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ABSTRACT

In this paper, we describe a visual processing algorithm we have developed that supports au-
tonomous road following. The algorithm requires that lane markings be present and attempts to
track the lane markings on both lane boundaries. There are three stages of computation: extracting
edges, matching extracted edge points with a geometric model of the road, and updating the geo-
metric road model. All processing is confined to the 2-D image plane. No information about the
motion of the vehicle is used. This algorithm has been implemented and tested using video taped
road scenes. It performs robustly for both highways and rural roads. The algorithm runs at a sam-
pling rate of 15 Hz and has a worst case latency of 132.8 milliseconds (ms). The algorithm is im-
plemented under the NASA/NBS Standard Reference Model for Telerobotic Control System Ar-

chitecture (NASREM) architecture and runs on a dedicated vision processing engine and a VME-

based! microprocessor system.

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately
specify the experimental procedure. Such identification does not imply recommendation or endorsement by
NIST, nor does it imply that the materials or equipment identified are necessarily best for the purpose.
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1 Introduction

There has been increasing interest in the development of autonomous vehicles in recent years.
Interest has included high-speed driving on highways, urban driving, and navigation through less
structured off-road environments. The primary challenge in autonomous driving is the develop-
ment of perception techniques that are reliable under the extreme variability of outdoor conditions
in any of these environments. Roads can vary tremendously in appearance. Some are smooth and
well marked while others are riddled with cracks and potholes or are not marked at all. Shadows,

glare, varying illumination, other vehicles, rain, snow, etc. also affect road appearance.

Perception for autonomous driving has been approached with a wide variety of vision-based
techniques. Classical pattern classification techniques have received much attention. These meth-
ods usually use some combination of color and spatial cues to label all pixels in the image as either
road or non-road. Various techniques are then used to determine a boundary that best separates the
road from the rest of the scene. Examples of these methods include [1], (2], [3], [4], [5]. Another
popular method is to use feature tracking. These methods track prominent features (e.g. lane mark-
ers) from image to image. Systems which use feature tracking include [6], [7], {81, [9], [10], {11].
Other approaches include image flow based methods, [12], and artificial neural networks in [13].
In addition to vision-based perception techniques, in {1], [14], a 3D laser range finder is used for

outdoor navigation.

We use a feature tracking method. Qur processing consists of three successive stages of com-
putation:
1) Extracting edge point position and orientation.
2) Matching extracted edge points to the road model
3) Updating the road model

A video taped recording provides the input to Stage (1) (Figure 1). This video consists of road

scenes of a driver’s view of the road ahead as a vehicle is driven along both highways and rural
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roads. Stages (2) and (3) require an explicit geometric model of the road. Stage (2) attempts to

Edge points Matched
and Orientation Edges

Stage (1) Stage (2) "~ Stage (3)

Extract edge points Match Update
@RD_"> 86 PO |12 10 model Maodel

and orientation

Geometric
Road Model

Figure 1. Processing Overview

match the extracted edge points obtained from stage (1) with the road model. Stage (3) updates

the geometric model of the road using the matched edge points.

We choose not to reconstruct the 3D scene at this level of processing. Although a 3D model of
the road is necessary to command navigation of the vehicle, we believe this transformation from

2D to 3D should be independent of the feature tracking feedback loop as shown in Figure 2. In this
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Figure 2. Feature Tracking in 2D

way, our approach differs from that taken by other feature trackers (e.g. [6], [7], [8]). Their ap-
proaches convert the matched features from 2D to 3D before updating the road model. The 3D road
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model is then backprojected into 2D for the matching process as shown in Figure 3. By updating
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Figure 3. Feature Tracking in 3D

the model in 2D, our feature tracking algorithm is unaffected by any errors, approximations, or as-

sumptions that might be incurred in doing 3D reconstruction and backprojection.

Qur method for updating the model is also unique. We use an exponentially weighted recursive
least square fit (described in section 2.5) to update the parameters of our geometric road model.
The appeal of this method is in its weighting of data. The weight assigned to the data from each
image depends on the number of data points matched between the image and the model. If the lane
marking momentarily disappears, few edge points will match the model and the weight of this data
will be relatively insignificant compared to data from an image in which lane markings are visible.
In addition, since the variance of a least squares estimate decreases as the number of data poinis
increases (see [15], [16]) we are in effect giving more weight to data in which there is a higher con-

fidence.

Other approaches do not seem to account for the confidence of data when combining data tem-
porally. For example, the method used in [6] and [7] first computes least squares estimates of a set
of geometric parameters using only the data from the current image. These parameters are then
smoothed over time using a Kalman filter. The weight assigned to these parameters when they are
smoothed seems to be independent of the quality of their least squares fit. In the Kalman filter for-
mulation, the weighting of new data is controlled by the relative choices of the model covariance

and the measurement covariance. [6] and [7] do not explain how these covariances are modeled or
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chosen, or even if they are chosen to vary as a function of time. If they are chosen as constants, an
image yielding a weak edge would be given the same weight as one yielding a strong edge. This
can result in a spurious data point carrying significant weight when lane markers disappear (either

between stripes or at an intersection).

In Section 2, we describe our road following algorithm. Section 3 contains a description of our
hardware and development environment. Section 4 describes the performance of our system. Sec-
tion 5 summarizes our experiments and presents future development plans.

2. Road Feature Tracking Algorithm

In this section we describe our road feature tracking (following) algorithm in detail. In 2.1 we
describe our geometric representation of the road. In 2.2, we describe how the model is initialized
to a road scene. In 2.3 we describe the edge extraction algorithm. In 2.4 we describe the algorithm
that matches edge points with the road model. In 2.5 we describe the algorithm that updates the
road model.

2.1. Road Model

We model the road using the left and right lane boundaries in the lane of travel. Physically,
these boundaries correspond to the white or yellow lane markers painted on the road. They may
also be solid or striped lines. We represent each of these lane boundaries by a quadratic model
(equation 1) in the image plane:

x = aj+ay+azy’ D
The parameters, a,, a;, a3, govern the shape of this model.
2.2. Initial Conditions

Our algorithm requires an accurate model of the road. Initially, this model is established by a
teleoperator who manually positions models of both lane markers to align them with the appear-
ance of the lane boundaries in the image. In this way, the teleoperator assigns the initial values of

the parameters a;, ay, as for both quadratics. The models of the lane markers are represented by

graphic overlays on the video image.
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2.3. Edge Extraction

The first processing step performs edge extraction on the input scene (stage (1) in Figure 1).
For every point in the image, edge magnitude and edge orientation are computed using a two-di-
mensional 3 X 3 spatial gradient operator. The direction, ©, of each point in the image is defined to
be perpendicular to the direction of the gradient of the intensity function f{x,y) at that point:

_ (Vi) (x,y) =
O = A Ty 2 @

The magnitude of each edge pixel, mag, is given by:

mag = :\/(V xf)z(x.y) +(V Yf)z(x-)') @

Using a non-maximum suppression algorithm, those edge pixels whose magnitude is greatest in
the direction across the edge are selected as edge points. A description of the non-maximum sup-
pression edge extraction algorithm can be found in [17]. A binary edge image is produced by
thresholding the edge points. The threshold level is set to a value which removes weak edges and
edges caused by camera noise. We have empirically found a threshold value of 8 in a grey level
range of 0 to 255 to be effective for our application. The output from this processing stage con-
sists of a list of the image coordinates of all edge points above the threshold value and the orienta-
tion of these points. It should be noted, at this stage of operation, no effort is made to distinguish
road edges from other edges present in the input image. Execution of this algorithm is completely

data-driven.

To reduce the amount of data processed by algorithms in stages (2) and (3) in Figure 1, we ex-
clude all edges that fall outside a window of interest. This window of interest is chosen to include

the entire portion of the visible road but to exclude, as much as possible, the rest of the image (e.g.
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the hood of the vehicle, trees, grassy shoulders, houses, etc.). Figure 4a is a typical image of a road

Figure 4a. Road Scene Figure 4b. Window of Interest Figure dc. Window of interest
applied to road scene

viewed from a camera mounted on a vehicle. Figure 4b is a window of interest. Figure 4c represents
the results of masking the original road scene with the window of interest. During execution, the
lateral position of the window of interest shifts in order to keep it centered on the center of the road.
In addition to centering, the shape of the window of interest changes as a function of the predicted
road curvature. We are currently using seven masks: one mask representing zero road curvature
(figure 4b), three masks representing increasing road curvature to the left, and three masks repre-
senting increasing road curvature to the right. All masks are generated off-line but are instantiated
in real-time for the actual image processing. Our mask selection aigorithm changes masks when
one of the lane marker models intersects either of the vertical boundaries of the current mask. For
example, if a lane marker intersects the left boundary, the mask giving the next larger increment of
curvature to the left is chosen.
2.4. Edge Matching

In this stage of processing we match the edge data against the existing model of the road. The
purpose of this edge matching algorithm is twofold. The first purpose is to associate edge points
with the appropriate lane marker. The second purpose is to eliminate edge points that do not seem
to be associated with either lane marker. For example, shadows, pot holes, or other vehicles can
appear in the selected window and will contribute to the edge information. We wish to exclude this

“spurious” edge data from the road model update computation.
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The edge matching algorithm compares each edge pixel to the model of each lane marker. An
edge pixel is either accepted or rejected depending upon its similarity to the model. The labelling
process is based on two criteria. The first criterion is the two-dimensional spatial proximity of an
edge point to the model. The second criterion is the similarity of direction of the edge point with

the angular orientation of the model.

To facilitate this process, the quadratics representing each lane marker are approximated by a
set of consecutive line segments. The conglomerate of these lines is used as the model in the match-
ing procedure. The first step in this procedure compares the edge direction of the candidate edge
point with the angular direction of each of these model lines:

|9 et ~ Oua| <3 “)

If this angular disparity is within an acceptable range, 8, for any model line, the distance 4 is com-

puted between the point at image coordinate (x;, y;) and each model line:

_ Ax;+By, +C,

(A2+B2)” )

where (A x+B y+C, =0)isthegeneral form for the k™ line in the model.

The minimum of these distances is used to determine if that point is less than a distance threshold,
€, from the model.The point is labelled as belonging to the model when both the spatial proximity
and orientation conditions are satisfied. If an edge point is chosen as belonging to one quadratic
model, it is not considered as a match candidate for the second quadratic model. In this way, we
insure that any given point belongs to at most one model.
2.5. Road Model Update

The parameters of the road model, equation (1), are updated with an exponentially weighted

recursive least squares computation using the matched edge points as input data. It should be em-
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phasized that in this estimation method, the fit is based on data acquired over a sequence of images
rather than just the current image. Earlier experiments involved fitting the road model separately
to each image. The frequent inclusion of spurious data and sparse real data often resulted in poor
fits. By combining data over a sequence of images, the spurious data tends to average and the real
data reinforces itself resulting in a better fit. Probability theory calls this phenomena the law of

large numbers [15], [16].

The success of this method is based on the assumption that the appearance of the road changes
gradually over a sequence of images. There are, however, limits at which the assumption of conti-
nuity fails. We must therefore choose a method of weighing new data with respect to old in order
to achieve a compromise between responsiveness and robustness. For example, if new data is
weighted relatively heavily, the algorithm will be very responsive to changes in the road. However,
the algorithm will also be more susceptible to the ill-effects of noise and sparse data. On the other
hand, if new data is weighted less heavily, the algorithm will be more robust in the presence of

noise, but more inert in responding to actual changes in the image of the road.

In exponentially weighted recursive least squares, the trade-off between new and old data is
controlled by specifying the value of the forgetting factor, A. The weight assigned to each data
point is then given by

A" "o where
00<A<10
n 1s the current time

n, is the time the data was sampled.

For example, if A = 0.5, all edge points in the current image, time n,, have a weight of 1.0. All
edge points in the image read at time n_; have a weight of 0.5; edge points from time n_» have a
weight of 0.25, etc.). Empirically we found the values of A in the range 0.5 < A < 0.75 produced

robust tracking for our road scenes.

The least squares problem of fitting a quadratic to a set of data is formulated as follows. For a

set of data points (x;, y;) for i = I to N where N is the total number of data points, we wish to de-
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termine a;, @y, az such that J, the residual in x, is minimized:

b=

J =

&

[x;- (ay + @y, ay))” ©6)
1

Since our data set includes edges from all previous images, where images are weighted exponen-

tially, the residual we minimize is given by:

N, N, N,
i 2 i-1 2 -2 2
J= Z [x;- (a1+a2y.-+a3y?)] +lz [x; - (a1+a2y‘-+a3y;‘-")] +2.22 [x,- (a1+a2y‘.+a3y?)] +.. )

i=1 i=1 i=1
Each summation represents the data from one image. In this residual, the weight of image j 1s also
a function of the number of edge points matched, N;. An image that yields a good match with the
road will exert a larger weight than one with a poorer match. Since the variance of a least squares
estimate decreases as the number of data points increases (see [15], [16]) we are in effect giving

more weight to data in which there is a higher confidence.

To efficiently solve equation (7) for a;, ay, a3 such that the residual is minimized, we use the
square root information filter (SRIF) algorithm. The SRIF is an efficient, numerically stable, closed
form solution to the least squares problem. It is also an iterative algorithm. Data from previous im-
ages is not explicitly stored but is summarized in the previous estimate and its covariance. After
each image, this algorithm updates the estimate and a square root of its information matrix. (The
information matrix is the inverse of the covariance matrix). The SRIF is described in [18], [19].
3. Hardware and Developmental Testbed

Our development environment consists of a Sun SPARC2 workstation, a Pipelined Image Pro-
cessing Engine (PIPE), a VME-based multiprocessor system, and a VHS video cassette recorder
(VCR). Figure 5 shows the breakdown of processing across hardware. In this figure, the large gray
rectangles represent distinct software modules. Each of these modules is labelled by its function-

ality {SP = sensory processing, WM = world modeling) and level within the NASA/NBS Standard
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Reference Model for Telerobot Control System Architecture (NASREM) [20]. The system de-
scribed in this paper is contained in a larger, multi-purpose implementation of NASREM, [21],
[221, [23], [24]. Also, a complete control system architecture proposed for intelligent vehicles is

found in [25].

Our image data was recorded with a camcorder mounted on the hood of a U.S. Army High Mo-
bility Multipurpose Wheeled Vehicle (HMMWYV) {26] aimed to capture the driver’s view of the
road ahead. Recordings were made of both highway scenes and rural roads as the vehicle travels
at speeds varying between 40 kilometers per hour (k.p.h.) and 88 k.p.h. The HMMWYV was occa-
sionally driven in an erratic fashion (weaving back and forth, etc.) to create challenging image se-

quences.

The recorded data is read into PIPE through the VCR playback mode. The incoming images
are digitized to provide 8-bit grayscale images that are 242x256 pixels in size. Edge extraction is
performed on the images. The Iconic-to-Symbolic Mapper (ISMAP) stage of PIPE then converts
information from an image format to a symbolic list and is used to store the binary edge image as
a list of pixel positions. In addition, the corresponding edge direction values are stored in the IS-
MAP iconic buffer where they are mapped onto the memory of one of the microprocessors via a
specialized PIPE-VME interface board. The edge extraction and symbolic mapping operations are
pipelined. They are indicated by black parallelograms in Figure 5.

The remaining processing is divided among microprocessors in the VME backplane. Most
computations -- communication with the PIPE, edge matching, updating the model, and computing
a graphical overlay -- are pipelined. The model updates for each lane marker are computed in par-
allel on separate processors. All inter-processor communication is done through semaphored glo-

bal memory. For a detailed description of our software engineering practices refer to [27].

The display process provides graphic overlays of the window of interest, the geometric model
of the lane boundaries and the computed lane center on the live video image. These graphic over-

lays are used for debugging purposes and to provide a qualitative measure of performance. A Ma-
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trox VIP 1024 board (not shown in figure) is used to implement the graphic overlays on the video

signal.

All program development for the VME-based multiprocessor system is done ona Sun SPARC2
workstation. All code on this system is written in the Ada programming language. Program devel-
opment for PIPE is done on a personal computer using the PIPE graphical programming language,
ASPIPE [28].

4. System Evaluation

As mentioned earlier, we tested the system and algorithms described using input from video-

taped sequences taken with a camcorder mounted on the HMMWYV vehicle as it traveled on high-

ways, local roads, and back roads.

On a limited access multilane highway, interstate I-270 in Maryland, the algorithm successfully
maintained tracking over a 3 mile section of road. The vehicle was travelling in the right lane at
approximately 88 k.p.h. The lane markings consisted of a dashed line on the left and a solid line on
the right. Tracking was maintained while other cars passed in the adjacent lane and while the ve-
hicle weaved back and forth in the lane of travel. Tracking was lost when the vehicle changed lanes

to exit,

On a four lane local road, Great Seneca highway in Gaithersburg, Maryland, the algorithm suc-
cessfully tracked for a distance of approximately 2 miles. The vehicle was driving in the left lane
at a speed of approximately 65 k.p.h. The lane markings consisted of a solid line on the left and
widely spaced stripes on the right. The algorithm was robust in maintaining tracking through two
intersections in which the lane markings disappeared. Tracking was also maintained while driving
beneath an underpass and over two bridges. The pavement texture and color changed from a dark
asphalt to a light cement on the bridges. On other portions of this road, the algorithm could not al-
ways maintain tracking through intersections in which the lane of travel split into two lanes (a turn-
ing lane and a lane for going straight). Also tracking could not be maintained when the vehicle

changed lanes.
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On a two lane rural road, Quince Orchard road in Gaithersburg, Maryland, tracking was main-
tained over a distance of 1.5 miles. The vehicle travelled at speeds between 40 and 65 k.p.h. The
lane markings consisted of a double solid line on the left and a single solid line on the right. Track-
ing was robustly maintained on travel up and down hills with on-coming traffic, through sharp
curves, through moderate shadows, and through four intersections in which lane markings disap-
peared. Tracking was temporarily lost when the vehicle travelled through a sharply curved portion
of road that was shadowed by a heavily wooded area.

The image sampling rate of our system is 15 Hz and the worst case latency is 132.8 millisec-
onds (ms). Edge extraction was performed every 66.4 ms. The number of edge points extracted var-
ies from scene to scene and the processing times for the algorithms in stages (2) and (3) will vary
depending on the number of data points present. For a representative road scene containing approx-
imately 300 edge points, the edge matching is performed in 20 ms and the road model update is
performed in 30 ms. The graphic overlay process is updated in approximately 5 ms.

5. Conclusion and Future Work

We have described a system of algorithms that robustly follows roads that one might expect to
find on state highways. We assume that the lane boundaries are well marked with either solid, dou-
ble, or dashed lines. All visual processing is done in two dimensional image coordinates. Process-
ing is performed in sequential stages: extracting edges; matching edge points to the road model;
and updating the model of the road. Computation time for the image processing algorithms is re-
duced by using knowledge of the road curvature to mask out non-road information. The exponen-
tially weighted recursive least squares algorithm used to update the road model operates in both a

spatial and temporal domain. The system update rate is 15 Hz.

We hope to integrate our algorithm with the riavigation system of the U.S. Army High Mobility
Multipurpose Wheeled Vehicle (HMMWYV) [26] and to perform unmanned driving using the entire
system in the near future. We also plan to enhance our algorithm by incorporating geometric con-
straints such as road width consistency and by incorporating knowledge of vehicle motion. Future

research directions include the investigation of pattern classification methods using color and spa-
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tial cues similar to those used by [11, [2], [3], [4], [5], in addition to edge extraction, for robustly

determining road boundaries.
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