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Abstract

To operate autonomous vehicles safely, obstacles
must be detected before any path planning and obsta-
cle avoidance activity is undertaken. In this paper, a
novel approach to obstacle detection has been devel-
oped. New visual linear invariants based on optical
flow have been developed. Employing the linear in-
variance property, obstacles can be directly detected by
using a reference flow line obtained from measured op-
tical flow. This method can be used for ground vehi-
cles to navigate through man-made roadways or natu-
ral outdoor terrain or for air vehicles 10 land on known
or unknown terrain. The main features of this ap-
proach are that (1) 2-D visual information (i.e., opti-
cal flow) is directly used to detect obstacles; no range,
3-D motion, or 3-D scene geometry is recovered; (2)
knowledge about the terrain model, camera-to-ground
coordinate transformation, or vehicle (or camera) mo-
tion is not required; (3) the method is valid for the
vehicle (or camera) undergoing general siz-degree-of-
freedom motion; () the error sources involved are re-
duced o @ minimum, since the only information re-
quired s one component of optical flow. Four initial
ezxperiments using both synthetic and real image date
are presented.

1 Introduction

To operate autonomous vehicles safely, obstacles
must be detected before any path planning and ob-
stacle avoidance activity is undertaken. Obstacles are
defined as any region in space where a vehicle should
not or cannot traverse, such as protrusions (objects
lying on top of the terrain), depressions (potholes,
ruts, gullies in the terrain), or steep terrain (shown
in figure 1). The goal of this paper is to develop a
simple, robust, and general method for obstacle de-
tection by ground vehicles or during air vehicle land-
ing. The vehicle can move under general motion, i.e.,
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arbitrary translation and rotation. The method de-
veloped allows the ground vehicle to navigate through
man-made roadways or natural outdoor terrain. The
method also allows the aircraft to land on known or
unknown terrain.

For many applications in computer vision, it is im-
portant to recover range, 3-D motion, and/or 3-D
scene geometry from a sequence of images [7] [22].
Most existing methods perform obstacle detection
based on range information (2] (3] (4] [6] [9] [20] [23].
However, it is possible to detect obstacles by extract-
ing relevant 2-D information from the imagery and
using this information directly, without 3-D recon-
struction. For example, in [24], we developed a new
approach using optical flow without recovering range,
3-D motion, and/or scene geometry. For terrain char-
acterization, slopes of surface regions were calculated
directly from optical flow and some error analysis was
also done in [25]. However, the method in [24] [25] is
limited to translational camera motion. In this paper,
new visual invariants for obstacle detection using op-
tical flow are introduced and the method is valid for
general six-degree-of-freedom motion.

Optical flow is the two dimensional motion in the
camera image plane. The optical flow results from
the relative motion between the camera and objects
in the environment and represents the apparent mo-



tion of object points through a sequence of images.
For sideward-looking camera motion, objects that are
close to the camera will appear to flow faster than ob-
jects that are distant. However, this rule is not valid
for general camera motion. This means that the flow
field due to general motion is much more complex than
for pure translation motion.

Optical flow, used by many biological creatures for
navigation [1} [13], can provide very powerful informa-
tion for vision-based navigation. Herman and Hong [8]
have described how optical flow can be used to per-
form real-time navigation, during both teleoperated
low data rate driving and autonomous driving. One
of the main advantages of using optical flow is that
the ratio of distance to speed (e.g., time-to-collision,
visual looming) can be obtained and used for obstacle
avoidance [11] [17]. Another advantage is that passive
sensors (cameras), rather than active sensors such as
laser scanners, are used. This eliminates radiation,
reduces cost, and increases flexibility for many appli-
cations.

In this paper, new visual invariants are developed
as a tool for obstacle detection. These invariants in-
volve the mapping of points that lie on any straight
line in 3-D space into an image-based space, i.e., a
space whose coordinate axes represent parameter val-
ues extracted from the image domain. There are cer-
tain image-based spaces such that straight lines in 3-
D space which are mapped to them always result in
straight lines in the image-based space. We describe
such a mapping as invariant for linear relationships,
or simply linearly invariant, since linear relationships
are always preserved. For example, we will show (see
figure 2) that a straight line in 3-D space is always a
straight line in the image-based space whose coordi-
nates are x, y where x is the image position at the
image line y=y* and y is the y component of opti-
cal flow. We will demonstrate that this type of visual
invariant allows us to detect obstacles using optical
flow. We will also demonstrate that if the linear rela-
tionship is not maintained in the image-based space,
then it is difficult to detect obstacles in that space, i.e.,
the mapping must be linearly invariant. The features
of our method are that:

(1) 2-D visual information (i.e., optical flow) is di-
rectly used to detect obstacles; no range, 3-D motion,
or 3-D scene geometry is recovered;

(2) no information about the pose of the camera rel-
ative to the ground is required;

(3) no terrain model is required; and

(4) no information about the vehicle (or camera) mo-
tion is required.
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Fig. 2 A line in space mapping into a line in an image-
based space

In the following, previous work is first discussed.
Then, coordinate frames and a transformation matrix
are introduced. Next, new visual invariants are devel-
oped. Following that the obstacle detection method
based on these visual invariants is described. Finally,
results using both synthetic and real image data are
presented.

2 Previous Work

A number of obstacle detection methods have been
developed in the past (e.g., [2] [3] [4] [5] [6] [9] [14]
[15] (18] [19] [20] [21] {23]). Range information is often
employed to solve this problem. This information may
be obtained from active sensors (such as laser scan-
ners, radars, and ultrasonics), stereo cameras, optical
flow, etc. A priori knowledge is required by most ex-
isting methods. Such knowledge may include sensor-
to-ground coordinate transformations, sensor motion,
model optical flow fields, road models (or maps), etc.
Errors in @ priori knowledge result in errors in the
output.

Some obstacle detection methods based on optical
flow have been developed. Sridhar et al [20] at NASA



Ames Research Center investigated the methodology
for obstacle detection for rotorcraft low altitude flight.
The obstacle detection problem is posed as the prob-
lem of finding range to all objects in the field of view.
Range information is obtained by the use of optical
flow in their method. Bhanu et al [2] presented an in-
ertial sensor integrated optical flow technique for mo-
tion analysis, in which range information is extracted
from optical flow for obstacle detection. The method
by Hoff and Sklair [9] detected landing hazards for
a descending spacecraft, in which an algorithm us-
ing range information retrieved from optical flow with
known camera motion was developed. Using flow field
divergence, Nelson [14] detected discrete obstacles in
free space other than on the terrain. Enkelmann [5] de-
tected obstacles by evaluating the difference between
calculated optical flow and estimated model flow. The
estimated model requires knowledge about the focus of
expansion (FOE), the transformation matrix between
the camera and vehicle coordinate systems, and the
camera motion. In addition, this method works only
with a camera translating on a planar surface. Raviv
[16] detected obstacles from an optical-flow-based in-
variant with an assumption of an observer that under-
goes only translational motion in parallel to a planar
surface. Mallot et al[12] detected discrete obstacles by
the use of inverse perspective mapping. This method
requires a coordinate transform and has the limita-
tion of the observer (i.e., the camera) moving in the
horizontal plane under pure translation.

The previous work described above is characterized
by the following:
(1) range information extracted from optical flow,
stereo, or active range sensors is often employed to
detect obstacles,
(2) the observer’s motion is often limited to transla-
tional motion in detecting obstacles directly from op-
tical flow.
(3) a priori knowledge such as coordinate transforma-
tions, sensor motion, model optical flow fields, or road
models (or maps) is often required.

3 Coordinate Frames and Transforma-
tion Matrix

Two coordinate frames important in our approach
are the camera coordinate frame and the coordinate
frame attached to a line in space. In this section, the
two coordinate frames and the transformation matrix
between them are introduced.

Consider the arbitrary line AB in space and its pro-
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Fig. 3 Definition of two coordinate frames

jection onto the image plane, line ab and say that im-
age axis x is parallel to line ab(figure 3). A coordinate
frame ¢ attached to the camera is chosen as follows:
(1) Let the camera focal point be the origin O..
(2) Let the optical axis be the Z, axis.
(3) Choose X, and Y, to be parallel to the image axes
z and y, respectively.

A coordinate frame b is then affixed to the line AB
as follows:
(1) Let the origin O, be the point lying on the ex-
tended line AB with the shortest distance from the
camera focal point O,.
(2) Let the Z; axis be line AB.
(8) Choose X; and Y; arbitrarily as long as the right
hand rule is obeyed.

A point P in the scene can be transformed from
frame b to frame c by the equation:

X, X

Yc — I7e Yb

Zc = Hb * Zb (1)
1 1

where (X., Y, Z.) and (X3, Y3, Z;) are the coordi-
nates of point P in frames ¢ and b, respectively, and
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Hy =

represents a 4x4 transform matrix from frame b to
frame c. Note that, at each instance of time, H{ is
constant for all points in the scene.



4 Visual Invariants

A visual invariant is an unchanged visual property.
In this section, several new visual invariants for lin-
ear relationships are developed. As described above,
these invariants are mappings with the property that
a straight line in 3-D space is always mapped into
a straight line in the appropriate image-based space.
Some basic equations for developing these invariants
are introduced first. Then the invariants are devel-
oped for both camera motion along the x- axis and
general camera motion.

The visual invariants in this paper are based on op-
tical flow F, which can be expressed as :

F(z,y,1) = (¢(z,9,1), ¥(z,9,1)) = F(z,y,0)ar (3)

where (z, y) is the image position, t is the instance
of time, £ and y are the components of optical flow,
and F and #r are the magnitude and unit directional
vector of optical flow, respectively.

From the pinhole camera model, if we let the focal
length be unity, the image position (z, y) is

Xe
== 4
e= 3 @

Y.
y-—Z (5)

As defined earlier, line AB coincid_e_s_ with the Z, axis,
therefore any points lying on line AB always have

X4 =Y=0 (6)

Camera motion along the x-axis

We start off our analysis of visual invariants with
this simple case. Although the results presented here
are not novel, they will serve to unify and complete
the analysis we do later on for general camera motion,
since the scenario of camera motion along the x-axis
is not handled by the general analysis. The equations
for optical flow due to a camera translating in the X,
direction are

= 5 (~Tx) )
=0 (®)
F=z (9)

where Z. is the depth of the object relative to the
camera, and Tx is the translational motion of the ob-
ject centered coordinate system relative to the camera.
Note that, for each instance of time, Tx is a constant
for all points lying on a rigid object.

With equations (1)(2)(4) and (6), the following lin-
ear relationship can be obtained from equation (7) for
all image points lying on line ab (i.e., y=constant) that
arise from points in the scene lying on line AB:

z=a;+aszx (10)
where
_ his
a = —
as
_ —has
az =
as
h -
as (haahis — hi4ha3) (11)
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For each instance of time, h;; (the components of Hf)
and Tx are constants. Therefore, for each instance of
time, the values a1, as, and a3 are constants for all
points on line AB. Equation (10) represents a line
in the & vs. z image-based space corresponding to a
line in 3-D space. This is a visual invariant for lines.
Note that the line in the domain of £ vs. z can be
estimated from two points in principle (say, (z;, ;)
and (z2, #3)). This means that specific knowledge
about the transformation matrix and camera motion
is not required.
General camera motion

The equations for optical flow due to general cam-
era motion (arbitrary translation and rotation) are

. 1
& = —(~Tx +2Tz)+(zywx —(1+2" oy +ywz) (12)
[

. 1
y= Z—(—Ty+yTz)+((1+y2)wx—xywy —zwz) (13)

F=@+i?)} (14)

where Z. is the depth of the object relative to the
camera, and (Tx, Ty, Tz) and (wx, wy, wz) are the
translational and rotational motion of the object cen-
tered coordinate system relative to the camera. Note
that, for each instance of time, (Tx, Ty, Tz) and (wx,
wy, wz) are constants for all points lying on a rigid
object. If one component, say ¥, of optical flow is al-
ways zero for any image lines, this would belong to the
case of the camera motion along the x-axis described
above.

With equations (1)(2)(4) and (6), the following
nonlinear relationship can be obtained from equa-
tion (12) for all image points lying on line ab (i.e.,
y=constant) that arise from points in the scene lying
on line AB:

z=20b) +byx+ b3a:2 (15)



where by, b2, b3 are constants. Equation (15) repre-
sents a curve in the £ vs. x image-based space corre-
sponding to a line in 3-D space. This is not a visual
invariant for linear relationships.

With equations (1)(2)(4) and (6), the following lin-
ear relationship can be obtained from equation (13)
for all image points lying on line ab (i.e., y=constant)
that arise from points in the scene lying on line AB:

;l'/ =a; + asxr (16)
where
— hi3 2
ag = —+(1+y)wx
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_ =has
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= 17
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For each instance of time, h;; (the components of Hf)
and (Tx, Ty, Tz) and (wx, wy, wz) are constants.
Therefore, for each instance of time, the values ay,
a2, and a3 are constants for all points on line AB.
Equation (16) represents a line in the y vs. x image-
based space corresponding to a line in 3D space. This
is a visual invariant. Note that the line in the y vs. x
image-based space can be estimated from two points in
principle (say, (z1, 1) and (z2, 92)). This means that
specific knowledge about the transformation matrix
and camera motion is not required.

If we were to combine equations (14),(15), and (16),
then the resulting F as a function of x would be non-
linear. This is not a visual invariant for linear rela-
tionships.

In summary, we see that a straight line in 3-D space
can be mapped into either a straight line or a curve
depending on the camera motion and the image-based
space used for the mapping. This means that visual
invariants can be found only by selection of the proper
image-based space. For example, a straight line in the
z vs. r image-based space is found for camera mo-
tion along the x-axis while a curve is found for general
camera motion. Thus, the mapping to z vs. zis a
linear invariant for camera motion along the x-axis,
but not for general camera motion. A curve in the F
vs. r image-based space is found for general camera
motion. Therefore, the mappings to F vs. z is not vi-
sual invariants for general camera motion. However, a
straight line is always found in the y vs. zimage-based
space for general camera motion. In other words, if §
is not equal to zero, the mapping to the ¥ vs. z space
is linearly invariant for lines in 3-D space for arbitrary
camera motion,
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Fig. 4b F vs. z with two obstacles

5 Obstacle Detection

The linear invariants found in the previous section
are very useful for detecting discrete obstacles such as
depressions or protrusions. Although the discussion
thus far has been concerned only with single lines,
many lines in the image plane can be processed in
parallel to detect the full terrain ahead of the vehicle.

As described above, a mapping is a linear invari-
ant only for certain image-based spaces. Only these
mappings are useful for obstacle detection. To see
this, consider the mapping to the F vs. z image-based
space, which is full flow magnitude F as a function
of position x on the image line under consideration.
This mapping is not a linear invariant. Figures 4a
and 4b show the results of a simulation over two dif-
ferent types of terrain. The simulation involves 5 %
noise added to the synthetic optical flow under general
camera motion. Although no obvious differences can
be observed between figures 4a and 4b, in figure 4a the
terrain is flat and without obstacles, while in figure 4b
the terrain has two obstacles, one protrusion and one
depression. We see that obstacle detection can be very
difficult in an image-based space that does not have
the linear invariant property.

On the other hand, when an image-based space
with the property of linear invariance is used, obsta-



cle detection becomes easy and straightforward. Con-
sider the mapping to the  vs. zrimage-based space, in
which we consider only one component, y, of optical
flow as a function of z. This mapping is a linear in-
variant ( equation (16) ) under general camera motion.
Figures 5a and 5b show the results of the same simu-
lation, using the same camera motion and terrain, as
in figures 4a and 4b, respectively. The mapping from
points lying on a straight line in 3-D space looks like
figure 2b. We call the line in figure 2b a reference
line. Figure 5a appears to coincide with a reference
line, implying that it is obtained from a terrain which
is flat (at least in one dimension). Points that lie in
the region in the image-based space above the refer-
ence line result from a protrusion on the terrain, while
points that lie below the reference line result from a
depression in the terrain. Thus in figure 5b, there are
two obstacles, one a protrusion and the other a de-
pression. Figure 5b can further be mapped into figure
5c where the reference line is horizontal. Figure 5c¢
plots the difference between y and the y value of the
reference line for each x value. A protrusion or a de-
pression can easily be detected in figure 5c. Detailed
experimental results are shown in the next section. To
apply the property of linear invariance to obstacle de-
tection, four steps are involved.

Step 1: Choosing an arbitrary straight line in the im-
age.

This line intersects an image feature of interest, e.g.,
a potential obstacle. The chosen image line need not
correspond to a linear feature in the scene.

Step 2: Estimation of the reference line for an image
line.

This line can be obtained from the measured opti-
cal flow located in the lower image positions which
correspond to regions on the ground surface near the
vehicle. In principle, only two points are required to
estimate the reference line.

Step 3: Computation of the difference.

The difference between the reference line obtained in
step 2 and the measured flow at all image positions
lying on that image line is computed.

Step 4: Identification of obstacles.

The computed difference in step 3 is used to detect
obstacles. If the difference is larger than some thresh-
old value, the observed point in space is considered to
be an obstacle.

To detect obstacles easily, an image-based space
with the property of linear visual invariance should be
used. For arbitrary camera motion, the proper image-
based space should be y vs. z (or £ vs. y) for any
image line y=constant (or z=constant) if § (or z) is
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not equal to zero. In the case where g (or ) is always
zero for any image lines, £ vs. z (or § vs. y) can be
used.

In this method, only one component of the optical
flow is needed. Information such as a road or terrain
model, specific knowledge of vehicle (or camera ) mo-
tion, or knowledge of the coordinate transformation
between the camera and the ground is not required.
Therefore the method reduces the error sources to
a minimum since it employs minimum information.
The approach is simple because obstacles are detected
directly in the image-based space. Without any as-
sumption of a terrain model, this method can be used
for ground vehicles navigating in man-made roadways
or natural outdoor terrain. This method can also be
used for air vehicles undergoing general six-degree-of-
freedom motion which are landing in known or un-
known terrain.

6 Experimental Results

In this section, the results of four initial experi-
ments demonstrating the simplicity and usefulness of
linear invariants applied to obstacle detection are pre-



sented. The first two experiments are based on syn-
thetic data with three different levels of noise, 5%,
10%, and 15%. In the experiments, the noise was
generated randomly using a Gaussian distribution and
was added to the optical flow obtained through simu-
lation. This noise may represent the uncertainty value
of the flow, potentially due to uneven terrain and/or
unflat surfaces of objects in the environment. The last
two experiments are based on real images taken in our
laboratory. All results shown in this section are for one
image line only. To cover the whole image, multiple
image lines can be processed in parallel.
Experiment 1

The first experiment simulates a ground vehicle
moving over terrain with a bump and a pothole, as
shown in figure 6a. The bump is a semicircle which
is 5.5 m ahead of the camera, with a height of 0.3
m above the flat terrain. The pothole is a semicir-
cle which is 8.5 m ahead of the camera, with a depth
of 0.6 m below the terrain. The camera is mounted
on the top of the vehicle (2 m above the ground) and
moves under a general motion with (Tx =-927, Ty =-4 ,
Tz=2853 mm/sec) and (wx=0.05, wy=0.05, wz=0.05
rad/sec).

The results of experiments with 5% noise added to
the synthetic optical flow have already been shown in
figure 5c. Two obstacles, a protrusion and a depres-
sion can easily be detected from figure 5¢. The results
of experiments with noise of 10% and 15% are shown
in figures 6b and 6¢, respectively.

Experiment 2

This experiment simulates an air vehicle moving
over terrain with multiple rectangular protrusions, as
shown in figure 7a. The first protrusion is 34 m ahead
of the camera with a height of 1 m above the flat
terrain and the second protrusion is 50 m ahead of
the camera with a height of 1.5 m above the flat ter-
rain. The camera is mounted on the bottom of the air
vehicle (20 m above the ground) and moves under a
general motion with (Tx =-9270, Ty =-40, Tz=28530
mm/sec) and (wx =0.05, wy =0.05, wz=0.05 rad/sec).

With 5%, 10%, and 15% noise added to the syn-
thetic optical flow, the results of experiments are pre-
sented in figures 7b, 7c¢, and 7d, respectively.
Experiment 3

This experiment involves detecting a depression in
a flat surface using real images. Figure 8a shows the
lab setup, in which the camera is mounted on a linear
positioning table and moves along a direction perpen-
dicular to the camera’s optical axis. This shows the
case of camera motion along the x-axis. The camera
moved with Tx = 22.5 mm/s. A flat surface with a

square depression of 50.8 mm is 406.4 mm ahead of the
camera. The depression, located in the middle of the
original image, is shown in figure 8b. Since y = 0, we
use the £ vs r image-based space which has the prop-
erty of linear invariance. We consider only the scan
line labeled in figure 8b. Optical flow at each pixel
was obtained using a correlation method [10]. The
values of optical flow £ at image positions 40 through
199 are shown in figure 8c. The reference flow line
can be obtained by fitting the data points near image
position 40 to a line. The deviation of  from the ref-
erence flow line is shown in figure 8d. A depression
can be easily detected in both figures 8¢ and 8d.
Experiment 4

This experiment is similar to experiment 3, except
that the flat surface has a protrusion rather than a
depression. The experimental setup is shown in figure
9a. The flat surface with the square protrusion of 76.2
mm is located at a distance of 469.9 mm from the
camera. The protrusion, located in the left middle of
the original image, is shown in figure 9b. The results
are shown in figures 9¢c and 9d. detected.

7 Conclusion

In this paper, a novel approach to obstacle detec-
tion has been developed. New visual linear invariants
based on optical flow have been found in the appro-
priate image-based spaces. Employing the linear in-
variance property, obstacles can be directly detected
by using a reference flow line obtained from measured
optical flow.

The approach has several advantages:

(1) Simple - Only one component of the optical flow
is needed. Knowledge about the terrain model, coor-
dinate transform, or vehicle (or camera) motion is not
required. No range, 3-D motion, or 3-D scene geom-
etry is recovered. 2-D visual information (i.e., optical
flow) is directly used to detect obstacles. The feature
used to detect obstacles is simple - a straight line.
(2) General - This approach is valid for the vehicle
(or camera) moving under general motion, i.e., arbi-
trary translation and rotation.

(3) Fast - The method is simple and therefore com-
putationally fast. Each image line can be processed in
parallel.

(4) Robust - The error sources involved are reduced
to a minimum since the only required information is
one component of the optical flow. A reference flow
line, as a feature used to detect obstacles, is obtained
from measured optical flow. This avoids multiple er-



ror sources, such as one error source from measured
data and another from model data.

Four initial experiments included in the paper sug-
gest that the approach using visual linear invariants
as a tool for obstacle detection is effective and robust.

An issue that has not been discussed here is how to
find components of flow perpendicular to an arbitrary
image line. We propose to do this by finding normal
flow using spatiotemporal gradient methods, and then
processing many lines in the image in parallel. Each
line will, in general, contain only a few image points
whose normal flow is perpendicular to the line. How-
ever, the sum of the image points that can be used
with a large number of image lines should be dense
enough to be useful for obstacle avoidance. We will
pursue this in the future.
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