Applying the NIST Real-Time
Control System Reference
Model to Submarine
Automation: A Maneuvering
System Demonstration

Hui-Min Huang
Ron Hira
Richard Quintero

*U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bidg. 220 Rm, B124

Gaithersburg, MD 20899

Anthony Barbera

Advanced Technology and
Research Corporation
Laurel Technology Center
14900 Sweitzer Lane
Laurel, MD 20707

N©ST

Applying the NIST Real-Time
Control System Reference
Model to Submarine
Automation: A Maneuvering
System Demonstration

Hui-Min Huang
Ron Hira
Richard Quintero

*|),S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Robot Systems Division

Bldg. 220 Rm. B124

Gaithersburg, MD 20899

Anthony Barbera

Advanced Technology and
Research Corporation
Laurel Technology Center
14900 Sweitzer Lane
Lauwrel, MD 20707

February 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary
NATIONAL INSTITUTE OF STANDARDS

AND TECHNOLOGY
Raymond G. Kammer, Acting Director

APPLYING THE NIST REAL-TIME CONTROL SYSTEM REFERENCE MODEL TO
SUBMARINE AUTOMATION: A MANEUVERING SYSTEM DEMONSTRATION

Hui-Min Huang, Ron Hira, and Richard Quintero
Robot Systems Division

National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Dr. Anthony Barbera

Advanced Technology & Research Corporation
Laurel, Maryland 20707

References to product or company names are for identification only and do not imply
Government endorsement.

CONTENTS

ABSTRACT ...ttt ettt er et ten ittt it s e e e s a e saeanans 1
1. INTRODUCTION ..ottt aee et et e e et eananaasaasaneanes 1
1.1. The DARPA Project and Its Objectivescoceeiiiiiiiiiniiiiinn, 1
1.2, RCSArChiteCtureooviininiiiiii e 2
2. PREVIOUS WORKoiiiiiiiiiiiiiiiiiiriererneiriiicitiiiasssassaianesscannss 4
2.1. Early Demonstrations and the FORTH/Smacro Environment.............. 4
2.2, Conversionto Demo#3 ... i e anaes 5
3. PROBLEM DOMAIN ...ttt srineiiaainaissvasissenicseeaeecanas 5
3.1, Background..........o 5
KT % §1.1.3 o) DO OSSP P ST PP 5
3.3. Maneuvering MechaniSmsocvvvririrecraeiirenerarinerieiiiisiieeeanen 6
3.4, SCOMATIO. ...ttt e 7
3.5, DepthControlcoconiiiiiiiiiiii et rie e e e e enenes 8
3.6. Ice Avoidance Maneuvering.......cocoveviiriiiiniaianrerenecnereeanencnenens 12
3.7. Salinity Problem and Reactionc.ccciviiiiiiiiiiiiiiniiiniineninin. 12
4. RCS REPRESENTATION FOR THE SHIP MANEUVER SYSTEM................ 13
4.1. Control Hierarchy, Task Tree, and RCS plans Represented by State
Graphs/Tables.......o.ooiiiiiiii i 14
4.2. The Course and the Ship Maneuver Controller Modules.................... 16
4.3, Propulsion Controloiiiiiiiiiiiiiiiiiiiiiiii et ie e as 18
4.4, Helm Control......cvviiriiiiiiiiiiiniiiiiiiiaireieerireeaeroienieirareresnsnsns 20
4.5. DepthControlouiiiiiitin it et e e ee e eeaneanaas 22
5. COMPUTER ENVIRONMENTciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiesioninieiensenses 25
5.1, Background......coovviiiiiiiiiiiiieiiiiniiirieririernaresieieraasaa s areaen 25
5.20 Hardwarecoiiniiiiiiiiiii i et e re e e ere e e ns 25
530 SOftware ..o e 25
5.3.1. Development SOftwWarecccvviiiiiiiiiiieeiiiiinairaieaenns 25
5.3.2, RCS SOftWare...o.vvviiiiiiiiiiiiiiiiiieiiririiaiiiitsionenessassionns 26
6. SYSTEMIMPLEMENTATIONottt iir e iaaenaesanaananes 26
6.1. Overall Software Architecturecoovviiiiiiiiiiii e, 26
6.2. Software Structure for the RCS Hierarchycoooiiiiiiiniinne. 28
6.2.1. Main Programcooiiviiiiiiiiiiiiiieiiiiiasiieteeaceaeensnenanans 29
6.2.1.1. Allocate Global and Main Memory..........c..ccovueneis 29
6.2.1.2. Cyclic eXeCutOnccvinvrinriirerinieieeeaneeenecnanns 31
6.2.2. Overhead.oooivniiiiii e 31
6.2.2.1. State Clock TIMETooviniiriiiiniiieiiiiiaeineneeaens 32
6.2.2.2. Keyboard Input......c.cceiririeieiieiieirirrieneeeenenaes 32
6.2.2.3. Display Mechanismc.ooiiiiiiiiiiiiiiiiiiinnnn, 32
6.2.3. Generic Controller Template.........ccoocerreriirreriiernnernrerenenns 32
6.2.3.1. Time...ciiieiiiiiiii e e e eae 34
6.2.3.2. Interface buffer........cooviviviiiiiiiniiniiiiiiiiinnnnns 34
6.2.3.3. PreproCessSiNg..coveiriiiienirietriirieeiaeeenenacnaenanas 34
6.2.3.4. Sensory Processing/World Modeling................... 34
6.2.3.5. Planning/Execution/Job Assignment (PL/EX/JA).....34
6.2.3.6. POSt-ProcessSing....ccoceciiiiiiiiiiiiiiinireeeerncneanns 35
0.2.3.7. DebUug...cciiiiiiiiiiiiiiiiiii e 35
6.2.4. Diagnostic Displays....c..cciciiiiiiiiii e eereneeniee 37
6.3. Control System World Model and Simulation World Model 37
6.4. Shared Memory Model for Communication within a CPU 38
6.4.1. Command/Status Commumicationcoeviiiiiiiniaaarinnnns. 39

6.4.2. World Model Data CommuniCation.......cccovvereiirierereinrieeinns 42

6.4.3. Communication between Human Operators and the Control

N (=) 1 S PO PO 43

6.4.4. A Special Case of the Shared Memory Model --
Communication with Other CPU's through a Bus Adapter................. 43

6.5. Multiple Mode Control -- The Automatic Mode and the Interactive
MOdE SEIUCIUTES..ieu ittt st rie st rae e re s s e nen e 45
6.6. Simulator SHUCIUIEttt it eierreaerereoenaaanaenes 49
6.6.1. ACTUAIOTS...euviirieteieiee et aieaaeeeieenesaaaaneneanaaaansannes 50
6.6.2. Physical System....iccciviiiiiiiiiiiiniiiiiieiiiiceitinricenreaaenennas 50
6.6.3. Environmental..........c.ooiiiiiiiiiiiiii i eeaaaens 52
6.7. Operator Interaction with the Simulators.............coeiiiiiiiiiiiinininn... 52
6.8, ANIMAatiON.ottt e e e e e e e 53
6.8.1. Software SIUCIUIE.cciiiviiiinitiirrrrireieeerereaeneneeranns 53
6.8.2. SubmarineModel ..o 53
6.8.3. Icekeeland Seabottom..........coooviiiiiiiiiiii 54
6.8.4. Current Sonar Display......cccooeiiiiiiiiiiiiiiiiiiiciie 54
6.8.5. Estimated Ice Map and Ice Avoidance Recommendations 54
6.8.6. Environmental Intervention Slider Bar Control Input 55
7. FUTURE DEMONSTRATION DIRECTIONSccoviiiiieriiiiiieiaeacannaaees 55
8. SUMM A R Y L et et tre et et e e re s e e et e as 56
REFERENCES ...ttt oistsetetttttansraretesaransassenenrararensnsns 57
APPENDIX A: Comparison between Task Control Architecture (TCA) and RCS....... 59
APPENDIX B: A Propulsion Ahead State Table in Smacro........cccovvineieunnne 60
APPENDIX C: A Propulsion Ahead State Table in C...........ccccocnrnrnnennnnn. 61
APPENDIX D: Generic Templatesooivuiuiiiiiiiiiiiiiiiir v e e 63

APPLYING THE NIST REAL-TIME CONTROL. SYSTEM REFERENCE MODEL TO
SUBMARINE AUTOMATION: A MANEUVERING SYSTEM DEMONSTRATION

Hui-Min Huang, Ron Hira, and Richard Quintero

Robot Systems Division
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Dr. Anthony Barbera

Advanced Technology & Research Corporation
Laurel, Maryland 20707

ABSTRACT

The Robot Systems Division (RSD) at the National Institute of Standards and Technology
(NIST) has been developing a generic reference model architecture, known as the Real-time
Control System (RCS), for the last two decades. This paper demonstrates the application
of RCS to submarine automation. The automation of submarine operations involves
complex system functionality and requires an enormous amount of intelligence to be built
into the software to enable a submarine to operate in an unstructured and often hostile
environment semi-autonomously. Software is emerging as a predominant factor in
determining the success and performance of modern large and complex intelligent systems,
Meanwhile, the fundamental principles and generic approaches of handling software and
systems engineering processes are still being explored within the engineering community.
RCS attempts to address some fundamental system development issues including a
software engineering methodology and a generic architecture. The resolution of these
issues can facilitate a unified approach for developing intelligent systems. An open system
architecture can also be achieved to serve as a foundation for system integration and
coordination. This paper provides an implementation example of the RCS methodology
research projects ongoing at NIST RSD.

1. INTRODUCTION

1.1. The DARPA Project and Its Objectives

The National Institute of Standards and Technology (NIST) Robot Systems Division
(RSD) has been sponsored by the Defense Advanced Research Projects Agency (DARPA)
Submarine Technology Program (STP) for the automation of submarine operations!, One
objective in this project is for NIST RSD to demonstrate its RCS architecture applied to
submarine automation. A series of software demonstrations has been planned for
achieving this objective. NIST RSD has been collaborating with the Advanced Technology
and Research Corporation (ATR) in this project development effort. This paper reports on
the results achieved in our latest project effort called Demonstration #3, or Demo #3.

1ARPA Order No. 7829, Amendment No. 000.

The specific objectives for Demo #3 included:

* Converting the existing submarine automation RCS software (Demo #2) to a C
language based implementation (see section 2). Laying out the software structure
for the entire demonstration system.

* Expanding functionality from Demo #2; ‘

* Demonstrating multiple control modes in RCS by implementing human interactive
control and decision aiding capability. In interactive mode, human operators are
presented with on screen reports of operational problems, the suggested actions,
and the possible effects. The operator then is able to select an appropriate command
to address the reported problem.

Figure 1-1 is a screen display showing an animated submarine maneuvering under ice.
Detailed discussions for each component of this animation screen will be given throughout
this paper.

Figure 1-1 Submarine Under Ice Maneuvering

1.2. RCS Architecture

The National Institute of Standards and Technology (NIST) Robot Systems Division has
been focusing on the research and development of its generic hierarchical Real-time Control

Systems (RCS) architecture since the late 1970's [Al 91, Ba 84]. RCS provides a
reference model for complex hierarchical real-time control systems. It is a generic
hierarchical control structure with each level assigned specific responsibilities. For
example, RCS specifies an "elementary move” control level to be responsible for a
system's kinematics. Controllers are employed at each level to fulfill the level’s
responsibilities. The controllers assume a generic format which features: sensory
processing, world modeling, and behavior generation (previously called task
decomposition) functions.

New computer hardware and software technologies have been adopted in RCS during the
RCS evolution. The RCS applications include: the NIST Automated Manufacturing
Research Facility (AMRF) [Al 82], the Army Field Material-Handling Robot (FMR) project
[Jo 91], NASA/NBS Standard Reference Model for Telerobot Control System Architecture
(NASREM) [Al 89-1], the DARPA Multiple Autonomous Undersea Vehicles (MAUYV)
project [Al 88], the Army Robotics Testbed? (RT) project [Sz 92, Sz 90], the U.S. Bureau
of Mines Coal Mining Automation Project [Hu 91, Hu 90, Al 89-2], and this submarine

automation project. Currently, RCS is also being applied to a new problem domain,
intelligent vehicle and highway systems (IVHS) [Al 92].

Techniques employed in implementing these projects differed to some extent due to
differences in:

* computing environments such as computer hardware, operating systems,
programming languages, etc.,

* design and development approaches such as using task trees, finite state machines,
object oriented analysis, etc., and

* real-time software execution models including communication mechanisms and
sampling rates.

These differences essentially led to the research of different RCS methodologies. In the
submarine automation project, the software demonstrations have been developed using an
approach originated by Dr. Anthony Barbera of ATR. A comprehensive treatment of the
Barbera approach is given in [Qu 92]. This approach basically utilizes contrellers, task
trees, and state transition diagrams/tables to describe RCS (discussed in detail in section 4).
A set of generic controller templates is then used to facilitate implementation (discussed in
detail in section 6). This paper is an illustration of how to apply this methodology. Similar
discussions on the real-time system representation issue can also be found in [Ko 92] and
[Ha 88]. However, they do not offer a generic model for application systems as RCS does
(see the model for intelligent machine systems in [Al 91]).

Another control architecture which addresses the real-time embedded system control
problem is the Task Control Architecture (TCA) developed by Simmons [Si 90] of
Carnegie Mellon University. TCA specifies a generic block structure capturing common
capabilities that robotic control systems may possess. The basic system execution model
involves message routing (including commands and queries) among all system components
via a central control module. As the authors [Si 90] pointed out, this central control module
presents a potential bottleneck as system complexity grows. TCA shares the same view as
RCS in the use of task trees to describe command chains. In addition, TCA specifies that
modules can impose temporal constraints to sequence the planning and execution of system
commands. However, from the RCS methodology point of view, the use of state diagrams
and state tables, as a step beyond task trees, provides a more robust and systematic method

20riginated called the Army Tech-based Enhancement for Autonomous Machines (TEAM) project.

of describing behavioral transition among different system components in both temporal
and spatial aspects [Appendix A].

2. PREVIOUS WORK

2.1. Early Demonstrations and the FORTH/Smacro Environment

The earlier demonstrations showed the applicability of RCS to submarine automation. In
October of 1990, a concept preview demonstration was implemented. Animation of a
lubrication oil fire in the engineering room and user interface allowing an operator to isolate
the compartment to extinguish the fire were implemented on a Silicon Graphics Inc. (SGI)
workstation. A simple RCS was implemented on an 80386 processor based personal
computer (PC) for controlling the simulated submarine.

Demo #1 was presented in February of 1991. A preliminary RCS for ship maneuvering
control was implemented along with the animation of the submarine control surfaces. A
hierarchy, together with partially implemented displays of command/status numbers and
module execution time, could be displayed on the SGI for debugging purposes.

Demo #2 was essentially a work in progress demonstration. It was held in August of
1991. The RCS on the PC had been enhanced to allow for some low level subsystem
automatic control such as trim or depth adjustments. The simulation and animation had
been expanded to include the real-time computation and graphic display of the submarine
sonars, the Cerebellar Model Articulation Controller (CMAC, see sections 3 and 6) neural
network, ice keel (jagged underwater ridges and peaks of ice formed when packs of ice
plates collide), and sea floor. See section 6 for more detail on these subjects.

The RCS software code for all these early demonstrations was written in a language called
Smacro. Smacro was originally developed by Dr. Barbera and M.L. Fitzgerald at NIST in
the early 80's. They have continued to evolve Smacro since joining ATR in the late 80's.
Smacro was developed using the dictionary based language, FORTH. All processes,
subroutines, and variables are defined as words in the dictionary. Data are passed using
stacks. The advantages of the FORTH/Smacro language include:

* allowing incremental loading of the code to expedite program testing and
prototyping;

* reducing software source code size [Appendices B and CJ;

* allowing customized operating systems tailored for specific applications [Br 84].

However, the language suffers from some disadvantages which include:

* lacking environmental support, such as user friendly file management or multiple
window features;

* employing a block as a program unit. The limitation in the block size (16 lines and
64 characters per line) sometimes discourages documentation within the code (the
use of: self-explanatory but longer notations, comments within the code, esc.).

FORTH/Smacro does not seem to be a well supported nor recognized software
environment, although it does seem to possess some technological superiority. From the
technology transfer (a NIST mission) point of view, it is a deficiency to have standards
oriented technologies developed in this kind of environment. As Strassmann [St 92]
pointed out, "The rapid deployment of information systems in the future conflicting under

unpredictable and often hostile conditions calls for easily repairable software that is
constructed from reliable standard components.” The FORTH/Smacro language might be
regarded as "craft mode" software as opposed to “industrialized" software in Strassmann's
terms. Smacro was used in the earlier demonstrations to show the applicability of RCS and
to address the RCS implementation issues. These objectives have been achieved judging
from the success of the early demonstrations. At this juncture, NIST decided to convert the
submarine automation RCS development and control environment to the C language since
the C language is a widely accepted and well supported environment. Conversion to C is
expected to expedite technology transfer.

2.2. Conversion to Demo #3

The first step in developing Demo #3 was a faithful conversion of the Smacro code to C.
Generic templates written in the C language were generated (section 6) based on the
Smacro controller templates. All the ship maneuvering controllers are converted.
Appendices B and C show a typical conversion for a state table.

3. PROBLEM DOMAIN

3.1. Background

One of the objectives is to develop intelligent control systems designs which can function in
unstructured environments while employing deterministic behavior. One of the first and
foremost tasks for building intelligent control systems is learning as much detail about the
problem domain as possible. The problem domain in this project is a 637 class nuclear
powered submarine. Budget constraints and technological advancements have made
automation a more salient feature for submarine designers.

A requirement imposed on the automated submarine for this demonstration was that it
should be able to operate unmanned or with some high level human supervision. This
design objective requires the RCS implementation to span the servo through mission levels
as defined by Albus [Al 89-1]. This section will elaborate on some details of the
demonstration submarine as well as introduce the mission scenario. A submarine is a very
complex system, and as such, work has been confined for this paper to maneuvering
automation.

3.2. Mission

The mission for this submarine scenario is to traverse the Bering Strait in covert mode
(meaning that avoiding detection by the enemy is of the utmost importance). This mission
was chosen because it creates a rich set of possible scenarios that exercise all levels of
RCS, particularly in maneuvering control. Much of the submarine's transit through the
Bering Strait will be under ice with shallow sea floor depths, which requires the control
hierarchy to perform obstacle avoidance. Another phenomenon encountered is changes in
sea water density, which forces one to make decisions regarding depth control coupled
with signature management (detection avoidance). Fluctuations in water density may
require maneuvering mechanism adjustments which jeopardize the submarine's cloak. Of
course, the trade-off between safety of the ship and its crew must be weighed against
mission stealth requirements. Clearly this mission requires decisions be made while
operating in an unstructured environment, one characteristic of intelligent control.

3.3. Maneuvering Mechanisms

As aforementioned, the submarine is an extremely complex system, and as such the
demonstration is limited to maneuvering. A submarine has a number of mechanisms for
hydrodynamic control of its depth, buoyancy, orientation, and speed. See figure 3-1. The
information provided in the paragraphs to follow are presented only as an introduction to
the various mechanisms, and should not be interpreted as a comprehensive list. They were
chosen because of their important influence on the hydrodynamics of the submarine. The
following mechanisms and their respective functions will be analyzed:

Submarine Depth Control

sail plane

ballasts stem piane propeller

ballast water level T
ndder

center of mass

Figure 3-1

main ballast tanks
variable ballast tanks
sail planes

stern planes

rudder planes
turbine

* X ¥ ¥ * ¥

The above system is part of a complex multi-input multi-output (MIMO) system. Many of
the mechanisms and their effects on the submarine are inherently interrelated; i.e., a
particular mechanism may be used to control the ship’s depth and orientation. One such
example is that the stern planes and variable ballast tanks each affect both pitch and depth.

The main ballast tanks (MBTs) are used for gross control of the ship’s buoyancy. The
MBTs are used primarily for submarine submerging and surfacing. If the six tanks are
flooded (completely filled) the submarine gains negative buoyancy and the ship submerges.
If the tanks are blown (emptied) the submarine gains positive buoyancy and surfaces. The
tanks are blown by admitting high-pressure air through valves at their tops. Conversely,
they are flooded by allowing the air at the top of the tanks to leave through the vent valves
while sea water floods through ports at the bottom of the tanks. When the MBTs are full,
and the variable ballast tanks are at their prescribed levels, the submarine is at neutral
buoyancy; i.e., the ship is neither sinking nor rising.

The variable ballast tanks are used for small adjustments in buoyancy and orientation.
“Variable ballast” as used in this paper refers to any of the following tanks: forward, aft,
water round torpedo, auxiliary, and depth control. An example of buoyancy control via
variable ballast follows. At larger depths the pressure of the water outside the vessel is

much higher and causes the pressure hull to contract. The weight of the ship remains the
same; however, the volume of the water it displaces decreases due to the hull contracting.
The result is negative buoyancy and the sub will start to sink. Blowing the proper amount
of water from the variable ballast tanks, which decreases the weight of the ship, may be
sufficient to stabilize the submarine's buoyancy. The variable ballast tanks are also used for
trim/orientation control. Weight distribution in a submarine may change after it has been at
sea for some time; for example, the supplies which were brought on board might be
consumed which results in a change in forward and aft weight distribution. The ship will
experience an orientation change; specifically in this case, it will experience a downward
pointing pitch (the bow will be at greater depth than the stern). Water may be transferred
between the forward and aft trim tanks to resolve the imbalance. The pitch is referred to as
its bubble or bubble angle. Ballast tanks may also be used to compensate for improper roll.

The sail planes are located on the conning tower and have a range of + 22°. These planes
are used for depth control in a variety of methods to be detailed in the next section. The
stern planes, also used for depth and orientation control, are located at the rear of the
submarine and have a range of * 27°. Their distance from the center of mass provides a
means for adjusting the pitch of the submarine. The rudder is used for steering the
submarine left or right with limits on its range of £ 37°.

The turbine, which drives the propeller, is bi-directional, enabling the submarine to travel
“ahead” or “astern” at a commanded speed. In practice an astern command is only used as
an emergency braking procedure and almost never used for backward movement.

The maneuvering information provided in this section is used extensively in section 4 for
task decomposition and developing plans for the controller hierarchy.

Submarine Salinity Disturbance

Figure 3-2

3.4. Scenario

One of the initial steps in the RCS design approach consists of developing scenarios, which
enable the designer to flesh out all of the details of operation. Former submarine
commanders provided detailed information on submarine operations, They were asked
about the consequences of certain actions. In addition they provided guidelines for
appropriate responses to particular scenarios, Their input was invaluable for obtaining
problem domain knowledge, since we at NIST are not submarine experts. Many times
“experts” provide high level answers. An RCS design requires not only high level
answers, but also all of the low level detail necessary for computer controlled realization.

The scenario for the latest work is to navigate under ice in stealth mode with a sudden
salinity change. Salinity gradients may occur from fresh water runoffs, where rivers of
fresh water cause the water density, W, to drop suddenly, see figure 3-2. A drop in the
density of the sea water will cause the ship to have negative buoyancy and it will start
sinking, which is due to the fact that the submarine weight is now greater than the weight
of the water it displaces. Salinity variations frequently occur under ice and create significant
problems related to depth control and the signature management system while the ship is
operating stealthily. Temperature fluctuations are common in the open ocean, and can cause
similar depth control problems. The signature management system is responsible for
maintaining an acceptable noise level that keeps the submarine invisible to enemy sonar.

This scenario enabled the demonstration of a number of RCS features to be explained in
detail in sections 4 and 6.

3.5. Depth Control

A submarine can control its depth in a number of different ways. The choices are
permutations of the aforementioned mechanisms. The operations described assume that the
submarine is traveling ahead. All of the operations cause noise to be generated; however, a
primary goal is to keep noise to a minimum to avoid enemy detection. Since sudden and
large changes in any of the control surfaces will generate significant noise, soft limits are
set on their operating range. The likely operations to be ordered by a submarine commander
are:

Ascend/Descend

Up Bubble/Down Bubble
Maintain Depth

Blow Main Ballast

* ¥ ¥ ¥

After submerging by venting the MBTs, it is desired that the submarine reach a specified
depth; therefore, a Descend command is issued with the desired depth, see figure 3-3. The
Descend command requires that both the stern and sail planes point down which provides a
means for the submarine to dive without changing its pitch. An Ascend command is
analogous, with both planes pointing up, and causes the ship to rise, see figure 3-4.

DESCEND:(DR_DESCEND)
FAIRLY NOISY PROCESS
USE SAIL AND STERN PLANES
DIVE WITHOUT PIVOTING Naise,

-

“-=-" move both planes
control surface

force

conirol surface
force | * l

Figure 3-3

ASCEND: (DR_ASCEND)
FAIRLY NOISY PROCESS
USE SAIL AND STERN PLANES
RISE WITHOUT PIVOTING

control surface

control surface yrce
force 'ﬁ

l_i
[

move both planes

.-o‘
el

Figure 3-4

If a pitch change is required, an Up Bubble command may be issued, see figure 3-5. The
submarine points up, which may be utilized to decrease depth. The term bubble originates
from the air bubble type level sensors used to determine the pitch for the submarine. The
bubble angle may be changed by changing the stern plane or by pumping water between the
Forward and Aft tanks of the variable ballast system. The stern plane effects will be
analyzed here. Stern planes pointing down, produce a downward force on the stern of the
ship, and because the location of the force is a large enough distance from the center of
mass of the ship, a counterclockwise torque results. A Down Bubble command is
analogous, with the stern planes pointing up, see figure 3-6. The pitch of the ship may be
used in conjunction with propulsion to control depth.

UP BUBBLE: (DR_UP_BUBBLE)
MODERATELY NOISY PROCESS
USE STERN PLANE
RISE BY PIVOTING

!
propulsion

DANGER: Stern may hit bottom.

Figure 3-5

DOWN BUBBLE: (DR_DOWN_BUBBLE)
MODERATELY NOISY PROCESS
USE THE STERN PLANE
DIVE BY PIVOTING

control surface
propulsion force

Joise,

#

[] T
move stern:.g@

Figure 3-6

10

MAINTAIN DEPTH: (DR_MAINTAIN_DEPTH)
QUIETEST PROCESS
USE SAIL PLANE
COMPENSATE FOR SMALL DISTURBANCES
MAINTAIN A CONSTANT DEPTH

control surface
force

b=

Figure 3-7

Blow Ballast:
VERY NOISY PROCESS
BLOW WATER FROM BALLAST
LIGHTEN SUB AND RISE

am=" -] .-.'t
b{f)ise B=""¢ = > Ng}se
hE T \ roa®

water released

Figure 3-8

Once the submarine has reached a desired depth, it is sustained by the Maintain Depth
command, see figure 3-7, The sail planes are used for small changes to maintain a desired
depth with little change in submarine orientation. This is the normal operating procedure
command.

When it is time to surface, the commander will order a Blow the Main Ballast, which
involves blowing the water out of MBT's with pressurized air, see figure 3-8. There are a
number of sources and magnitudes of pressurized air. The chosen source depends on the
situation.

One important depth control method which was not analyzed but demands a brief mention

in this synopsis is hovering via the depth control tanks. It is a complex system in and of
itself, and was not included as a possibility in this particular scenario.

11

3.6. Ice Avoidance Maneuvering

In our demonstration the submarine has a goal point to reach, see figure 3-9; however,
there are obstacles in its path, namely ice. If the current sonar returns show ice keels
blocking the path of the current heading, then a new course is computed with the ship at its
current depth. This is aided automatically by a Cerebellar Model Articulation Controller
(CMAC) neural network [Al 75), which stores a map of the ice encountered. An algorithm
is then used to compute a new course on a heading which is clear of ice keels. More detail
on ice avoidance is presented in sections 4.4, 6.6, & 6.8.

HELM CONTROL

3.7. Salinity Problem and Reaction

The problem of salinity perturbations due to fresh water run-offs was introduced earlier.
Once a salinity gradient occurs, it must be detected. Because of the sensor arrangement,
there is a lag before the disturbance is detected. A detection algorithm was designed and
implemented in the control hierarchy. If the problem is severe enough and persists, the
Maintain Depth command with its limited plane range will not be adequate to sustain the
desired depth. Recall that in our scenario the submarine is operating in stealth mode, and
quiet operation is of the utmost importance.

Each command introduced in section 3.4 has a noise level associated with it. In order to
avoid cavitation, all maneuvering operations have limits on plane range and rate
movements. In this scenario we assume that the order from quietest to noisiest operations is
as follows:

12

Maintain Depth - limited sail plane movement only (least noisy)
Up Bubble - stern plane only, changes the bubble angle

Ascend - both sail and stern plane movements

Increase Propulsion Speed - provides greater control gain for planes

Emergency Blow Main Ballast - causes the submarine to surface ~ (most noisy)

* ¥ ¥ ¥ ¥

The operating choice must be made at a high level of the chain of command. In this
software demonstration, two alternative modes are supported. One, supervisor mode,
requires the user to input the proper response to the difficulty with a list to choose from.
The other, automatic mode, has the control hierarchy respond to the problem depending on
certain state variables. State graphs presented in section 4.5 illustrate the salinity problem
control implementation. Section 6.5 elaborates on the supervisory and automatic operation
modes.

4. RCS REPRESENTATION FOR THE SHIP MANEUVER SYSTEM

After the submarine domain knowledge was acquired and narratively described in the
scenario, the next implementation step was to organize and articulate this knowledge in an
RCS format. Three representations were used: control hierarchy, task tree, and RCS
plans. The development processes for these representations involve domain expert
interaction and the rapid prototyping cycle. [Qu 92] and [Hu 92] give an in depth
description for these processes. The following sections describe the results in detail.

course
|
maneuver|
[Tl]
]
! depth !
propulsion] helm
—
T il |
| l divefrise I
e
| 1 |
| l. i L]
turbine bt;ll?ans‘t slt::; PT:lnle rudder

~a—— individual actuator simulators = —————-

Note: There are additional ship maneuvering
controllers not shown here, including the trim
and the depth control tanks.

Figure 4-1 Ship Maneuver Hierarchy (a Simplified View)

13

4.1. Control Hierarchy, Task Tree, and RCS plans Represented by State Graphs/Tables

In this demonstration, a control hierarchy for the real-time control of the ship maneuvering
system has been developed and is shown in figure 4-1. A task tree has been developed to
form the command chain. Figure 4-2 shows the resulting task tree mapped on the control
hierarchy. The input tasks for each controller can be viewed as a description of the part of
the system responsibility the controller shares [Hu 91]. Each task on the task tree, except
for the lowest level tasks, corresponds to an RCS plan. RCS plans describe the behavior
each controller can perform.

,_depth_
inc_rng

maintain_depth

Legend: normal blow

CC - course control
SM - ship maneuver
HL - helm
RD - rudder
DP - depth
gﬂ - divle/rise

L - sai es
SP - slempiﬁalgnes
MB - main ballast
PR - propulsion
TB - turbine .
ACT - corresponding

actuators

Figure 4-2 Ship Maneuver Task Tree

State transition diagrams and state tables, shown in figures 4-3 through 4-9 in the
following sections, are used in this project to describe RCS plans3. While [Qu 92] gives
an in-depth description of the syntax, a brief summary is provided here to facilitate the
understanding of state diagrams. Note that a state diagram typically represents an RCS
plan. Therefore, these two terms are used interchangeably in this paper.

* An oval bubble with a (Si) label and a name specify a state, where (1) is the index
number. The state (Si) represents one of the finite states that the controller can
attain. The state name describes a collective4 action that the coatroller is
performing. State bubbles are connected by edges which use arrows and

3 A task is explicitly described by an RCS plan. Task and command are used interchangeably.
4 Meaning that the state name describes the set of commands associated with that state.

14

conditions to describe the transition from state to state. This can be seen in figure
4-3 of the next section.

* A round bubble with a (*i) label is referred to as a "don't care” state, where (i) is
an index number. The event associated with this state is a prioritized one; i.e., the
occurrence of such an event triggers immediate action regardless of the controller's
current state.

* A box describes a state transition. The text above the edge starts with an "Evti”
label, where (i) is an index number. The description of an event (or a set of events)
follows to specify the condition(s) that triggers the particular state transition. The
first line of text below the edge, labeled "Job," describes the computation jobs that
the controller is required to perform upon the occurrence of the event. The second
line, labeled "Cmd," specifies the commands the controller selects for its
subordinates. The controller then enters the state the edge points toward. It is not
necessary for all the subordinates to receive commands at every state transition.
The subordinates that do not receive new commands will continue executing the
previous commands.

There exists a special type of events, namely, significant errors, such as severe
drop in the depth of the submarine or an imminent collision with obstacles. These
errors could be implemented as prioritized events accompanied by the "don't care”
states. Depending on the level of authority the involved controllers have, the
compensation action(s) for this type of errors could be initiated in the same plan or
by the superior controller. See the RCS task decomposition process as described in
{Hu 91] for more information.

* State tables, which complement state diagrams, describe the same information in a
tabular format. State diagrams, being graphic, are generally easier to comprehend,
whereas state tables have the advantage of providing direct correspondences to the
code. Please see section 4.2 and appendices B and C for more information.

* The execution of RCS plans follows a state clock. A controller either stays at a
state or transitions to the next state at each state clock control cycle. The decision
making process in a control cycle depends only on the current input and the state
number of the last cycle. This number is used in conjunction with the state of the
world and the state of the input to determine the control action for the current cycle.

A simplified hierarchy is shown at the lower left corner in each state diagram. The
controller executing the plan is highlighted.

Note that the state graphs shown in this section apply primarily to the automatic mode
system operation. Section 6.5 describes a second mode of operation, interactive mode,
which requires a different set of state diagrams to describe the same tasks.

Any given system behavior can be described in multiple ways using the aforementioned
notations. One may prefer to use many states and events whereas another may prefer to
use very few. Human understandability is one of the dominant factors in determining the
number of states and events to use. In a teamwork environment, neither too many nor too

SHatley [Ha 88) uses the same notation but in a different context. In [Ha 88], "don't care” may be used in
decision tables when: (1) there exists some combinations of I/O that can not occur or is inconsequential; (2)
there are multiple rows in the table that have identical I/O except for one column. This column with
differences is marked "don't care,” meaning the differences do not cause any effect.

15

few seem to be the best. A high level person may not want to read a state diagram with a
lot of details. On the other hand, to an operator monitoring the performance of a particular
RCS controller, it may be helpful to have abundant system execution information conveyed
to him, via states and events. In some sense, this is similar to the determination of a
sampling rate for discretizing a continuous domain problem.

One may use "out of range" as the only event for a servo controller whereas another may
use two events: "below minimal allowance" and "above maximal allowance.” When the
controller is not performing as expected, the information, "out of range," alone may not be
enough for the operator to diagnose the situation. If the operator reads that the controlled
variable constantly falls "below minimal allowance,” he is better informed. This would
help him to find the solution to the problem.

4.2. The Course and the Ship Maneuver Controller Modules

As described in the scenario, the mission for the simulated submarine is to transit the
Bering Strait. The highest level control module in the ship maneuvering system RCS is a
Course controller (figure 4-1). A human operator designates a mission via a
RUN_MISSION command along with starting and goal positions. The Course controller
receives this mission (figure 4-2) and calculates a series of intermediate goal points for its
subordinate, the Ship Maneuver controller. The primary function for the Ship Maneuver
controller is the coordination of its three subordinates, namely, the Depth, Helm, and
Propulsion controllers (see figures 4-1 and 4-3). Such coordination is done through
evaluating its control goals and the subordinate execution status and issving appropriate
commands to each subordinate. The primary command that Ship Maneuver receives is
called ICE_TRANSIT_SALINS. The corresponding ship maneuvering behavior can be
described as follows:

* Plan Activation: The ICE_TRANSIT_SALIN plan starts when the Ship
Maneuver Controller receives the command, shown as (*0) in figure 4-3, the ship
maneuver plan,

* Normal Behavior: Ship Maneuver sends the depth control, helm control, and
propulsion control commands to its subordinates, as shown in the shaded box
under (Evt0) in the figure. The controller normally remains in state (S1)
coordinating the three major ship maneuvering activities. Note that the authors
elected to limit the system design to consider only the forward motion of the
submarine.

* Error Handling: Errors reported to Ship Maneuver from its subordinates will be
accounted for immediately regardless of the controller's current state. In this plan,
the errors are described at (Evtl) through (Evt5). Each of them is preceded by a
"don't care" state, (*1) through (*5). Algorithms have been implemented to detect
the errors (regarded as events). The occurrence of any of these errors implies that
the control has been switched to the corresponding "don't care” state regardless of
the controller's previous state. The error compensation actions, represented by the
jobs and commands listed in the corresponding shaded boxes, are taken. All of
these actions lead the controller to the error correction state, (S2).

SThere is also a simplified version for this command, called ICE_TRANSIT, which does not have the
capability of handling the salinity problems and is rarely used.

16

EwvtT: on final goal

e S S S1

slart Ewvt0: new command ‘ inating ship Job: Report SM d
Tob: get track data TRANEUVETin Cmd: PR-stop
Cmd: PR - ahead i

HL- ice_manuever ;
DP- come_to_depth_salin |
T e vuses s sesasasen “

iEwi6: error comrecied

S, SO o - o S
Evtl: error - about to botiom HL- ice_manuever
| ‘Cmd: DP- emergency_surface i DP- come_to_depth_salin
. i p—
52 iJob: Relax PR safety limit-2
ﬂ*z) correcting error i{Cmd: PR-ahead inc_spd 2 ks
{ BviS: DP error_3

Evt2: DP reported error_ *

f
H
Job: Relax DP stealth limits Job: Relax PR safety limit-3
Cmd: DP-inc. range Cmd: PR-ahead _inc_spd 3

N AR R R ARt A A A A

. .
Evt3: DP error_1 lasts > 30 sej gt PR: Propulsion controller
§ Bvt8: Otherwise; SDL'I Depth controller
-oourse Job: Relax PR stealth limits-1 $: Maneuver controller
. H Cmd: NOP .
- iCmd: PR-ahead inc_spd | {Cmd: NOP .} S
maneuver Cﬂvlf.' commands |
N e : don't care; priority
ote: 1. Commpnads to the other subordinates remain unchanged. event verificath
{ heim | [depth | [proputsion] 2. See Depth Controk (sec. 4.5 for error definitions. v

Figure 4-3 The Ship Maneuver Plan

This particular plan describes the Ship Maneuver plan which coordinates the
compensation of depth control errors. If the Depth controller (see section 4.5) is
unable to handle the error by itself, Ship Maneuver has the authority to change the
speed constraints that it imposes on the Propulsion controller and to issue speed
increase commands such as AHEAD INC_SPEED_1 (could also be _2 or _3
depending on the severity of the problem). After a certain period of allowed
response time, Depth may find that the depth error is being compensated (section
4.5).

Completion: When the last goal has been achieved, the controller will enter the
done state, (S3).

A state table for the same Ship Maneuver plan is shown in figure 4.4. This table contains
the same information as in figure 4-3, but in a tabular format.

17

IF THEN
Event Coment fNew | D
State State Computation Commands
! *() WM: get rack data PR - ahead
EQ: New Command 51 HL- ice_manuever
DP- come_to_depth_salin
E1: error - about to bottom *1 52 DP- emergency_surface
E2: DP reported error_1 *2 52 WM/BG: Relax DP £ pp ;e range
stealth limits
E3: DP error_1 lasts > 30 sec.| *3 §2 | WM/BG: Relax PR : pp ineaq inc_spd_1
stealth limits-1
E4: DP error 2 *4 52 WM/BG: Relax DP { pp 1ood inc spd_2
stealth limits-2 T T
ES: DP erfor_3 *5 52 WMIBG: Relax Dp N .
stealth limizs-3 § v anead-ine_spd_3
Eé: Error comected 52 S1 PR - ahead
HL- ice_manuever
DP- come_to_depth_salin
E7: on final goal S1 83 BG: Report SM donef PR-stop
E8: otherwise - *3 NOP

5/21/92
SP: sensory processing
WM; world modeling
BG: behavior generation

Figure 4-4 The Ship Maneuver Plan State Table

4.3. Propulsion Control

The Propulsion controller is responsible for the control of the ship's? speed (figure 4-5).
The subordinate controller, Turbine, is responsible for maintaining the propeller rpm which
the Propulsion controller computes. The submarine can move either forward or backward.
The moving ahead behavior can be described as follows:

7Even though the submarine has the capability o move backward by reversing the rotation of the propeller,
this is rarely done. The propeller is sometimes reversed while the submarine is moving forward to execute
an emergency braking procedure.

18

®

*

*

§ Bvi; m:bmealommnmxdedrpm&

H ship below speed § Ev13: trbine at commanded rpm &
Job: inc. rpm requirement i Ship a1 speed .
start % Crmd; turbine_ahead H Job: ra;tpon oﬁopulsnm control
* g

T g
s1

opelling ahead J.ug

Evt4: wrbine at commanded rpm & §
ship above speed 4
Job: dec. rpm requirement i
i Cmd: turbine_ahead H
Job compute required o d
twrbine rpm gty

f Evt0: new command &
: {ship moving forward or

EE. PRLPYSYRTIEY

“ Cmd turbine_ahead EVIS turbine st.opped
o Job compute requ:red
Evtl: new command & i turbine rpm
g ship moving back i Cmd: turbine_ahead
Cmd: turbine stop
52 Legend: -
stopping turbine oy
HF—"—M"
CM% !
Sts: Status (not shown)}
- D e
evuumn
[en] [oms o

Figure 4-5 The "Propulsion Ahead at a Desired Speed” Plan

Plan Activation: This plan is activated when the Propulsion Controller receives
the AHEAD command. Either (*0) or (*1) in the figure will be used depending on
whether the submarine is currently moving forward, stopped, or moving in reverse.

Normal Behavior: Propulsion receives, from Ship Maneuver, the ship speed
requirements which are functions of the stealth constraints, the under-ice maneuver
constraints, etc. Desired ship speed and turbine rpm are computed from these
requirements (shown under (Evt(0) in the figure). The relationship between the
turbine rpm and the ship speed is generally nonlinear due to factors such as
variations in the water current profiles.

(Evtl) in figure 4-5 specifies that the turbine has to be stopped if the ship is
currently moving in the opposite direction. Otherwise, the Propulsion controller
stays in the state (S1) and servos on the desired ship speed. It sends the required
turbine rpm to its subordinate, the Turbine controller. The Propulsion controller
must recompute the required turbine rpm if the previously commanded rpm fails to
keep the ship at the desired speed. (Evt2) and (Evt4) describe such an effect.

Error Handling: Not implemented in this plan.
Completion: This servo plan does not have a done state. Instead, whenever the

ship speed becomes within the tolerance of a desired speed, a "propulsion control at
goal" status will be reported to Ship Maneuver.

19

The Turbine controller receives and servos on the desired turbine rpm. Figure 4-6 shows a
typical primitive servo control state diagram for a regulator problem. The Turbine
controller stays in (S1), monitors the rpm control error, and generates the signals for
increasing or decreasing the rpm based on the control error. The turbine simulator receives
the signals and computes the corresponding rpm, which are sensed and fed back to the
Turbine controller. If the rpm is within a pre specified tolerance, an AT_GOAL message is
returned as the status to the Propulsion controller. See section 4.1 for the reasons of using
multiple events (Evt(through Evt3).

% Evil: mrbine below commanded zpm

EEvt2- turbine at cornmanded rpm
Job: inc. rpm set point

Cmd: th_ahead i Job: report turbine control
v rerveenres vueveeserofovass i aLgpa]
s1
turbine ahead
°Ev10 new command i
1 Cmd: tb_ahead nsnnsenn
oot s iEvt3 turbine above commanded rpmnj
i Job: dec. rpm set point
| Cmd: 1b_ahead
: ”
iEvti: mggemg events é
== B e |
' comma
Sts: Status (not shown) ;
[depth | |[propulsion] :

3¢) ¢ don't care; prioritized

ents verification
L]

92192

Figure 4-6 The "Turbine Ahead at a Desired rpm” Plan

4.4. Helm Control

The Helm controller is solely responsible for the ship heading control. The control
behavior, as shown in figure 4-7, can be described as follows:

* Plan Activation: The ICE_MANEUVER plan starts when the Helm controller
receives the command, shown at (*0) in the figure.

* Normal Behavior: A desired course is computed based on the next goal position
Helm receives, as shown in the shaded box under (Evt() in the figure. The
required rudder angles are computed based on the course control error. If there is
no obstacle (mainly ice keels, as discussed below), the Helm controller will send
the computed rudder angles to its subordinate, the Rudder controller, to approach
the goal position. (Evt3), (Evt4), and (Evt5) in the figure describe such servoing
activities.

20

* Error Handling: Significant errors will be accounted for immediately regardless
of the controller's current state. In this plan, the error entitled "ice problem flag
persists for longer than 5 seconds” is regarded as significant. This error is
described in the figure as, (*1), a "don't care” state, and a label (Evtl). The
detection of this error is performed in the control preprocessing. This detection
causes the control to switch to the corresponding "don't care" state no matter what
the controller's previous state was. The error compensation actions, represented by
the jobs and commands listed in the corresponding shaded boxes, are taken. All
these actions lead the controller to the error correction state, (S2).

The Helm controller employs a sensory processing function known as the
Cerebellar Model Articulation Controller (CMAC) algorithm (see sections 3 & 6)
for developing an ice map. Sonars detect the ice [Hu 92]. CMAC receives the
sonar data, generalizes for an estimated ice distribution map, and stores the map in
the control system world model. Helm also employs a path planning algorithm (as
part of Helm's Behavior Generation function) that computes an ice avoidance
recommended heading based on the ice distribution and the desired course. Inside
the Helm controller, an ice_problem flag is raised if the ice avoidance
recommendation differs from the desired course. The persistence of the ice
problem for a predefined period of time is an error condition, (Evtl) and (*1). The
desired course will be temporarily omitted and the Rudder controller will be given
an ice avoiding rudder angle. See the description under (Evtl). A new course
toward the original goal must be computed after the ice has been avoided, described
at (Evt2). Under the, "no ice,” situations, the ice avoidance recommendations will
be consistent with the desired course.

The computation of the desired rudder angles depends on the size of the heading
error. As the error reduces to be within some pre-calculated tolerance, a zero angle
command must be sent in advance (before the heading error reaches zero) to
account for the inertia of the submarine motion.

* Completion: This servo plan does not have a DONE state. Instead, an
"ice_maneuver_at_goal" status, at (Evt3), would be reported to Ship Maneuver
once Helm and Rudder are within the specified tolerances. The Helm controller
continues in state (S1) monitoring any possible heading deviation or the occurrence
of an ice problem.

The Rudder controller always receives a GOTO_ANGLE command together with a targeted
angular value for use in servoing. Simulated +VOLT, -VOLT, and OVOLT signals are sent
to the rudder simulator to generate the corresponding rudder angles.

As described in an earlier paper [Hu 91], one important feature a designer may discover as
he steps from the higher levels down to the lower levels in an RCS hierarchy is the
transition of coordinate systems from global systems with coarse resolutions to local
systems with finer resolutions. The Helm controller refers to headings, a measurement
global to the world, whereas Rudder refers to rudder angles, local to the submarine’s center
line. The output of the Rudder controller (voltage) is local to the electro-mechanical rudder
mechanism.

21

, EvtS: course error detected
start ; -

i Job: compute heading error §
i compute rudder angle
I\Cmd.: rudder golo_angle

E d: o

¥={ servo heading
Job: compute heading error ! erTor
compute rudder angle Evt4: course error in tolerance & §

Crmd: rudder_goto_angle | rudder not at goal
Job: assign zero rudder angle i

Cmd: rudder_goto_angle

Evtl: ice problem flag persists for |
more than § sec. i

Job: compute 1ce avoidance heading ;Evt?: course error in tolerance &
error : : rudder at goal
compute required rudder angle Job: report ice_maneuver at goal
Cmd: rudder_goto_angle
\ N\ Legend:
52 ;
avoid ice i Evtl: ice problem cleareyg state number
B . : stale pame
i Jab: reset ice problem
ship flag Evui: triggering events
maneuver i Irecompute course | Tob: Gompuiation Jobs

- (émdé‘owmzndrsno)
ts: Status {not wn,
:

: doglt.s care; cmmd
v Vi o0
e
Figure 4-7 The Helm Control Plan

One point worth noting is the importance of a consistent design specification across a team
of designers. In this implementation, headings are computed in three modules, the Helm
controller, the ship simulator, and the CMAC algorithm. Significant debug time was spent
in the integration period due to the fact that three modules used different references for their
heading computations. All the computed headings have to be normalized before being
used.

Future enhancements to this ice avoidance algorithm include adding changing ship depth
and speed as some of the options to avoid ice and adding some ice problem severity
indices.

4.5. Depth Control

As described earlier, the depth of the submarine can be controlled using either the control
surfaces or the ballast. The Depth controller employs a Dive/Rise controller and a Main
Ballast controller for these purposes (shown in figure 4-1). The Dive/Rise controller is
responsible for using the control surfaces to achieve the desired depth that the Depth
controller specifies. The Main Ballast controller is responsible for the buoyancy force
control on a gross scale. The main ballast tanks can be blown to surface the ship in
emergency situations. There is also variable ballast control on the ship used for such
purposes as maintaining the depth or adjusting the trim (pitch angle) for the ship. They are
omitted in figure 4-1 since they were not used in the performance of the specified scenario.

22

Upon receiving a goal, Ship Maneuver typically sends a COME_TO_DEPTH_SALIN®
command, along with a desired depth, to the Depth controller (figure 4-8). The control
behavior can be described as follows:

AL A A i A B RS RN

Evt10: too i Evtil: too shallow

Asce : Descend

{FtlZ: in tolerance §
wmmmg

Evid: DR repoted exror 3 &
DP nol granied in_mnge ; @
. DPreports error_1

EviS: DR reported error 3 &

DP granted in_range _@

Q :éilf!nd NG range i
IEwid ;Mﬁilwlq)mad“mw;;:?- {Evt6: DR error 3 &
{Ascend H Exvor lasis > 15 sec. @
R i DP reponts error_2 ”
DE Depth smodule
ship { En?. DR reporied emor 3 & DR: Dive/Rise module
manauver i Error lasts > 30 sec. —
§ DP reports egror_3 tnggﬂ'mgj cvents
[Bropuision] L s i S A % b
= L : L Commonds |
EIZiT , domt ar
priority event
verification

Figure 4-8 The Depth Control Plan

* Plan Activation: The depth control plan is activated when the Depth Controller
receives the command, shown at (*0) in the figure.

* Normal Behavior: The Depth controller would normally be in (S1). It selects the
ASCEND/DESCEND commands for the Dive/Rise controller to achieve the desired
depth (refer to the scenario for a description of the reason that UP-BUBBLE is not
being used as a preferred method). After the ship comes within the depth tolerance,
the MAINTAIN_DEPTH command will be activated. The Depth controller
remains executing the same COME_TO_DEPTH_SALIN command and the
Dive/Rise controller remains in the state of maintaining the depth unless an error
occurs.

* Error Handling: Errors reported to Depth from its subordinate, Dive/Rise, will be
accounted for immediately regardless of the controller's current state. In this plan,
these errors are described at (Evtl) through (Evt7). Each of them is preceded by a
"don't care” state, (*1) through (*7). The occurrence of any of these errors causes
the control to switch to the corresponding "don't care” state no matter what the

8The label SALIN in the command name indicates that this command is capable of handling salinity
anomalies. There also exists a simplified version called COME_TO_DEPTH which does not have such

capability.

23

controller's previous state was. The error compensation actions, represented by the
jobs and commands listed in the corresponding shaded boxes, are taken. All these
actions lead the controller to the error correction state, (S2).

The Dive/Rise controller contains a proportional-and-derivative (PD) type of depth
error detection algorithm. This algorithm compares the submarine actual vertical
speed and depth with the desired values. Whenever the differences exceed a first
set of assigned thresholds, an ERROR_1 flag will be reported to Depth, as
described at (*2) and (Evt2). The UP_BUBBLE command would be selected for
the Dive/Rise controller in this case {(see section 3, scenario, for the reason). The
Depth controller is now in the state (§2). If ERROR_1 persists for a predefined
time or if the speed or depth errors exceed a second set of thresholds (more severe),
another ERROR_2 flag, as shown at (*3), will be reported, and the ASCEND
command will be activated.

ERROR_3, at (*4), can be received similarly, prompting Depth to report
DP_ERR_1 to Ship Maneuver. Ship Maneuver would exercise its authority to relax
the stealth/safety constraints and would grant Depth permission to use larger control
surface operation ranges (see (*5) here and (*2) in figure 4-3). If the Dive/Rise
ERROR _3 error persists, the Depth controller reports DP_ERR_2 and DP_ERR_3
up, shown as (*5) through (*7). Ship Maneuver will relax more stealth/safety
constraints and will issue requests to the Propulsion controller to increase speed
(see (*3) through (*5) in figure 4-3). The system may re-enter (S1) from (52)
whenever the error is corrected and the normal depth control servo loop resumes.

Note that the CLOSE_TO_BOTTOM event, (Evtl) in the figure, takes even higher
priority such that whenever it is detected, the error must be reported immediately.
Eventually the Ship Maneuver controller will issue an emergency command to blow
the main ballast tanks to surface the ship (figure 4-3).

¥ Completion: The depth control would normally stay in (S1) to maintain the given
desired depth and does not have a completion state.

Note that this plan assumes that the depth control is operated in the automatic mode, see
section 6.5 for an interactive mode depth control plan.

The MAINTAIN_DEPTH command (figure 4-9) uses the sail planes to keep the ship
within the tolerances of desired depths. The stern plane angles are typically set to zero in
this plan. As shown in the figure, with the occurrence of Evt0 (when the depth error
exceeds the tolerance), one job for the Dive/Rise controller is to apply the PD control
algorithm to compute a sail plane control angle in order to compensate for the depth error.
Evtl shows that the plane angles are reset to zero once the depth becomes within tolerance.
Once this is achieved, status is reported (Evt2) and the depth monitoring continues.

All the Dive/Rise commands are decomposed into the SL_GOTO_ANGLE and

SP_GOTO_ANGLE commands together with desired plane angles. The Sail Plane and the
Stern Plane servo controllers execute the respective commands.

24

start

Ewil: depth rerror within tolerance &
oot sail or stem planes not at zero |

Job: assign zero plane angles

g depth error exceeds tolerance ; Crd: SL-goto_angle
tJob: compute sail plan control SP-goto_angle
angle based on the depth E

i
% error and the error rate
H assign Zero stem plane angle
Cmd: SL-goto_angle
L SP-goto_angle 81
e Amaintaining depth

Ewt2: depth rerror within tolerance & §
sail and stern planes at zero j

Job: report maintain_depth at goal Legend:
s o~ SL: sail planes

Figure 4-9 The Maintain Depth Plan

5. COMPUTER ENVIRONMENT

5.1. Background

The RCS methodology suggests that the designer map software to the target hardware
explicitly. Although the submarine work was a demonstration, careful attention was paid to
the mapping of software to hardware, see figure 5-1. The choices made were based on
resource availability and performance criteria for a demonstration system. If one developed
a real system, the software could be mapped differently.

5.2. Hardware

Two platforms were used in this demonstration. A Gateway 2000 PC compatible 386/33
computer was used as the main development workstation for the controller and simulation.
A Silicon Graphics Incorporated (SGI) 4D/220VGX workstation was used for the
animation and some environmental simulation. A Bit3 PC to VME Bus extender card set
and cable were used to facilitate communication between machines. More detail on data
transfer between machines is provided in section 6.4.4.

5.3. Software

5.3.1. Development Software

25

Microsoft C version 6.00 for the PC was used to develop the RCS control and simulation
software. CodeView, the Microsoft source level debugger, was used extensively during the
development process, particularly for verifying command traversing. The SGI graphics
library (GL) in C was used for the submarine animation and simulation, Software provided
by Bit3 was used for the data transfer between the SGI and PC compatible.

Submarine Demo #3 Computer Resources

Figure 5-1
5.3.2. RCS Software

The control hierarchy and simulation were implemented on the PC compatible machine,
which was operated at a thirty millisecond sample period. The executable software required
seven hundred kilobytes of memory on the PC compatible. The animation, CMAC, ice and
sea bottom profiles, and sonar simulation were implemented on the SGI workstation, and
the executable code requires nearly one megabyte of space. The software distribution was
done to ensure that any real-time critical code was executed at the thirty millisecond
heartbeat (system cycling time). The sonar simulation and CMAC distribution did not need
to operate at the heartbeat rate, which demonstrates the ability of RCS to handle
asynchronous communications seamlessly.

6. SYSTEM IMPLEMENTATION

6.1. Overall Software Architecture

One aspect of the RCS methodology is a generic software architecture, which facilitates the
development of RCS applications. The research results obtained in demo #3 show that
such an architecture may include the following hierarchies: RCS controller hierarchy,
human control interface hierarchy, simulation hierarchy, human simulation interface

26

hierarchy, and animation hierarchy. These hierarchies are served by a generic
communication mechanism and by partitioned knowledge bases and shared memory.
While a proposed layout is shown in figure 6-1, extensive study in future phases of this
project is required to verify the format of some aforementioned hierarchies. Descriptions
for all the components of the proposed software architecture are given as follows:

*

RCS Control Hierarchy (shown in the upper left quadrant of figure 6-1): Executes
the plans, as described in section 4, to perform real-time ship maneuvering
automatic control.

Human Control Interface Hierarchy (the upper right quadrant of figure 6-1): Serves
as the interface between the above mentioned RCS hierarchy and human operators
who use decision aiding in performing interactive control.

Control System's World Model versus Simulation World Model (shown as part of
the central core in figure 6-1): Two distinct world models are used. Each contains
sets of state variables, dynamic models, and geometry models to represent the
world.

Communication (depicted by arrowed lines in figure 6-1): Communication is
required among all the components described above and is achieved by utilizing a
generic shared memory mechanism. There are different types of communication
activities in this RCS software structure, including:

- Command/Status Communication: This type of data is shared only by two
adjacent modules along the command chain in the hierarchies, as described in
section 6.4.1.

- World Model Data Communication: This type of data can be shared by all the
modules in the hierarchies and therefore is considered as part of the world
model [Al 92]. Section 6.4.2 provides more description.

- Human Computer Interaction. This is described in section 6.4.3.

- Communication with Other CPU's. This is described in section 6.4.4.

Global Memory (shown as the central core in figure 6-1): The global memory
includes the world models and the memory space that facilitates the aforementioned
shared memory based system communication.

Simulation Hierarchy: Simulation receives actuator commands and computes ship
dynamics. Environmental objects/phenomena of concern are also simulated.

Human Simulation Interface Hierarchy (the lower right quadrant of figure 6-1):
Changes the simulation (including ship or environmental) parameters to test the
responsiveness of human operators or the RCS ship maneuvering system.

Animation (at the bottom of figure 6-1): Paints the pictures in real-time based on
the data computed in the simulation software.

As reported in the following sections, all the five hierarchies use essentially the same
format to implement their software modules. All the hierarchies execute via command
passing and shared memory communication. Therefore, in some respect the execution of
the whole demonstration can be viewed as five parallel sets of hierarchical control behavior.
In the future, the focus of studies should include:

27

* the format of the two human interaction hierarchies -- would they form a one-to-one
correspondence with the control and the simulation hierarchical modules?
* the coordination of the human interactions among multiple hierarchical levels.

RCS Control Human Interface
ontro o "

Hierarchy Control System ierarchy (Controf)

World Model

SIMULATED
PHYSICAL

{Actuator simulators) WORLD

X [

{environmental) —----t--J

Simulation
,‘g °é'd| Human Interface
ode Hierarchy
Simulation Hierarchy (Simulation)
Note: Dotted lines in the hierarchies
) , indicate that further studies are
Animation desired to verily their structures.

02r19/93 Hierarchy

Figure 6-1: Proposed Software Architecture

6.2. Software Structure for the RCS Hierarchy

This section describes the software structure of the implemented RCS hierarchy. First, the
main executing program is introduced, then the overhead associated with keyboard
interaction and debug displays. Lastly, the generic controller template is introduced as the
building block for all of the controller modules. The control software is described in detail
in this paper; for information regarding the animation and simulation refer to [Hu 92].

28

6.2.1. Main Program

The main program organizes the execution of the control modules, simulation modules,
debug displays, and animation communication, All of the code was written in C, but other
languages have been used successfully, e.g., SMACRO (a superset of FORTH). The main
program acts as the scheduler for the cyclically executing system. If multiple CPUs are
used for control, each CPU would require a separate main program, A block diagram of the
main program for the submarine control is shown in figure 6-2 and a listing of the code is
provided in Appendix D. Much of the main program could be copied to other processors
verbatim; however, some of the function calls are computer specific. The main program can
be thought of as our Real-Time Executive (RTE) [Be 88].

6.2.1.1. Allocate Global and Main Memory

The first step in the main program is to allocate the Global Memory (GM). This memory
consists of: world model data, commands, status, simulation model data, and debug
statistics. These data structures are defined in a header file and were determined a priori,
but this fact does not preclude the designer from utilizing more complex data structures
with RCS.

After the GM has been allocated, the valid commands for each module in the hierarchy that
may be input are determined. These values are read in from a file that may be updated
without the need for recompilation.

One of the most important variables to be set is the state clock interrupt. This constant sets
the sample rate of the computer controlled systemn, because every execution cycle is initiated
at the rate of this heartbeat. This makes the maximum execution time of the control system
deterministic. In the submarine demonstration, the programmable interval timer for the PC
was set at 211 us, which is fine enough resolution for our control system and the
simulation calculations used for dynamic system response. The interrupt causes a
timer_counter in the GM to be incremented; therefore, the real-time elapsed is 211 ps X
timer_counter. The sample rate is set to an integer multiple of the interrupt time of 211 ys.
In this demonstration, the timer_counter increments to 142, approximately 30 ms, before
beginning another execution cycle.

The PC user interface is initiated next, by drawing the initial screen.

Once the Global Memory space has been allocated, its initial conditions are set. This allows
the designer to set up a number of different “what if” type experiments efficiently. For
example, an experiment may begin with the submarine on the surface or submerged. If it
was desired to have the initial condition to include the set of all possible states of the
system, all state variables would have to reside in the GM, including the intermediate
values used for dynamic system response calculations. For a dynamic system as complex
as a submarine, this is a difficult problem. In this project, only variables of global interest
(ones which are shared between modules) reside in the GM. The world and simulation
models are set to the desired values and an INIT command is propagated through the
hierarchy on initialization. Commands and status are contained in the GM. The actuator
commands are set to their appropriate initial values. For example, it might be desirable to
start the experiment with the submarine at zero speed, so the turbine actuator would receive
a ZERO-VOLT command.

After all of the initialization is completed, the system is ready to execute.

29

RCS Templates

Main Program

Allocate Global Memory &
Initialize Global Memory

*-

Read Start Time

Y

Scan Keyboard for Inputs

Y

Check Operating Mode

Y

Execute Control
Modules in Sequence

Y

Execute Simulation

(]

Display Data, Debug,
& Performance Stats

Y

Communicate with
Animation &User I/F

Time =

Sample Period

Figure 6-2

30

6.2.1.2. Cyclic execution

Figure 6-2 shows the cycle that is executed every heartbeat, beginning with “Read Start
Time” and ending with “Time = Sample Period.” The cycle repeats approximately every
30 ms in this implementation, which translates into 142 ticks of the timer_counter.

This cycle begins with reading the start time, used for synchronization purposes. The
controller modules are run next, then the simulator modules. The communication between
the CPUs is run, the debug displayed, and then the execution performance is calculated.
Lastly, the program waits for the rest of the 30 ms to elapse. Note that even though there
will be time where the CPU is idle, waiting for the 30 ms to elapse, it is necessary to
remain on that constant heartbeat. The system should be deterministic, and as such, should
have a consistent sampling rate. Varying sample rates affect control response, which is
deemed as undesirable.

It should be emphasized that every control module is executed at each cycle. This is true
regardless of the planning and execution. This may seem strange at first, but it is a crucial
element of the RCS methodology. This approach does not preclude the use of time
intensive algorithms; however, algorithms must be organized properly with respect to the
hardware available, which is true of any design. In the submarine demonstration, this
problem arose with the CMAC and sonar simulation, so those algorithms were assigned to
run on separate hardware. The details on CMAC and sonar simulation implementation is
presented in [Hu 92].

The sequence of execution for the control modules can be of some importance, particularly
when the control is executed on one processor. RCS fully supports a multiple parallel
processor design. However, when one designs using a single processor, the ordering of
execution for the control modules has interesting consequences. If execution is done top
down, i.e., the highest level modules are executed, then the next level and on down to the
actuator level, then the commands will propagate from the highest level down to the lowest
level in one control cycle. However, status and error information traveling back up the
hierarchy will have a lag equal to the number of controllers in that particular thread. If there
is an emphasis on fast response to errors, execution sequencing should be bottom up. This
choice is left up to the designer.

Only relevant data is transferred between the PC and SGI; i.e., submarine position and
orientation. For example, the CMAC recommended heading is transmitted to the PC.

Debug information is calculated and displayed. The actual execution cycle time is then
calculated, which should be less than the sample period.

Another debug feature is to single step the cycle, allowing the designer to watch the
propagation of commands and execution of the system.

Lastly, the CPU waits for the clock to reach the sample period. After this occurs, the cycle
is restarted. This requires that the execution of each cycle must take less than 30 ms. If
execution time is greater than 30 ms, then extra hardware might be required for proper
execution

6.2.2. Overhead
The overhead is presented to provide guidelines for implementations. The implementation

may have to be machine specific, but the concepts can be readily employed on most
machines.

31

6.2.2.1. State Clock Timer

The heartbeat is calculated from a hardware programmable interval timer in the PC. The
timer runs an interrupt every 211 us. The interrupt servicing routine (ISR) consists of
incrementing the counter. The program returns to normal operation after the ISR. This
results in a resolution on time calculations of 211 ps.

Interrupt servicing routines should consist of a minimal number of calculations, and not
any program execution. This is one of the tenets of RCS [Qu 92], and ameliorates the non-
determinism which may result from traditional real-time programming techniques. Large
complex systems can become extremely difficult to manage when many interrupts have to
be processed.

6.2.2.2. Keyboard Input

The keyboard on the PC is scanned for command inputs. If a key is hit, it is read into a
command buffer. Once the command buffer is full, designated by a carriage return input,
action is taken on the command. A maximum of one key is read in per cycle. This operation
takes approximately 1 ms to complete, which is small compared to the execution cycle
maximum of 30 ms, and will not cause the execution cycle to exceed the 30 ms. This
provides the system with non-blocking 1/0; therefore, the control system execution
continues even with keyboard inputs and commands.

Keyboard commands are translated either into debug operations or as commands sent to
any controller, with these commands written directly into the GM. See section 6.4 for
communications and protocols.

6.2.2.3. Display Mechanism

Debug screens are used on the PC for tracking data, commands, and execution times,
However, displaying the data via MS-DOS is extremely time intensive. The solution to the
problem was to write the display characters directly to the VGA display card. It still
requires a significant amount of time; therefore, the cyclic execution time varies depending
on the amount of characters on the debug display. There are a number of screens displaying
different debug information.

6.2.3. Generic Controller Template

We, at NIST, believe very strongly that a generic controller template is one of the keys of
making RCS a robust, extensible, verifiable, and efficient software design methodology for
attacking large scale automation projects. The controller template presented was utilized for
all of the software modules developed on the submarine automation project. Once the basic
system was coded, extensive revisions were made to add enhanced functionality without
scrapping any of the existing code. For example, the supervisory and training sections
were added onto an existing piece of code with little or no rewrite. Presented in the next
few sections is an analysis of the generic controller template and a sample is provided in
Appendix D.

32

RCS Templates
Generic Controller Module

Debug Read Start Time

Copy in Interfacing
Buffers & Control Model

Preprocess *

Check Subordinate Status
SP/WM Execute Common Functions

¥

Check if New Command

v

PL/EX/JA Selﬁ;tES;a;eu tzable

v

Execute Common Functions

v

Post Copy out Interfacing
ostprocess Buffers & Control Model

y

Display Data & Debug
Debug v

Calculate Performance

Figure 6-3

33

6.2.3.1. Time

The first operation the module performs is to read the start time of the module execution
and store a copy. This is an important performance measurement/debug feature which
provides the designer the ability to flag modules which may be taking an inordinate amount
of time to execute. If a module requires a significant amount of execution time, it may be
assigned to a separate processor.

6.2.3.2. Interface buffer

The Generic Controller flow chart is shown in figure 6-3. The structure of the software and
communication channels is shown in figure 6-1. All communication is completed via the
communication buffers located in the GM. The data in the GM has an important property, it
has multiple readers and a single writer. The owner (writer) of a piece of data is
predetermined by the designer. The communication buffer is the repository for the inter-
module commands, status, and the sensor feedback from the submarine simulation.
Actuator simulators are treated as modules. The communication system provides for a
multiple processor system to be implemented without major modifications from a single
processor design.

Data is generally read in from the GM interface buffers during preprocessing and written
out at the end of module execution during post processing. For a more in-depth analysis of
the interface buffers, please see section 6.4.

6.2.3.3. Preprocessing

Preprocessing code is executed each cycle. This includes copying information from the
interface buffers and control world model. The control world model is the repository in the
GM which contains modeling information used by the controllers, and its function is
described in more detail in section 6.3.

6.2.3.4. Sensory Processing/World Modeling

Sensory Processing/World Modeling (SP/WM) consists of all filtering and fusing of data
within the GM which is used by a module to determine appropriate actions. It is also used
to update the current world model for future reference. Execution occurs at each cycle,
regardless of the incoming command or outgoing status; however, different algorithms may
be completed depending on the state and mode of the module. An example of SP/WM is the
pressure sensor transformation to depth. The results of SP/WM are stored in GM so that all
of the modules may view the data. Any algorithm that must execute on every control cycle
(e.g., path planners) should be implemented as part of preprocessing.

6.2.3.5. Planning/Execution/Job Assignment (PL/EX/JA)

These three sub-modules have been lumped together as Behavior Generation (BG),
because in the implementation they are intertwined. Command numbers as well as
commands are passed from supervisor modules to their respective subordinates. The
numbers serve two purposes, to flag new commands and to detect communications breaks
between modules. The current command number is compared to the previous one and if
they differ, the subordinate detects a new command. This process is particularly useful
when the command received is the same, but the supervisor wants the module to restart the
plan. The number is echoed back by the subordinate to the supervisor in its status report,
which enables the supervisor to see that the command has been received by the
subordinate. If the status number does not match the last number the supervisor sent, the

34

supervisor may assume that the subordinate is still executing the last command sent.
However, if this persists, it might be an indication of a communication breakdown. The
supervisor then must decide on any corrective actions to be taken. The handshaking
protocol provides the system designer the flexibility to shift modules between different
processors with ease.

After the command is deemed to be new or the same, the module selects the state table
(plan) to execute. The correct plan is selected by the command and state of the system.
Once the proper plan has been selected, a plan line is executed. Line execution is module
specific and may require a specific algorithm to run or may assign a task to its
subordinates. The execution line is determined by the state of the system and variables
calculated by the SP/WM functions. Examples of state tables and state graphs are provided
in section 4 and Appendices B and C.

6.2.3.6. Post-processing

Post-processing code is also executed each cycle, and includes copying information to the
interfacing buffers and control model. It may also include some SP/WM processing before
information is posted to the interface buffer. The data posted includes: the status,
commands to subordinates, world model data, and actuator commands.

6.2.3.7. Debug
Debug in our generic controller modules consists of tracking:

commands

command and status numbers

status (executing, done, error, €1¢.)

current plan line being executed (what state the module is in)
minimum, maximum, and current execution time performance
mode (single step or free running),

* X X X ¥ *

The commands and status numbers have been described above. The current plan line that
was triggered provides information on the execution of a particular plan. It allows the
software engineer to debug the logic behind a particular plan and demonstrate which actions
are being triggered; i.e., it provides a means for traversing a state graph. The performance
calculations are one of the most important metrics of RCS, because they are crucial to
enable the designer to recognize bottlenecks in a system.

Once the modules which require the most computing time are flagged, the designer may
choose to either leave the system intact, or split the module into more than one. The
splitting of the module should be done hierarchically; i.e., the module should be split into
more than one level. Splitting a module vertically does not ease the computational burden,
but may facilitate the debugging process. An alternative would be to dedicate a special
processor for that module.

The system may be run in single step mode in order to catch errors in logic and
communications, and is preferably done with a simulator.

35

HEADING: 0.1911 SPEED : 14700 STERN: 9.6000

BUBBLE : 0.0000 X_POS :3.6807 SAIL:

9.6000

TIME(ms): 27.008

DEPTH :95.040 Y_POS :0.0050 RUDDER:-9.7000 NO_ERR

DEBUG SCREEN 1

Unit Cmd Cmd_id Cmd_no Status
CCl1 run_mission 2802 00002 00001
SM ice_trans 3502 00002 00001
DP come_to_d 2007 00002 00001
HL ice_maneuver 2204 00002 00001
PR ahead 2102 00002 00001
DR descend 1806 00002 00001
HA halt 1901 00002 00001
TR halt 1701 00002 00002
BL vent 0105 00002 00001
SP goto_angl 0202 00003 00001
SL goto_angl 0302 00003 00001
LI shut 0402 00002 00002
PU off 0503 00002 00002
BV press_det2 0703 00003 00002
HV halt 0601 00002 00002
RD NC goto angl 0802 00100 00001
TB ahead 2902 00002 00001
SH run 3302 00003 00002

Status_no State

00002
00002
00002
00002
00002
00002
00002
00002
00002
00003
00003
00002
00002
00003
00002
00100
00002
00003

S1
S1
S2
S2
S1
S2
S3
NOP
S1
S2
S2
NOP
53
S2
NOP
S1
S1
S1

Figure 6-4 Diagnostic Display 1

HEADING: 13.2211 SPEED :2.9700 STERN : 21900 TIME(ms): 24.68
BUBBLE : 0.0000 X_POS :59.993 SAIL :21.900
DEPTH :97.054 Y_POS :5.5873 RUDDER :-36.900 NO_ERR
DEBUG SCREEN 2

Unit Stop Ste Simu “Time: Last Min Max
CC1 RUN AUTO REAL 00042 00021 00105
SM RUN AUTO REAL 00042 00021 00105
DP RUN AUTO REAL 00063 00021 00105
HL RUN AUTO REAL 00063 00021 00105
PR RUN AUTO REAL 00042 00021 00105
DR RUN AUTO REAL 00063 00042 03501
HA RUN AUTQO REAL 00042 00021 00084
TR RUN AUTO REAL 00063 00021 00063
BL RUN AUTO REAL 00042 00021 00084
SP RUN AUTO REAL 00042 00021 00084
SL RUN AUTO REAL 00042 00021 00105
LI RUN AUTO REAL 00042 00021 00063
PU RUN AUTO REAL 00042 00021 00063
BV RUN AUTO REAL 00042 00021 00084
HV RUN AUTO REAL 00063 00021 00105
RD RUN AUTO REAL 00042 00042 00084
TB RUN AUTO REAL 00042 00021 00084
SH RUN AUTO REAL 00294 00042 00483

Figure 6-5 Diagnostic Display 2

36

6.2.4. Diagnostic Displays

Displays are used on the PC as well as the SGI workstation for diagnostic analysis. These
diagnostic tools are critical in not only getting a system running, but also to track down
bugs in a running system.

The PC displays variables of interest, commands being executed, command and status
numbers, plan lines being executed, performance metrics, and execution mode. Please see
figures 6-4 and 6-5. The variables of interest consist of primarily of control and simulation
model values. The importance of the other diagnostics was described above.

Figure 6-6 A Performance Display on SGI

The SGI workstation enables the designer to create more elaborate pictorial descriptions of
diagnostics. The same diagnostics are graphically displayed on the SGI workstation screen
in a tree structure. For example, a bar graph is used to display the performance metrics.
See figure 6-6.

One of the most important debug recommendations made by the RCS methodology is
animation. It conveys an enormous amount of information which can be readily

comprehended by a human and is an invaluable debug tool. The animation is discussed in
section 6.6.

6.3. Control System World Model and Simulation World Model

According to the Albus Intelligent Machine Systems theory {Al 91], the sensors and
actuators act as the interface between an intelligent system and the environment. The

37

intelligent system's perception of the world is described through the use of: state variables,
dynamic models, object geometry, etc. At the beginning of a mission, the control system
world model may contain some a priori knowledge that may be incomplete, incorrect or too
coarse in resolution. For example, the pre-stored map may only indicate major ice
distribution areas in the Bering Strait region that might be outdated. A sequence of internal
processing, including sensory detection, filtering, comparison, prediction, and fusion, is
required to update the system's perception. Discrepancies between the real world and the
intelligent machine's perception can be introduced from both the modeling and the
processing errors, including:

* There may be environmental changes (unmeasured or disturbance inputs) that are
not detected by any sensor employed. The fact that the water salinity is only
monitored occasionally during a submarine operation forces the use of an imperfect
depth model in the RCS control world model (see sections 3 and 6.7).

* Possible sensory and actuator errors, in the form of noise, biases and failures, may
cause distortions in the world models unless the errors are compensated for.

* Some sensory processing or world model prediction models may either contain
errors or be greatly simplified. In many cases, the systems engineer will use an
order reduced model for high order dynamic systems, and linearized models for
nonlinear systems. In Demo #2, one variable ballast control module was unstable
due to the existence of an inappropriate inertia model which in turn caused a failure
in the depth servo.

Therefore, the control system's world view may differ from the "real environment.” In this
demonstration, the environment is realized through a separate set of data that the
environmental simulators operate on, see section 6.7.

6.4. Shared Memory Model for Communication within a CPU

In this RCS application, the basic principle of maintaining data integrity during
communication is a triple buffering mechanism (figure 6-7). At least three copies are kept
for any piece of data to be shared. It is defined? by the owner module {(a controller or a
simulator) first. A second copy is defined in the Global Memory (GM). Each of the reader
(consumer) modules defines a local copy of the data for itself. Only the owner module can
write the data and post it in the GM. The reader modules access the data from the GM.
This triple buffering mechanism is simple and replicative. It is used for both input and
output and is installed in all the software modules requiring data communication. This
mechanism, together with the sequential and cyclic execution model for all the modules,
form a simple but rigorous data communication method. The most significant advantages
for this execution model include:

* To retain data integrity, user modules always have a local and complete copy of the
required data for them to make control decisions. Note that propagation delay may
occur in this RCS cyclic and sequential execution model. However, designers can
sequence the execution so that the total number of cycles of delay does not
destabilize real-time system control. The command/status communication (section
6.4.1) exhibits a rippling effect. If the Dive/Rise controller (figure 4-1) is placed
five modules below the Depth controller (figure 6-2) in the Main Program execution

IDeclaration of data does not necessarily reserve memory. Declarations that reserve memory for the data are
called definitions.

38

schedule, a five cycle delay is required for a depth error to be reported from
Dive/Rise to Depth. The designer must make sure that the responding command
computed by Depth will come in time for Dive/Rise to compensate for the error. If
not, the depth control might be in an unstable state. The world model data
communication (section 6.4.2), on the other hand, may require a one cycle delay
between the data being posted in the global memory and the access to the data by
consumer modules.

COMMAND/STATUS COMMUNICATION

maneuver controller

read input buffers O"'

write output buffers O

depth control commands

shared
emory

depth controller

read input buffers O-I (ﬂ

write output buffers

2 O

depth command
axecution status

Figure 6-7 Triple buffering data communication

* To enable asynchronous execution (non-blocking). Real-time system control can
proceed based on the most recent input data and does not have to pause for the
receiving of incoming data. This advantage applies to multiple CPU cases where
each can operate on its own cycles.

This communication model might also be extended to allow the integration of an RCS
application in a heterogeneous environment. An RCS application might communicate using
this technique with an Expert System running in parallel.

Figure 6-8 describes the shared memory model for this implementation in detail. The C
language syntax is used. There are four stages of communication activities in this
implementation (shown as four rows in the figure): data declaration, data definition or
memory allocation, data manipulation, and communication with other CPU's. Three
columns are shown describing what the owner modules, the global memory, and the
consumer modules should do during the four stages. The content of figure 6-8 will be
described in the following sections, specifically in sections 6.4.1 and 6.4.4.

6.4.1, Command/Status Communication
An RCS controller is intended to be a stand alone closed-loop controller. Different types of

communication are required between a controller and the rest of the system. One type of
communication, command/status, occurs only between a controller and its immediate

39

superior and subordinates. RCS retains a rigorous chain of authority. Arbitrary
commanding and feedback within the hierarchy are not allowed!®.

TRIPLE BUFFERING DATA COMMUNICATION

TNAIN
OWNER (WRITER) SLOBAL MEMORV/MAIN USERS (READERS)
DATA Individual writer Declare global data
declares own data structure by combining
DECLAR- struc ining
ATION structure: individual declarations:
lobal M
| Controller Global Memory(GM)
| controller B typedef struct {
Controller A E”ﬁe'—: :—:;
pedef struct { ulfer_b bf b;
Y | float h;
} buffer_a; se 0
} buffer_g;
[E N] 1.1 1.2 13
DATA Individual modute CPU main program Individual module
DEFIN- defines data and declares buffer and defines data for reading
ITION, reserves slorage space dynamically allocates purposes only and
MEMORY| (one writer to each memaory at the reserves storage space
g'll-'tl-gh? piece of data); beginning of execution {multiple readers

allowed):
CPU main

Controller Z
. Controller Y .
g_buffer *g; Controller X :

static buffer_a

Controller C
Controller B c
Controller A b:

static buffer_a a; ? = ((gf_buﬁer *) malloc X_from_a;
[(sizeoifg_bufferh); static buffer_b
e X from b;
21 22z 00 8 23

DATA ! e .
Controller A
MANIPUL- . .
ATION In each execution cycle: In each exscution cycle:
. copy contents of buffer_aj

compute on data a; into x_from_a, ...;

copy the content of a to " .

global memory *g; utilize the data;

31 32 o a3
COMMUN- Each cycle:
ICATION)
WITH Extract data from *g, fill in
OTHER CPU communication data
CPUS buffers, pad to fit word
THROUGH boundaries, and write to
BUS designated physical memory
ADAPTOR space for other CPU's.
S
Read in comm. data
4.1| prepared by other CPU's 5 5892 43

Figure 6-8 Triple buffering communication -- from the implementation point of view

10world model data can be shared by any controllers without the same constraint.

40

A controller communicates with its superior to:

* receive commands
* report its status
* report error messages that require attention from higher authorities.

In a similar vein, this controller also communicates with its subordinates to:

* assign commands
* receive status
* guide error recovery processing, based on the error message received.

As seen in section 6.2, a generic controller template declares a data structure type that is
primarily oriented toward communication with its superior. Such a data structure includes:

the commands the controller may receive, of the enumerated type [Ha 91]12
command serial number (see section 6.2.3.5 for its utility)

the status a controller reports to its superior, of the enumerated type
command serial number echo attached to status buffer

performance datal2

the sensor data the module receives

the actuator commands the module sends out.

* ¥ X X % X ¥

This data structure declaration activity is indicated in block 1.1 in figure 6-8. Controller A
owns a data structure of the type "buffer_a" containing all the information controller A
needs to communicate with its superior.

The next step is data definition, shown in block 2.1. A variable "a" of this "buffer_a" type
is defined in the heading area of the software templates for a generic controller. This
variable is defined as a static type so that its values can be preserved during the entrance
and exit of this module in cyclic execution. Appendix D shows an example.

All the individually declared data buffers ("buffer_a,” "buffer_b," ...) are combined and
declared as a large data structure in the global memory (GM, block 1.2 of figure 6-8). All
the reader modules (described below) would access the GM for the required data and do
not access the data that the writer module internally keeps (block 3.3 of the same figure).

The heading of the generic controller also defines variables of those types declared by its
subordinates (block 2.3). In this way the controller can access the data (block 3.3) to make
decisions.

At the beginning of the main program execution, the GM is dynamically allocated (block
2.2 of figure 6-8). The data is filled in during cyclic execution by the owner controllers at
each controller's post-processing stage (block 3.1). Prior to the post-processing stage, the
owner controllers compute data that they own. These data are defined to be not accessible
to the outside of the controllers.

11The task names listed in the task tree (figure 4-2) describe alf the possible commands each controller can
receive or send. Each command is assigned a unique identification namber. In this implementation, these
numbers are used to facilitate program debugging and keyboard input. For example, the number 2204 needs
to be typed in to allow the Helm controller to execute the command ICE_MANEUVER when using the
source code debugger.

12Cyrrently only the execution time for the module is included in this category.

41

6.4.2. World Model Data Communication

Besides the command/status communication, the controllers also access the world model
for required processing data. The same triple buffering mechanism, shown in figure 6-9,
is used, which is consistent with figure 6-8.

read by
other

controlle Control System

World Model
maneuver controller

G copy world depth

depth controller copy & read sensory

sea pressure
write world rnodelj

write computed, best
estimated depth —bG Shared Memory

s '—a
OO0

(BN N RN N N R R RN N RN RN RN RN AR] IO| 1 L] . NEENE X
ENVIRONMENT A O
ship simulator
write computed copy
soapressure -
write world model
Simulation World
Model
copy and read by
other simulator

O‘I modules

0 : control system world modei data

O: simulation world model data
(O : shared memory data

Figure 6-9 World model data communication
The world model includes a state space representation of the perceived world. Two types
of state variables may exist:
* sensory oriented data, such as the ship bubble angle,
* internally derived or human input types of data, such as the ship maneuvering

modes (Stealth, etc.).

Any data that are required by multiple controllers are defined in the world model and are
declared in the GM. The controller that most crucially requires the data "owns" it and is

42

responsible for writing it. In the case of sensory data, the ownership of the data means that
this controller possesses a sensor to read the sensory values in. This controller declares
and defines a corresponding world state variable (corresponding to blocks 1.1 and 2.1 of
figure 6-8) for that particular sensory data. Necessary sensory processing would be
performed to derive best estimated values for the defined world state variable [Al 88, Hu
91). In the GM area a world model data structure is declared (block 1.2 of the same figure)
and memory allocated (block 2.2). The owner controllers post the estimates into the GM
(block 3.1). All the other concerned controllers declare local copies of the variables, copy
the values in, and utilize them for decision making (block 3.3).

6.4.3. Communication between Human Operators and the Control System

As described in section 6.1, a human can interact with the control system to either perform
interactive control or to alter the state of the environment. In both cases the same triple
buffering model is used to handle the I/O process. Essentially each controller defines its
interface data structure and three copies are maintained: within the controller itself, the GM,
and the human interface handling module. In this way the control process and the 1/O
process are non-blocking. The cyclic execution of the real-time control system does not
have to pause to wait for the I/O. More detailed and specific discussion will be given in
section 6.5.

6.4.4. A Special Case of the Shared Memory Model -- Communication with Other
CPU's through a Bus Adapter

The same triple buffering concept also applies to the case of communication with other
CPU's (although this is not the only method to perform such communication). As
described in section 5, the Bit3 memory mapped bus-to-bus adapters are used to connect
the PC bus and the SGI VME bus. A 1M byte dual-ported RAM has been installed on the
adapterssto physically provide memory space for the shipment of data between these two
CPU's!3,

As shown in figure 6-10, the process of writing data from the source computer to the target
computer begins with a declaration of the communication data structure at both computers.
All the data the target computer requires are included. The two computers use different
formats to represent floating point data. Therefore, shared data are declared as long
integers or characters to simplify the format conversion problem while retaining data
precision. All the data declared in the communication buffer should be "padded” to the 32
bit long word boundaries since the buffer structure may need to be modified (discussed
later in this section) on the receiving end and mis-interpretation of data can occur.

The communication process is executed every cycle, and data values are copied from the
world models to the aforementioned buffer.

The last step of the writing out data process involves moving the data from the local PC
memory to the extended memory. The pointer to the memory space that an outgoing buffer
resides at must be represented in terms of the segment!4 and offset!5 numbers [Ha 91].
The actual data moving process is done via the execution of the proper 8086-processor-

13The PC has 8M of internal RAM, therefore, this external memory is addressed at location (0X800000).
140ne segment occupies a 64K byle space. Segment numbers can be represented by the higher 16 bits of a
"far” type pointer.

150ffsets are the relative positions within segments, and can be represented by the lower 16 bits of a
pointer.

43

family interrupt which requires the information including the word count of the buffer, the
aforementioned memory location, etc. (Refer to the "movphy” routine in the code.)

WRITE FROM PC TO SGI

Define communication data buffer:
- include all required data variables,
all of long integer type;
- pad data to word boundaries.

'

Data Preparation:
- retrieve data from world model;
- convert to long integer format;
- copy to the data buffer.

'

Move the data to the extended physical
memory:
- represent the buffer pointer using
segments and offsets;
- DOS system call;
- hardware bus lock;
- byte/word swap.

Figure 6-10 Communication with other CPU's Using the Bit3 Adapters

Data integrity is achieved through hardware bus arbitration [Bi 90]. On the receiving end
(the SGI workstation), the data buffer needs to be swapped at the word level and followed
by another swap at the byte level. This is required due to the different byte ordering on the
PC and the SGI, as shown in figure 6-11.

PC Byte Pattern word swap byte swap
o[1]2]3 =2[3|0]1

SG! Byte Pattern

31 2|1]|0

Figure 6-11 Swap of data at SGI upon receiving communication from a PC
Writing from the SGI to the PC can be done similarly. The PC defines an incoming data

buffer with proper padding. The data is moved from the SGI local memory to the extended
memory before being read into the PC local buffer. Its contents are then copied to the GM.

44

6.5. Multiple Mode Control -- The Automatic Mode and the Interactive Mode Structures

The RCS architecture [Al 91, Hu 91] specifies that human operators can interact with the
control hierarchy at any module at any level to any extent that has been built in. The
following describes the different types of control operations and the implementation
techniques:

a. Control Modes: Two operation modes have been implemented. In automatic
mode, human interaction is not allowed during system execution. In interactive
mode, an operator must enter input after errors and the compensation options have
been displayed to him. The objectives are to illustrate that authorization is required
for a human to intervene with system control and that certain system capabilities can
be enabled or disabled only in some control modes. For example, a possible
implementation is that, when maneuvering through areas where ice is densely
distributed, only in interactive mode may a human operator elect to disable the ice
avoidance algorithm and to command the control surfaces directly.

The human operators can have various degrees of involvement with the system
control. The mode in which no human interaction is allowed is called automatic
mode. From there on, human interaction types can range from allowing an operator
to only respond to error flags, to actively change system parameters or commands,
to interject complex human reasoning results to complement preprogrammed
machine intelligence, to take over the total control of some subsystems, up to
allowing him to take over the control of the entire system. In addition, most of
these interaction types can be enabled/disabled either on any controller individually
or on any sub-hierarchies. Different passwords could be used for enabling any of
these human interaction types. This description suggests that there could be as
many control modes as required.

The interactive mode implementation is rather rudimentary in this demonstration.
The user has to select the mode to operate the ship maneuvering system
interactively. A re-selection of the automatic mode would prevent him from further
interaction with the system control. The current antomatic mode may therefore be
viewed as a sub-functon of the interactive mode. However, the objective here is to
create a generic mechanism and software structure to facilitate future full
implementation of the multiple RCS control modes.

b. Human Interface: Each controller in the RCS hierarchy can employ an interface
module to handle its human I/O. The human interface module and the controllers
use the shared memory mechanism to make the communication process non-
blocking to the control execution.

¢. Automatic Mode Activities: The automatic mode hierarchy, shown partially in
figures 6-12 and 6-13, is identical to the one shown in figure 4-1 (section 4.1). A
Ship Maneuver console shown on the top of these figures provides the hardware
for human computer interface. When a submarine operator turns the interactive
mode off, a HALT command will be passed down through the interactive mode
hierarchy to inactivate all the modules. The system control will be performed only
by the automatic mode hierarchy. The submarine automatically transits through
Bering Strait via the plans described in section 4 in the automatic mode. The
bottom of figure 6-12 shows that the Dive/Rise module detected and reported an
error in the ship depth control. The plan currently being executed in the Depth
controller (shown in figure 6-12 as a state table) responds to the error message and
selects an error compensation command for the Dive/Rise controller. The depth

45

control resumes without human interaction. The automatic mode might be used
when operating the submarine in the wide-open sea.

AUTOMATIC MODE
SHIP MANEUVER Ship Maneuver Consoles

SGI Workstation . PC Workstation |

message and corpmand |
- mw

selection screen !

_______ — supervisor

mode off
Interactive Mode iS5
iteractv ol J"m mission Auto Mode Hierarchy
Course Coarse
hal
o |
Mancuver Maneuver
hait
| come_to_course
a & 8 P e ee
1
Depth Depth
DR etror F’m\ds
L) MES5Ages
Nove: halic style
Dive/Rise =
LI I AN

Figure 6-12 Automatic control mode ship maneuvering

d. Interactive Mode Activities: When an operator selects the interactive mode, shown
in figure 6-13, a RUN command will activate the entire interactive control
hierarchy. The system executes the RUN_MISSION command automatically until
a severe depth error occurs. In this situation an error message is sent to the Depth
control interface module, as shown at the bottom of figure 6-13. This interface
module is responsible for sending and encoding the message to the SGI
workstation of the Ship Maneuver console. This module also receives and decodes
the human response. The same triple buffering mechanism as described in section
6.4 is used. The command that the operator selects is posted at the GM. The Depth
controller copies the information in and executes accordingly. The benefits of this
non-blocking communication are to retain data integrity and to allow non-disrupted
real-time system control.

46

HUMAN INTERACTIVE

DECISION AIDING Ship Maneuver Consoles

_____ PC Workstation |

command |

eniry
—_— e == == = supervisor
mode on
Interactive Mode . .
Hierarchy run ;ﬂm mission Auto Mode Hierarchy
Course Course
BIT3 J rin J
Mancuver Maneuver
rus come_to_course_salin
- 2@ * 9 B
command code supervisor delected commands)
¥ Depth Depth
message code
depth error mefsages D/R error ommands
"o messages
n':’ote: Fealic style
Dive/Risd => commands
” & a 41792

Figure 6-13

83
human interaction

fLegend:

D/R: Dive/Rige Module
DP: Depth module
SM; Maneuver module

: don't care; priority
evenl verification

Figure 6-14 The interactive mode depth control plan

47

A state diagram describing the interactive mode depth control activities is shown in
figure 6-14. The normal operation, shown around the state (S1), is the same
between this figure and figure 4-8, the automatic mode depth control plan. What is
different here is that the error messages are forwarded to and displayed at the Ship
Maneuver Console instead. In figure 6-14 the state (S3) describes that the human is
attempting to interject his input and such input, once received, would be decoded as
a depth control task command. Figure 6-15 demonstrates such operator interaction
activities. A message for a severe depth error is displayed. An assessment of the
situation, the options, and the recommendation are provided for the operator.

Note that, the options that the human operators can select to compensate for the
errors can not go beyond the scope of the tasks defined in the task tree (section
4.1). The operator may select only the pre-defined tasks, as shown in figure 6-15.
However, he can, in addition,

REPORT FROM B

ERROR REPDRT @ SINKING TOD FOST, 0 SLES TD IHPRCT

RECONENORTION : FLY UP BUBBLE

BIHEHR GFVIONS & RSCE o0 SLBW FUH £FFECT
INCREASE PLANES, .TBO SLOW FOA EFFECT
REPORT ERROUR.....N8T CRITICRL ENDUGH

SELECT B COURSE OF BUTION:

Planss fingle Increase
Up Bubbla

Leovai fiscend

Error Report

Figure 6-15 An Operator Interaction Screen

- judge the severity of the situation,

- make trade-off studies between factors such as ship obstacle avoidance safety,
sea bottom safety, stealth requirements, etc., and

- adjust the parameter values for the selected task commands in order to expedite
system response.

48

6.6.

One example is that the operator can increase the propulsion speed to try to
compensate for severe depth dropping error with the understanding that the higher
speed increases the possibility for the ship to either hit ice keels or be detected.

Hierarchical Considerations for the Future: In this demonstration, only the Depth
controller has the human interaction capability which all the other controllers can
also have. However, conflicts may arise when multiple human operators are
interacting simultaneously with their corresponding controllers. A human Depth
control officer may select one task, his subordinate, the human Dive/Rise control
officer, may select a totally unrelated task. Some prioritization schemes may be
used to solve this problem. This issue will be carefully examined in the next phase
of this project.

Simulator Structure

The simulator hierarchy is shown in figure 6-16. This figure is drawn to fit directly in the
bottom of figure 4-1, the RCS hierarchy. The RCS actuator controllers send commands to
their respective simulators. The simulators compute the actuator movements accordingly
and send the computed values back to the original controllers via the simulated sensors.
The same values also are used by the ship simulator for the computation of the ship
dynamics!6, The simulated ship state is fed back to the required higher level RCS
controllers via simulated sensors. More detailed discussion is presented in the following
sections.

S Individual Actuator Controllers e
1

. : ‘
: . H i
! sail plane 1 sail plane i
' sensory &1 commands :
! readings |1 H
R o —— = - o e - -- -
1] !
1 n 1
) ' i | sonars
[} L)
) H !
1 ' H
: ! -
urbing ;;llaljal;[stern p]ane sail plane rudder

W T R~ T

ship sensors going | ship state .
into higher level ship
RCS controllers

Figure 6-16 The simulation hierarchy

16 Actually the values are copied to the simulation world model, which allows the ship simulator to copy
the data, as shown in figure 6.9.

49

The sonar simulator in this figure is an exception. It does not send any data to the ship
simulator. Rather, the sonar data are sent to the Helm control sensory processing routines
(CMAC). The submarine is equipped with 14 forward looking sonars. Sonar data are
simulated by extending 14 sets of five vectors (figure 6-17), each set simulating a sonar
pinging in its fixed direction relative to the ship's center line, from the ship to the full sonar
operating range (approximately 900 meters). Intercepts with the simulated ice keels (see
section 6.6.3 and [Hu 92]) are collected as the sonar detections. As mentioned earlier, ice
keels mean the ridges and protrusions of ice built up underwater (as a result of pack ice
collisions).

0 — =
\ &
submarine

Figure 6-17 Simulation of a forward looking sonar

6.6.1. Actuators

The template for the actuator simulators is similar to the one used for the generic
controllers, as shown in figure 6-18. Essentially the simulator copies in the command
stored in the GM and the current actuator value stored in the simulation world model. The
simulator then computes a new actuator value according to the incoming command. At the
post-processing phase, the simulator copies the values back to the world model as well as
the GM interface buffers.

These simulated actuators generally do not perform any closed loop control function. The
desired actuator positions are servoed by the lowest level RCS controllers. The actuators
normally receive and respond to commands such as ON, OFF, INCREASE_VOLT,
DECREASE_VOLT, ZERO_VOLT, etc. Dynamic models typically exist in the simulators
to translate those commands to actuator positions.

6.6.2. Physical System

The template for the ship system simulator, shown in figure 6-19, assumes the format of a
generic controller. This software module copies the incoming commands. Three
commands have been implemented in this demonstration: INITIALIZATION, HALT, AND
EXECUTION. All the required data then are copied in including the current ship state and
the computed actuator positions.

The decision processing essentially involves a sequential execution of all the actuator

simulators and a computation of the ship dynamics. Currently the ship dynamics includes
the modeling of the position, speed, depth, bubble angle, and heading for the ship. This

50

ACTUATOR SIMULATOR TEMPLATES

Preprocessing:

Copy data from simulated world
model

Copy commands from global memory

l

Decision Process

Check if new command

Computes actuator dynamics

Post-processing
Copy data to world model

Copy actuator response to global
memory

Figure 6-18 The actuator simulator templates

SHIP SIMULATOR TEMPLATES

Preprocessing:
Star timer

Copy command_in from global memory

Copy data from simulated world model

Decision Process

Chack if new command
Run actuator simulator #1

Run actuator simulalor #N
Run Ship simulation
Execute operalor raquests

r

Post-processing

Copy ship state 1o world model

Copy ship stale to global memory

compute and display performance dala

Figure 6-19 The ship system simulator templates

51

simulated ship depth can be regarded as the actual depth. On the other hand, the control
system may employ a depth model to compute the ship depth based on the sea pressure
sensory values. This depth may be referred to as the perceived depth. The two depth
values may differ in some situations (see section 3, when the submarine runs into some
fresh water pockets).

6.6.3. Environmental

ENVIRONMENTAL
SIMULATION
sea water
ice sea bottom (depth,
density)
] |
Syscon Mail‘l

Figure 6-20 The environmental simulation software structure

The environmental simulation software structure is shown in figure 6-20. The ice keels are
fractally generated (see section 6.8) prior to the system cyclic execution. The sea bottom is
generated similarly but the bottom looking sonar is not currently integrated. These modules
are controlled by the main routine on the SGI, SYSCON. Fresh water run-off pockets in
the sea water are simulated through the computation of the true ship depth and the water
density. Unlike the depth simulation in the ship system, in this environmental simulation
the depth model is sensitive to water density changes.

6.7. Operator Interaction with the Simulators

As shown in the lower right quadrant of figure 6-1, the software architecture specifies that
any software unit, be it controller or simulator, be subject to human interaction. Operators
can intervene in the simulation state space. These simulation operators inject changes to the
environment as well as to the physical ship system. For example, they may change the
ship's bubble angle. These changes are expected to be detected by the RCS sensor
systems. The ship maneuvering RCS is then expected to respond to the changes and
update its world model. An operator interaction hierarchy can be implemented, which
would be parallel to the simulation hierarchy, as seen in figure 6-16. This simulation
interaction hierarchy is conceptually distinguished from the interactive control hierarchy
(section 6.5). If the RCS sensory system is not able to detect and respond to the
environmental changes effectively, the RCS design needs to be modified. Each simulator
would have a human interface module. They can be executed cyclically along with the
controller and simulator modules in the main program.

52

Currently an operator can inject changes either from the graphic user interface (GUI)
implemented on the SGI IRIS workstation or through the predefined keyboard command
strings. The GUI includes slider bar control for all the control surfaces. In other words,
one can click the mouse on the slider bars to steer the control surfaces. The numerical
values for the affected control surfaces will show on the GUI screen, while the actual data
are sent, using the same triple buffering mechanism, to the simulation modules. The
simulated submarine will then respond to the GUI requests.

The GUI also includes a switch for changing the sea water density. One can click on the
switch and change the density for an amount up to 10 percent. The submarine would rise
or sink accordingly.

All these intervention capabilities are also implemented in the code as keyboard command
strings. One can type in, from the PC workstation (see figure 6-12), commands such as
"CHANGE_DENSITY 0.95."

6.8. Animation

Animation is a very powerful design tool used by the RCS methodology because it enables
the user to visualize the resultant actions of controllers. In the submarine demonstration,
animation was used extensively for design and debug of the control algorithms. Animating
enhances the human understandability of a process; i.e., a human can comprehend many
more variables pictorially than in other formats, e.g., tabular. RCS focuses on machines
that do work and the human understandability of complex control systems; therefore,
animation is a logical step. It enables one to debug the algorithms that are used to control
the machine and may avoid costly mistakes that occur when transferring software from
simulated to real systems, sometimes referred to as off-line programming (OLP). For a
detailed analysis of OLP, see Tarnoff [Ta 92]. A brief description of the animation is
provided here. For a detailed analysis of the submarine animation, please see [Hu 92].

6.8.1. Software Structure

Although the animation is not a controller itself, the same principles of RCS software
modularity and cyclic execution are used. The animation software executes at a slower rate
than the controller software on the PC, but this is not of grave consequence. Humans can
process information at a much slower rate and in far less detail than a computer can;
therefore, the animation update rate is fast enough for a person to comprehend the scene.

6.8.2. Submarine Model

Care was taken to maintain scale of dimensions for the submarine model and its size. For
example, the relative lengths of the height, width, and length of the submarine are true.
Please see figure 6-21. Much heuristic information was provided by our domain experts.
For example, the time it takes for the submarine to make a ninety degree turn at a certain
speed. These parameters were used to make the animation look and feel realistic. The speed
of the submarine was increased to allow for short demonstrations.

Modeling was used to determine the ship’s depth, speed, and orientation. Although
modeling was kept as simple as possible, most of the important parameters were included
to make the simulation realistic. One of the aims of future work is to integrate higher
fidelity simulation with the current control structure.

53

637 Class Submarine
CMAC Neural Sonar Display

Network Display {ﬂa:g:a::

looking baams)

Ice Xeel

Sea Waterx 8aa Floor

Figure 6.21 Animation of a Submarine Transiting Undersea
6.8.3. Ice keel and Sea bottom

The ice keel and sea bottom profiles, shown in figure 6-21, were generated using fractals
[La 91}, which allowed a complex structure of indefinite size and extent without the need
for long and complex mappings.

6.8.4. Current Sonar Display

Ice detection sonar on a 637 class submarine consists of fourteen forward looking beams,
one downward looking, and one upward looking. Under stealth operation, these beams are
short range (high frequency) to avoid detection. Current simulation sonar beams are
calculated and displayed on the SGI workstation. See the upper right corner of figure 6-21.
These values are updated every four seconds as in an actual submarine. Because the
submarine can only see a short distance ahead with any detail, it is necessary to generate a
map of the ice profile.

6.8.5. Estimated Ice Map and Ice Avoidance Recommendations
A two dimensional map of ice encountered is stored by a Cerebellar Model Articulation

Controller (CMAC) neural network. The CMAC neural net provides an efficient means for
storing sparse data. The network is trained by current sonar data. A local map, of the ice

54

formations is queried and displayed. The local map is provided as an input for heading
control and ice avoidance maneuvering. Please see the upper left corner of figure 6-21. For
more information on CMAC, see [Al 75]. For more information on how CMAC was
implemented in this work, see [Hu 92].

6.8.6. Environmental Intervention Slider Bar Control Input

A graphical user interface (GUI) is used for environmental intervention and the ability to
change various parameters in the system. Please see figure 6-22. One example of this is
the salinity perturbations mentioned previously. The GUI was designed initially as button
and slider bar controls. These controls are to be enhanced in future work. The GUI allows
one to “fly” the submarine as well as providing a means for a trainer to inject faults. The
GUI local variables reside on the SGI, and those variables are copied to GM via the Bit3
bus adapter card. The GUI screen not only provides a means for interaction, but also
another method of tracking variables.

Figure 6-22 Slider Bar Control Input

7. FUTURE DEMONSTRATION DIRECTIONS

The demonstration model presented in this paper will be expanded and enhanced with a
focus on RCS methodology solutions for submarine automation. Specifically for demo #4,
scheduled for the fall of 1992, we plan on the following enhancements:

* Submarine automation RCS with expanded functionality in planning, decision
aiding and multi-mode operation;

* Expanded human interface for information display and operator input;

* Improved C templates;

We also plan to develop a scenario for demonstrating the RCS methodology applied to ship
systems automation.

Achieving these goals will necessitate formalizing the RCS methodology, creating portable

code, and enhancing the software structure. They will also demonstrate RCS software
robustness, verifiability, extensibility, and efficiency.

55

Planned research for the longer term in the area of ship systems consists of:

* Preliminary planning, decision aiding, and multi-mode operations including:
** Detect and locate failures and anomalies
** Reconfigure machinery line-ups in real-time

* Expanded human interface for operator input, simulation, control, and use as
training aid

* Animation and simulation.

These goals will highlight the versatility provided by the RCS design, provide generic and
reusable software, and demonstrate high level control of a complex system. To enhance the
RCS design methodology, a Computer Aided Software Engineering tool is being
developed by RSD.

8. SUMMARY

The technical objectives established for Demo #3, as described in section 1, were
accomplished. The specific achievements include:

* Implemented a submarine automation model.

* Established a first version C language based generic RCS development environment
containing:

- aset of generic templates for future RCS developments;

- layout of a generic, modularized, and extensible software structure featuring
multiple parailel hierarchies: control, simulation, animation, control interaction,
and environmental interaction;

- a set of conceptually separated and distributed world models in the software
structure serving multiple hierarchies.

* Demonstrated the extensibility of the RCS architecture by adding new
functionalities (including the automatic control of the salinity problem) to the
existing RCS application, Demo #2.

* Demonstrated multiple control modes in RCS execution, namely, the automatic
mode and the interactive mode. A rudimentary human decision aiding capability
was implemented.

* Devised a generic operator interaction handling mechanism.

Besides reporting accomplishments, this paper also serves a more important role. As stated
earlier, part of our mission at NIST is technology transfer. This report fits into this
mission by illustrating the RCS development procedure and presenting a specific
application example.

The computer source code for this implementation can be made available upon request to
the authors.

ACKNOWLEDGMENTS

The authors extend their appreciation to Ms. M.L. Fitzgerald, Mr. Clyde Findley,
Mr, Philip Feldman, Mr. Nat Frampton, and Mr. Mark Routson of the Advanced
Technology and Research Corporation for their participation in various aspects of this
project.

56

REFERENCES

[Al 92] Albus, J.S., Juberts, M., Szabo, S., "RCS: A Reference Model Architecture for
Intelligent Vehicle and Highway Systems," ISATA 92, Florence, Italy, June 1992,

[A191] Albus, 1.S., "A Theory of Intelligent Systems,” CONTROL AND DYNAMIC
SYSTEMS, ADVANCES IN THEORY AND APPLICATIONS book series chapter,
Volume 46, Academic Press, 1991.

[Al 89-1] Albus, J.S., McCain, H.G., and Lumia, R., “"NASA/NBS Standard Reference
Model for Telerobot Control System Architecture (NASREM),” NBS Technical Note
1235, National Bureau of Standards, U. S. Department of Commerce, April, 1989,

[Al 89-2] Albus, J., Quintero, R., Huang, H., and Roche, M., "Mining Automation Real-
Time Control System Architecture Standard Reference Model (MASREM)", NIST
Technical Note 1261 Volume 1, National Institute of Standards and Technology, U. S.
Department of Commerce, May 1989.

[Al 88] Albus, J.S., "System Description and Design Architecture for Multiple
Autonomous Undersea Vehicles”, NIST Technical Note 1251, National Institute of
Standards and Technology, U. S. Department of Commerce, September 1988.

[Al 82] Albus, 1.5., McLean, C., Barbera, A., and Fitzgerald, M., "An Architecture for
Real-Time Sensory-interactive Control of Robots in a Manufacturing Environment," 4th
IFAC/IFIP Symposium on Information Control Problems in a Manufacturing Technology,
Gaithersburg, MD, Oct. 1982,

[Al 75] Albus, J.S., “Data Storage in the Cerebellar Model Articulation Controller
(CMACQ)," Journal of Dynamic Systems, Measurements, and Control, September 1975.

[Ba 84] Barbera, A. J., et al.,, "RCS: The NBS Real-Time Control Systems," Robotics 8
Conference and Exposition, Detroit, MI, June 1984.

[Be 88] Bennett, S., Real-time Computer Control, Prentice Hall, Englewood Cliffs, NJ,
1988.

[Bi 90] Bit3 Computer Corporation, Bus Adaptor Products Users Manual, Minneapolis,
MN, 1990

[Br 84] Brodie, L., Thinking FORTH, Prentice Hall, Englewood Cliffs, New Jersey,
1984.

[Co91] Coad, P. and Yourdon, E., Object Oriented Analysis, Yourdon Press
Computing Series, Pretince Hall, Inc., Englewood Cliffs, New Jersey, 1991.

[Ha91] Harbison, S.P. and Steele, G.L. Jr., C A Reference Manual, Prentice Hall
Software Series, Englewood Cliffs, New Jersey, 1991.

[Ha 88] Hatley, D.J. and Pirbhai, I.A., Strategies for Real-Time System Specification,
Dorset House Publishing Co., Inc., N.Y., N.Y., 1988.

[Hu 92] Huang, H., Hira, R., and Feldman, P., "A Submarine Simulator Driven by A

Hierarchical Real-Time Control System Architecture,” NISTIR 4875, NIST, 1992. Order
through NTIS, Order Number PB92-213354/AS.

57

[Hu91] Huang, H., Quintero, R., and Albus, J.S., "A Reference Model, Design
Approach, and Development Hlustration toward Hierarchical Real-Time System Control for
Coal Mining Operations,” CONTROL AND DYNAMIC SYSTEMS, ADVANCES IN
THEORY AND APPLICATIONS book series chapter, Volume 46, Academic Press, 1991.

[Hu90] Huang, H., and Quintero, R., "Task Decomposition Methodology for the
Design of a Coal Mining Automation Hierarchical Real-Time Control System,” The Fifth
IEEE International Symposium on Intelligent Control, Philadelphia, PA, 1990.

[Jo91] Johnson, D.W,, Szabo, S., McClellan, H.W., DeBellis, W.B., "Towards an
Autonomous Heavy Lift Robot for Field Applications"”, 8th International Symposium on
Automation and Robotics in Construction, 3-5 June 1991, Stuttgart Germany.

[Ko 92] Kowal, J.A., Behavior Models, Specifying User's Expectations, Prentice Hall,
Englewood Cliffs, New Jersey, 1992,

fLa91] Lauwerier, H., Fractals, Princeton University Press, Princeton, NJ, 1991,

[Qu92] AQuintero, R. and Barbera, A.J., An RCS Methodology for Developing
Intelligent Control Systems, NISTIR 4936, 1992.

[Si 90] Simmons, R., et al.,, "Autonomous Task Control for Mobile Robots,”
Proceedings of the Fifth International Symposium on Intelligent Control, Philadelphia, PA,
September, 1990.

[St 92] Strassmann, P.A., "The Use of the Ada Computer Language: The DoD
Context," Cross Talk, the Monthly Technical Report of the United States Air Force
Software Technology Support Center, Hill AFB, Utah, February, 1992.

[S292} Szabo, S., Scott, H.A., Murphy, K.N., Legowik, S.A., Bostelman, R.V,,
"High-Level Mobility Controller for a Remotely Operated Unmanned Land Vehicle,”
Journal of Intelligent and Robotic Systems, 5: 63-77, 1992.

[Sz90] Szabo, S., Scott, H., Murphy, K., Legowik, S., "Control System Architecture
for a Remotely Operated Unmanned Land Vehicle, proceedings of Fifth IEEE International
Symposium on Intelligent Control,” September 5-7, 1990, Philadelphia, PA.

[Ta 92] Tarnoff, N., Jacoff, A., Lumia, R, "Graphical Simulation for Sensor Based
Robot Programming,” Journal of Robotic Systems, 5:49-62, 1992.

58

APPENDIX A: Comparison between Task Control Architecture (TCA) and RCS:

The task control architecture (TCA), developed by Simmons [Si 90] of Carnegie Mellon
University, deals with the same real-time embedded system control problem domain as
RCS does. TCA specifies a generic block structure capturing common capabilities that
robotic control systems may possess. System capabilities, including: hierarchical planning,
concurrent planning, execution and perception, coordination of multiple tasks, error
recovery, and reaction to changes, etc., are the main blocks specified in TCA's control
structure. These "capability modules" are tied to the physical sensory and actuator systems
via a central control module. System execution is facilitated throngh message routing
(including commands) among all the modules served by this central control module.

TCA employs a central control module as the heart of the system execution, which, as the
authors [Si 90} point out, presents a potential bottleneck as the system complexity grows.
On the other hand, RCS features generic controller nodes in distributed environments,
which, in our view, should be better suited for dealing with complex real-time control
system problems. TCA shares the same view as RCS in the use of task trees to describe
command chains. In addition, TCA specifies that modules can impose temporal constraints
to sequence the planning and execution of system commands. In the RCS methodology,
state diagrams and state tables are used (as a step beyond task trees) to provide a more
robust and systematic method of describing the transition of system behavior among
different subsystems in both the temporal and the spatial aspects.

The TCA central control module contains a scheduler to arbitrate the resources and to
handle messages. This is in contrast to our implementation which contains a deterministic
execution sequence (user specified) coupled with non-blocking communication. This
execution model ensures determinism (users know exactly what the system state is at any
instance of time), concurrency (the system executes and does not wait for the incoming
messages), and data integrity.

39

APPENDIX B: A Propulsion Ahead State Table in Smacro

PRDEF Routine AHEAD STATE-TABLE

$- new-command moving-ahead | S1 CALC-FWD-PROP-SPEED
prop-speed => rpm
tb-Ahead tb# INC

$- new-command moving-back | S2 tb-Stop th# INC

$- S2 tb-done I S1 CALC-FWD-PROP-SPEED
prop-speed => rpm
tb-Ahead tb# INC

$- S1 tb-done below-speed prop-speed INC
prop-speed => rpm
tb-Ahead tb# INC

$- S1 tb-done above-speed prop-speed DEC
prop-speed => rpm
tb-Ahead
tb# INC

$- S1 tb-done at-speed | S1 done

$- default NOP END-ST

End-routine

(Current state and Transition Condition) (Next State) (Job List)

60

APPENDIX C: A Propulsion Ahead State Table in C

/***

PRPSE: This is the state table for the AHEAD command of this level.

***/

static void pr_ahead(void)

ST_BGN
new_command &&
(ship_dir == MOVING_AHEAD i ship_dir == STOPPED)
THEN
pr_cur_state = S1;
calc_fwd_prop_speed();
tb_co.command = TB_AHEAD;
tb_co.command_num ++;
tb_co.rpm = prop_speed;
ST
new_command &&
ship_dir == MOVING_BACK
THEN
pr_cur_state = S2;
tb_co.command = TB_STOP;
tb_co.command_num ++;
ST
pr_cur_state ==352 &&
tb_si.status == TB_DONE
THEN
pr_cur_state = S1;
calc_fwd_prop_speed();
tb_co.command = TB_AHEAD;,
tb_co.command_num ++;
tb_co.rpm = prop_speed;
ST
pr_cur_state == 81 &&
tb_si.status ==TB_DONE &&
sub_speed_status == BELOW_SPEED
THEN
++ prop_speed;
tb_co.command = TB_AHEAD;
tb_co.command_num ++;
tb_co.rpm = prop_speed;
ST
pr_cur_state == 31 &&
tb_si.status ==TB_DONE &&
sub_speed_status == ABOVE_SPEED
THEN
-- prop_speed;
tb_co.command = TB_AHEAD:
tb_co.command_num ++;

61

tb_co.rpm = prop_speed;
ST
pr_cur_state==S1 &&
tb_si.status == TB_DONE &&
sub_speed_status == AT_SPEED
THEN
pr.so.status = PR_AT_GOAL,;
DEFAULT
ST_END

62

APPENDIX D: Generic Templates

63

LYy
T I I T T T T T T TP T T TN TR TR R R Lo o 20

! {)sseooxd 3scd ad
I AINVHEOIAAd ATINTROTYS ‘Ongdd «/
/+ 3 VIV¥A AVIASIC ‘TIQ0H TOEINOD ? SYEJING SNIODVIYELNI I00 Xd0D »/

/v WM % d5 I0I SPBUW STIPD UQTIDUNG o/
/» DNITTIQOW CQTYOM ¥ DNISSISOUd A¥OSNIY SNOTEIOSNNA NOWWOD HIMDEAXI x/

! () ssenoxd uofsyoep ad
/e AINOANT ANY ITEYI JIVLS IDTTIS~- XI/TI/NL/DE »/

! {) pusuwos” may 3T yosys 1d
/x ONVWKOD MIN JI ¥OFHD +/

/+ KM ¥ 45 I0J IpEw STTeD UQTIDUNT 4/
/+ SNITTIGOHW QTHOM ? DNISS3D0Yd AYOSNAS SNOILONAA NOWWOD JLNDAXT «/

2{)yssenoad sad ad
/= SNLYLS TIVNIQEOHAS MDIHD </
/» TIAOW TOVINOD ANV SYALING SNIDWIMIINI NI X400 ‘OWIL IM¥IS Qvdy «/

H
{)aa1T10a3U0D Id pPIOA

/x
P L L L s ey)
“8uoN YIHLO

"QUON ‘WIEdd
"aucN SIION
Z6/0Z/11 DuenH UTW-TOH ¥ €ITH uod :Q4dW
16/60/01 :QI¥D
AsTOING "H PTARG YHIV
*sI1aJzng soeIaejul eyl butkdos Aq sssooxd axd eyl uUT
auop sT buissed Jejoweaed TIv "Tleo uUollouny syl utp ATFoirdRe
possed ale siajaweied ou IPY] IICN “YSBI STYJ 0] DoueIjud Afuo
8yl S} STYL "HSE3 STyl I300axe 07 uTew Kg pasn suTinoy TRUIBINY dSddd
*AUON ISNIY
¥
RN AN E R A E AR A RN RN RS SRR KRR R R FR AR AN I X SN Fa v nnusnnnnnvnssnvrsl0x/

/v i1l 9I9Y SPUBWWCD SICW BIBTOBA iii =/

f{pToa) uamn\un ploa 273RIS

I{ptoa) ITUT xd pyoa 273E1S

/x sueTd aTqel alels - PRATIDNRI oQ ABW YO TYM SPUBLNO] ,/
! (pToa) vyep ane 3jujad ad proa orjess

! (p1oal eaep uf aufad ad proa ajaeas

/» feTdsig 307 suotioungd Hogag ./

f(ptoa) ssaoonid isod ad plos ofieis

2 (pTOA) ssa20zd 21d 1d piea oliEas

/s BUTTT®pPOW pPTIOM pueR Bujsseocid AIosuag o/

!{p7oA) puemmod Mau JT yoeuys i1d pjoa S13IE3S
I{pTon) ssaooxd uo(sTosp 14 PIoA D]Ie3S
/s JUSWUBTSSY QO 3 ‘uofinoaxi ‘Buiuueld - UOTleISULD JOTABYSH 4/

H{)avrrodquon ad pToA
/x SI3Y10 TIE STTEO ‘SUTINCY IFTNPOK ISTTOIIUCD AIPWTII »/

/x
KiobBbeien Aq peisTT - sadfdlo3jolld uetloung

S

lapow do M 3Q0H 330 WnUd DTIEIS
F

se1do) TenoT elEq [8poW PTIOM «

%/

15 a3 SOL¥IS 91 0T3E3s

oo q1 ANYHWOD 91 2F3'1%

/% A1 ‘$RIPUTpIOqNs WOIAF SNILYG PUE O3 SPUBMNCD 4/

/x BAOCUE WCIT DUSIMOD ./ fad ¥34ang ¥4 973e3s
/» SA33IJ0G @o€II33UT jo seldo) TedoT BIBTIS] x/

05 = @3e3ls and ad JUT oF3EB3E
/ ©3B]5 JUSIIND IZTTEFITUI 4/

fpuTy 37038 810A0 ad paubisun oy3els

/+ SDTIIBW eouBWIGIIad I0J PIEN - SWIL 3IALIS 4/

/v

SaTqPIIEA TEQOTD AleATId &

£74

/» ueaIos bngep I0j pasn SUTT «/ § ANIT 9NHEa ¥4d BUTFeDs
/¥

SCIDBW PUE SUOTITUTFad «

»/

/y SUOTITUTIOP TedoTlb «/ w4 TeacTh, SPNTOUTH

/v

58714 °2pnToul »

w/

fu

poppe 2q ueo D xfpuaddy ul uerd ayl sIaym sI2vTd ICF i 203 Ydieas

SUoTIouUNg BUTTRPOW P1XoM 3 DuTssadold .
Axosuag pue sueTd Dutppr Aq papusixs ArTses aq Kew =jerduany ayl »

*Lipydez
AerdsTp ¥oA 2yl 03 BUuj3Tam JoJ aujinox paziretosds e ST () Jaujadp

{12) *(A) {v Teyd} ' (X) (y Jeyo))Adouwsw) (z‘A’X)¥33ind XdOD SUTISPH

{ aNd FSYD SUTIEp#

131 asya| _I5Y¥D BUTIEP#
IE33 NO9 ESYD AuTIop#

{ aNE LS auTjops

} est3i{ I10V3I0 SUTI=P4
137 est18{ LS autisr4
o NIHL UTIaps

}It N99 L§ BUTFep#
t3pod

20Im0s STY3 UT PesSn SUCTIUSAUCD 5 PIBPUEIS-UOU 212 HUTMOTTOT 3UL «

ainpow STyl Jo zosTaxadns - WS
aTnpow STyl 03 IjeUTpICdns - 4]
aInpou sTYl - dd
:pasn aie saxrjaid Buimolicy 8yl «
yotaeIlsuoUad SIEMITOS SDY SUl IoF pasn IeTdwe] SYl ST STUL »
00794 D 1JOSCIDTH »
ul BTgTiedwony 5d B U0 SO JCJ S[NPOW IST[OIIU0T 2TIdUeD JO STAWEXT &

v/

B L T T TSI T T I Y (oo

{{yeqjep uy 3jutad ad

I£)
e1ep uf utsd 23009x7 - Ae(dsig Sngaq .
I'Ys
_ _ {
IDNIINDIXE €1 = SNIeis is g3
}
{umu puewmos * 02 &3 =) WNU SNIE3s S q3) FT
s

+BUTINDRXS TTTIS ST 2ILUIDIOGNS SYJ SUMSSE *IOQUNU PUBLWCD §IF UIILW o
J0U $20p IGWOU QYIS YOBG SNIEISF BIRUTPICNS @YU JI »

w/
/» ONFAT £/
I ({Z00W ¥3do umue) Joezys’ {epou do s Id<-M)3 ‘spow do m3)ualIng AJOD
Ix
sa7doo Teool 03 elep Topow priom ut Adod »
=/

ANVIHCD_B1) 308216 * (19°Inq_q1<=-9) 3400913} ¥3d4nA_Ad0D
(SNI¥IS €L) 508278’ (08°70q g3<-0) ¥ T8 QI3)4¥dddnd Xd0OD
I

(6l - SUTQINI) SABUTPIOUNS WOIT HIBY SNIBIS 185 4
»/

o

——

£ {(9334nd 44} Joe21s * (IJng 1dc-p) 7°3d3) ¥3I4NE AdOD
I
"aTnpow JOTIANS WoIJ spuruued DUTWODUT 2189 &
w/
/x SI8IIng Dutoeyzeiul Huiidon ,/

t197uNoy IDulje-M = Dwiq 1Ieqs aTofs ad
I
aINpoOW IBTTOIRUGD ¥Yd I0J SWT3 SUTIIBIS o
s/

/v SOUTMIOIIDG 4/

{{Mde‘T7INIT ONEEC ¥d) Jautadp
/x £eTdsTa - 9NEEAT X/
}
(pToa)ssanoad a1d ad proa a713EIS
fx
EE R e e e L L s R e
“BUON IYIHLIO
“BUON IWTEHA
*auoN :$IION
suoN QW
16/12/11 :QI¥D
bueny UTH-TNH YHIV
fusIpTIUD FO Sn3le3s Hupinoexa SHulyosud
‘siajjng evejIaiul reqorh syl Huipesy isspniouT
1I " 18A®T STY3 Buissenoidaid ayy jo [Te salpuey sujanor sTYL :dAsdud
*BUON ISNIW
¥
O e g T T T T T N T ¥ s s I

ang Is

f{w QUIVANIW‘8°3NIT 90€3d ¥d) F3utadp
LINYdda
/x i1} ©ADOE SB JEWIO] SweSs IY) UT JTSY pOppe SQ ARU SPURWWEOD (i «/

2{)atey xd

Ha 2Te%. *8 *INIT OnEIq ¥d) yyutadp
NIHL
II¥H ¥d == Puruwod*1o°1d
1S
_ lnnHUHcH\uQ
2 ITUTH ‘8 'INIT DO€9C ¥d) Jauradp
N3HL
LINI ¥d == pueumes- 1o 1d _
Nog LS
I
puemuos radoxd Byl 2IN02KT
«/

/+ INIWNDISSY 800 ANY ‘NOTIADSAXT ‘ONINNYTd - ITAVL FILVIS NOIIVYENIS HOIAWHIE «/

fumu dels oTburs tepowt1d = wnu dais sTBUs-oJIad-1d
|
{tumu doas eTbutstogasd-ad =; umu deis o1buys-1epow-ad)
33 (gn¥l == deis o(buys- Tapow* ad)

) It

/%

*sauo0 BTOAD .

pebueyo sey Iaqunu dais oTbHuTs pue 1os 51 Her) deis $THUTS JI «
Iy

duiniax
}
{{umu " de3s e1buts orrad - 1d == unu da3s s1BUTs" Tepow- 1d)
33 {INPL == d83s 270UTS" Tepow- 1d)

) 3T

I

uIniax .

peobueys Jou sey Jacqunu deo3s STBUTS Ing es $T bery deas arburs JI «
v/

fuaniex

}

{INYL == uniy juop*tapow*zd) It

/x

uInyesxr 385 ou uy bely uni JI «

+/
/» Sepow Bbuluuni 1c7 — SNEAT «/
}
{proa) ssanoad uofsTosp 2d PJoA T73IEIS
e
P R e
TOUON FY¥IHLO
“OUON ‘WIddd
TOUON SSFION
QUON dJdH
16/60/0T <AI¥MD
Rathiod "9 piraeg WHIV

"UQ]IEISUAIS IoTAPUSE PIPp IOSUSS

pue sqnduf Iaylo SB [TeM SEB U] PUBNWOD Syl U0 pPaseq aTfge] 3ajels
o1j1o8ds B EBTA T0I3UOZ a4y3 uerd ©3 ST UOTIDUNT §,9UTINOI STYL FSddd

TBUcN ISNLY

puBIUGD JuUAIAND #Yy bupredwos Aq STyl SYDOYD T PUBNWCD MIU ¥
ST BAOGE WOIJ PSASTEOSI PUBIWIOD BYJ JT 29§ 07 S¥D9YD SUTINGT STYL :3sdud
“BUON ISNLY
‘x
e TP PR TP T T PP T PR PR PP PR E R R E T I R T ol Y5

2{}eqep no qutad ad

I

ejep ano uiad AeTdsTq «
v/

2wty 8T2A0 aseT-07rad 1d = BWTY S[2AD uTw oyisd-ad
{auwy 1 ®ToAs uTwtoyied-id > w3y 2[2Ad 3sel‘cgied-ad) uw
WY @TOAD 3seltozaed-1d = suyy o(ofo xewojiad ad A
{smT1 aToAz xeurozaad-ad < #WTY STOAD 3sel-cjaad-ad) uw
£334d%0 = 8wyl @70k ujwroyiad-ad H
{0 == swfy aTo&kd ufw-ojzad-ad) uw

i1z x {swTy 1IE38 ®T0A0 T ad-I®junan zawyle-M} = 2wl oT2&> s ojred-id
FE
uotInNDexs SINPON JOj SOTIjew eduPLIojisd SIE[NITED 4
x/
J+ ONHIA »/

¢ ({00 ¥330 unus) JoazTs ‘epoul do w3’ (apow do M xdc-pMb %} HAIINE AJOD
/x

elep DIIOM DITIM «

«/

¢ | (ONVIHOD €1} JoazT1s ‘o0 q33’ {To" g qi<-9) ¥) ¥ading AdoD
_\.ﬁ

g1l 2IBUTPIOQNS O] SPUPUWCD 3IJTIM x

%/

¢ ((ADNVWHOJUAE ud) FoazTs ‘oFTad-ady’ (031ad" ynq Id<-2) 3) ¥IJANE_AdOD
!{(snlvis dd) JoezTs ‘csrad3f {os-Ing Ad<-3) ¥) ¥IIINGE AdOD
e
YIJINE ¥d Py UT pauTElLos AThpow IOTIedns O3 ¥OBJ SNILIS 91TIM «
«/
fy SI93Ing 90BIISIUT Adod ./
}
{pToa) ssacoxd 3sod 1d proa orjels
/x
K F UMY NN MY A E NN A AR NN RN X AR A RN A N E N R X X F XA N R NS F X FE M LR R RS R A AR RR AN R
"BUON (HIHIO
"BUON IHWIHYd
“@UON ISIION
auoN QJOH
16/60/0T :QI¥D
ASTDING "D PIARD HUHLV
butrapoW plioM ¥ Durssaoold Azosusg peIfnbael I9Ylo AUER SE TTaM
ge SISIING 99BJIoIUT [T JO N0 DUTITIM SYI SaTPUBY sUTaIncI sSTYL :I5ddd
TIUON ISNI™
FEY
*cq«««i««a««««««c««ttuc««tu««#tuu««#«««i:c«««tkti«tc««k««k*tﬁa«**««OO‘\

Jw 1i1 "eaoqe se jPUISY IB[TW]S UT '9X3Y pappe aq ARW SURTd vIIXT [ii «/

anNa Ls

_ 110¥J4343
o ¥4 = snieascos-ad
{dON = @3'3s ano ad

_ NIHL
aNod gL == mdumum.dmlnu
b k] 18 == 33€35 ano zd
— — L8
JLTYH €1 = U:NEEOW.OUIQ»
215 = ®3€1E Ind Id
NEHI
PUBWWOD MBU
Nog 1§

/+ PUPMNOD ITYH I0J UPLd x/
}
{pyoa) 31ey 2d proa o13eds

/=

L T e e
“aucN IYIRLO

"BUCN WIgdd

"aucN SILON

SUON HaE (vt}

Hm\ﬂmxwﬁ FINIs JOJIENJOF II3YJ0 100 pRlusUUOD HaE: %]

T6/¥T/0T :Ald2

Bueny UTK-TNH UHIY

‘I949T STYI JO puemmod ITY¥H a3yl Ioj (uerd} e[qel 81Ie3s syl ST STYL :3Isdyd
rauoN SNIY

LR
uacctu;a«a«««t««t;«aaicu«««««c:c«c«cc««c«*«fffﬁ*«t«««;«uu«c««««tk««@@«\

{
aNg 1§
_ LTNY33d
9NOQ 44 = snaeascosad
140N = @ale’s and” ad
NIHL
2NOg §1 == SNIEISTTS_q3
Ty 18 == 23B3F 1no ad
1s
4 UM PURIOODS =02 o3
ILINT 91 = puURMmOD-©d g3
/+ €1 @3eulplogns 03 JSQUNU PUFINOD PUB PUBKINOD 4/
11§ = o7eas ano ad
/x TOIJUCD ¥d JO 9IS JUDIIND 18§ 4/
NEHI
fx SUOTITPUCD 4/ pURLIOD MBU
N9 IS

/s DUPIMC? TINI J0J USTd «/
}
{F70oA) 3TUT 24 PFOA 213B3S
/'
PR R R R e E
"auoN (Y¥JIHLO
*auoN WId¥d
"BUON :SILON
sauoN :QJaW
I6/FT/0T :GQIY2D
bueny uUTH-TRH SHHIV
*{a2a8T STY3 JO pUEUMeD JINI a4l o3y {ueld) ayige) oijels 8yl ST STYL :dsddd
'BUCN ISNIY

xx

{
! {auty aToAo xew"oyaad-ad

fauty aToko uTw-oyaad-ad
‘Ut @T0AD 3ser-oFasd-id
I.NG°Gs NG'GE NG Ghy ‘SE0ZHANIT DFIC ¥d) FIuyadp
osta
' w’GE '0Z+ENTT D083 ud) Jiutxdp

({Znul == da3ys o1buUTS - Tapouw- 1d)
1| (YL == unx jucp:tspem-ad)} JIT

{{e3e3s Ino 2d’, P&S.‘GS’INIT DNEAT ud) yiutadp

{(o3®E38 Ino Id’, JON. ‘SS’ANIT DNEEd ¥4) 3IUTIEP

{doN ==_@3e3s_zno ad) I7T

f(snaeds-os ad’,pPy b ‘EF YINIT ONE3Ed ¥d) Jautadp

{{umu sniess*os Id ‘NG Sk, ‘8F ‘ANIT OnEad ¥d) IJIutade
}
ﬁvdo>wmumU|ugolunﬂH&Ium pPToA OTaRIS
/x
FE I L s Y R T S R L R L R)
*SUON IHAKLO
*ouoN WIGdd
*ouoN ISALON
QUON 1QJGH
16/72/11 Q14D
fueny UTH-TNH “HHIY

"BATI0® ST T2A8T STYI I0J m:ﬂﬂﬂ 8yl IT uaaads 203 o3 wMUhU EIU3 J0T

payslEWU &1E1S pUE ‘JaCuinu SNJE]S hmﬂumum =1t gl mu:ﬁum aurinol sTYL Igsddd
*8UON I$NIY
LY}
tuc««utcc««r&i&ts*rc«««:t««*«ii«««c«**««iuc*««*««««aai«««&&««it«««tOOx\

2{T¥34a ‘€2 '0Z+ANIT 20E3T ¥d) J1uTadp
}
s
_ _ f
(uNWISw’E2 '0Z+ANIT OnE3A ¥d) Futadp
}
(Angl == a3efruls* yopou-xd} 37

f{u OINV.’9T°0Z+ANIT 90EH ¥8) Fautadp
8518

£ (WITONTS W ‘9T ‘0T+ANIT DnE3d ¥d) 3juprde
1
(Al == deis erbujs-jepou~ad) J§

£{s NO¥.'QT‘0Z+INIT ON€3d ¥d) yiuTadp
mmﬁw
2{,d0I5w ‘0T 0Z+ANIT Dna3d ud) F3utzdp !
(I0UL == YN Ju0p- TEpow-xd) u#
I {u¥da 'T0Z+INTT DNAAA ¥d) F3uTIdD

? {pueumen " o3/ uPh " b ‘0E “SNIT_50830_¥d) F3utzdp
¢ (umu purwwes "1 ad’ W N6 6%, ‘SE TANITT 2n83d ¥4d) Fautradp
}
(proa)eaep uf autad ad proa 213038
/x
PR s L T L
"auoN SYIHLO
TsuoN WIEdd
"SUON SILION
SuoN QJIaW
T6/T2/T1 Q4D
bueny UTH-TOH YHLY
*aAT30R ST T3A2T STUYI JoJ bnged ay3 JT uaslos ayj o1 aTsho
STY] POATS091 JSqUNU PURWLOD PUR PUBWNGOD Y3 $3UTIC auTinel STYL 35494
"AUON ISNLY
¥
Iiffﬁll*l&.ﬁi'iilﬁlﬁllliitttiiii#iiii*li*iiki*l¥**¥Kikk*.ﬁ¥tii*i!kk*fdd*\.

s w'$'INIT 90830 ¥d) Fauade
135 IVA = DUBWWOD MaU

as|a

{ONILADEXT 44 = Snieis‘es’id
05 = 23835 Ind 1d
QN1 = PUBWWGY Mau
Junu” puewWcS *Jo°Id = Wny sn3Iels-os-xd
2 (wDNw'g'INIT on43q ¥4) J3utadp
}
{wnu_ sn3je3s os ad =j unu pUewwos 15" Id) JT
}
{pfoa) purmmos MaU 3T ¥o9uys 1d poa oilels
/x
P e R
“BucN YIHIO
*Bucy TWIgdd

“aUoN :S53ION

AUON 40N

T6/60/0T :QIHD

As1bInd *o piaRg YHIV
‘pueuos mau B ST 3T
JEY] paumssE ST 3T ‘juaiaiifp eae A8yl T * (Isqumu INC SNIBIS UT
paI0ls) PIATSDSI 3T Iaqunu UT PUBMWOD JSe] IYI YITM Isgqunu Uuf

f43a4ng ¥d
/v 833y peppe 8q Aew S$I03ENIDY PUER SIAODSUIS 4/

foyzed FONVHHOSuEd_dd
f1apou 3a0K_ud
‘o8 SNIVIS ud
212 ORVHHOD dd
/s I97InG @sucdsai-puewmos Id o/ }

Jonals jepadisy

{AONYHHOEd ¥4 {

famu~da3s aybuts paubisun
fow) oToAD XEW paubisun
towty #ko utw paubjsun
lauty 81040 aser psubisun

/s @ouBwIOIad 1d ,/ }
1oni1ls JepadAy

L 4300 ¥d {
funu dajs atbuts paubisun
f373eTnUts ueaTOOy
ideys aTbuls ueaTooq
funI juop ues 100G

/» 9IN0NI3S spouw 1d 4/ }
300338 Jepedia

{SnIV1S ¥d |

fumu” I0119 paubisun
{snyeys sesucdsar” 1d umue
funuTsnaels paubysun

i
1on13s Japadia

JANYHHOD ¥4

/v iii paads diys ‘-6°a ‘aiay poppe 2q Aew sIajaweled puewmwo) il s/
! pueunton spueuwwes” Id unus
fumu” puewoD paubisun

}
3on1318s JopadAl

IE)
S53INJIONTIS IDEJISBIUT IBIING STOPOH »
l\
H
‘youyd_ud
‘ANod_dd

'INIIND3XT ¥4

‘0 = AQYIH ION ¥4
}
saguodsel 1d wnua

i

[+ iii 9394 pIUTFIP 9q Aeuw (sueld) SpUPWUCD BIIXT il «f
‘ITVH_¥d
‘0012 = LINI 44

1

spueuwos 1d wunus

I

aieTdwe] XO[TOIUO) D1IsuUeH Y3 JOJ SUOTITUTFEP IOFING HA »
LY3

