching edge points to the road model; updating the mod-
el of the road; and computing a steering command. Compu-
tation time for the image processing algorithms is reduced
by using knowledge of the road curvature to mask out non-
road information. The exponentially weighted recursive
least squares algorithm used to update the road model op-
erates in both a spatial and temporal domain. The system
update rate is 15 Hz.

We have integrated our algorithm with the navigation
system of the HMMWYV [35] and performed unmanned
driving on the NIST grounds. In the near future, we plan to
test our autonomous system on state highways.
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