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ABSTRACT

This report presents recommendations that aim to improve the effectiveness and
efficiency of developmental testing of large manufacturing systems. This type of testing
can require up to half of the total development effort of large systems. [14] The
recommendations apply to distributed systems in general and are not limited to
manufacturing systems.

The recommendations are based on testing principles that were learned and applied
during the development of the Automated Manufacturing Research Facility (AMRF). Use
of these integration principles and guidelines for testing will help manage complexity
involved in the development of manufacturing systems like the AMRF. Developers can
produce a higher quality system, in less time, if they prepare for the complexity through
modular subsystem design and good practices of development and testing. In terms of
human resources, preparation can reduce time and effort needed to get the system working,
reduce stress on the developers, and increase satisfaction with the results.

The AMRF is a major U.S. national laboratory for research in automated
manufacturing. It consists of automated workstations and the control rooms and computer
equipment necessary to operate them. The facility was developed by NIST as a testbed
where scientists and engineers from industry, academia, and the federal government work
together on projects of mutual interest. Their research concentrates on the interfaces and
measurement techniques needed for successful computer integrated manufacturing.

The material will be of interest primarily to people involved in detailed design and
implementation of computer integrated manufacturing systems. Others who may benefit
are people responsible for performing, directing, and scheduling system testing.

INTRODUCTION

NIST is investigating the issues of integrating many discrete components into complex
manufacturing systems. This report deals with the initial development, from 1982 to 1987,
of NIST’s Automated Manufacturing Research Facility (AMRF).

There are four major sections in this report:
* Brief Description of the AMRF
» Issues of Integration Testing - discussion of what is meant by the term integration
testing, and a description of some AMREF testing concepts.
* Recommendations for Integration Testing - these recommendations form the
conclusion of the report.
* An Example of AMRF Integration Testing - this illustrates some of the design
recommendations.



Brief Description of the AMRF

The AMREF is a research testbed that models automated production of small batches of
machined parts. In 1987 manufacturing tasks were performed by six groups of equipment
components, called workstations. Three workstations machined parts by using robots to
tend numerically controlled (NC) machine tools. A two-robot workstation deburred parts
produced by the machining workstations. The last process in part manufacture was a
robotically tended inspection workstation that used a coordinate measuring machine (CMM)
and surface roughness sensor system to inspect parts. A materials handling workstation
transported part blanks, using a wire guided cart, from a central storage to each of the
AMRF workstations. The cart also transported finished parts and NC tooling. Data
preparation and NC programming is done by a variety of methods. [6]

To reduce complexity the AMRF hierarchical control architecture modularizes the system
by using levels of control. This modularity aids system testing. Command-status interfaces
tie AMRF control levels together. The six workstations were coordinated by a cell
controller which was at the highest level of the AMRE. Groups of equipment components
--robots, machine tools, and fixtures--were coordinated by workstation controllers.

AMRF manufacturing data is distributed throughout the factory both physically and
logically. The information that must be exchanged between processes is managed by the
Integrated Manufacturing Data Administration System (IMDAS) [6] .

ISSUES OF INTEGRATION TESTING
What is Integration Testing?

Integration testing is the step-wise testing of a system that comprises discrete,
interconnected subsystems. Interactions between the subsystems are rigorously tested
under controlled conditions that reduce the complexity of system debugging. Its goal is to
confirm that a system can function according to design requirements. In progressing
toward this goal, the testing must detect system errors, and assign corrections or changes to
specific subsystems.

The quality and efficiency of developmental testing has a great effect on:

» system reliability

» how soon a new system becomes operational and useful, i.e. how much time is
required for testing.

» how soon an existing system can be revised for more advanced system capabilities
or for addition of new subsystems

« the amount of human effort required for system development

» the sense of satisfaction the project staff gain from system development.

A new system that is tested in progressive stages increases in complexity at each stage.
Effective system testing constrains the increases in complexity of system operation. Failure
to manage testing complexity results in the system becoming too complex to test or operate.

Complexity impedes peoples’ ability to understand system operation, and has a direct
effect on system reliability. These four factors determine the complexity of any system:
number of elements, attributes of the elements, interactions between elements, inherent
degree of organization. [10]

The first factor means that when there are more elements in a system, there is more
complexity. ‘Attributes’ are properties or possible states of an element. ‘Interactions’ are
relationships between elements in which they exchange outputs and process them.
‘Organization’ describes the extent to which predetermined rules, which guide interactions
or describe attributes, exist. The overall complexity of a system is determined by the
relationship among the four factors.




Testing and the System Development Life-Cycle

The development of a system can be divided into four phases: design, implementation,
testing and maintenance, shown in Figure 1. Examples of techniques to ensure and
improve the quality of the system at each phase are shown below the boxes. The
recommendations in this report apply to the design and testing phases.

DESIGN »| MPLEMENTATION » TESTING - MAINTENANCE
+Top-Down System Design eg. e.g. eg.
+Top-Down Subsystem Design * Top-Down Implementation « Top-Down Testing + Regression Techniques
op-Lown ye X 9 « Structured Programming » Test Walk-throughs + Maintenance
: » Code Walk-throughs * BlackAwhite box testing Walk-throughs

ering Design .« Software Engineering » Configuration
Management
AMBE

Figure 1. Steps in the life-cycle of software/hardware systems. The bullets denote
techniques that can be used to improve quality of the system. The shaded areas are
addressed by this report.

Adapted from reference [13].

AMREF Integration Testing

In the AMREF each subsystem is a distributed hardware, software, or hardware-and-
software system; e.g. robots, machine tools, communications systems, database systems,
intelligent sensors, controllers. The goal of AMRF integration testing is to achieve
progressively advanced levels of operation of the automated factory.

Control System Configurations for Integration Testing Configuration is the internal
logical structure and operating mode of a controller or control system. During integration
testing, AMREF control systems were tested in different configurations for the following
reasons:

» to permit step-wise development of controllers. Controllers were tested incrementally, to
limit complexity, by integrating untested sub-processes one-by-one into a rigorously tested
configuration.

» to simplify integration testing. Complexity of the integrated system can be decreased by
reducing complexity in individual controllers.

* to support concurrent development of subsystems. It was often desirable to test
interactions between two separate subsystems before either subsystem was complete.
Selected modules were run to exercise interface functions: other subsystem functions were
not performed for the test. In the AMREF, the most frequent tests run in this fashion were
communications tests and IMDAS access tests.

» to aid troubleshooting. If a controller failed during an integration test, its internal
configuration was simplified or diagnostics were added, and the test was rerun.

* to conduct a system test when a subsystem failed. The objective was to operate and test
an integrated system that contained a failed controller. If a control system component
failed, its functionality was emulated by human interaction or by use of a simplified
software module.

The number of possible configurations of a controller contributes directly to testing
complexity by increasing the number of attributes of the elements in the system. Multiple




configurations provide the advantage of flexibility, if each possible configuration is
thoroughly tested and operators are skilled in manipulating the controller.

Table 1 shows the controller configurations used for testing and for operation. A
control system operating unattended, fully integrated, is in all five modes on the left.
Testing progresses from step-wise modes to integrated modes.

TABLE 1
Control System Configurations for Integration Testing
Integrated Stand-alone
AMRF IMDAS Local database
Lower level connected No lower level subsystems connected
Minimal or no diagnostics Diagnostics or trace on
No operator interaction Operator interaction

I ion
Environment , change in operator performance.

The first three step-wise modes in Table 1 require the emulation of processes that
interact with a controller: specifically, the higher level controller, IMDAS, and lower level
controllers. Thus the emulation modules become temporary parts of the system. Figure 2
shows the interfaces involved.

AMREF testing policy requires the stand-alone capability for all AMRF subsystems, in
which the higher level controller is emulated. Operator utilities produce command
information inputs, and display the status information outputs.

AMREF controllers must be able to switch from accessing AMRF IMDAS information to
using their own Jocal database. There are three uses for this configuration change:

» Use of local data is a usual step in individual system development. The first tests are
with simplified data and data access protocols.

» By using previously stored data, manufacturing operations can be performed even when
communications and/or the IMDAS are not available.

» Complexity of integration testing can be decreased. The subsystem operation is
simplified and more reliable in local mode. System-wide, there is reduction of Network
traffic and IMDAS computer loading.

In the no lower level subsystems configuration command-status interactions and
sometimes the physical tasks of lower level subsystems (e.g. robots, machine tools,
fixtures, automatic guided vehicles, automated storage and retrieval systems) are emulated
or simulated. Integration testing benefits from increased subsystem reliability and faster
subsystem response when physical tasks are not performed. This mode is also used in
stepwise subsystem development. The use of emulated lower level subsystems for testing
is currently being emphasized in the testbed of the Manufacturing Systems Integration
project. [11]
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Figure 2. Manufacturing control model showing configurations for integration
testing. Testing modes that involve the labeled interfaces are: 1) Stand-alone
2) Local database 3) No lower level subsystems.

Diagnostic testing is the use of extra software routines to capture information during
process operation. The use of diagnostics changes the configuration and can affect the
operation of a system. Adding or removing diagnostic software statements in source code,
and turning procedures on and off, can affect code execution paths, timing, and the
behavior of the subsystem at interfaces to other processes. Some of these changes in
system performance may not be detected in stand-alone testing.

A change in one process that can produce an apparent change in the behavior of another
is an environmental configuration change. A common change in the AMRF was to change
to newer versions of operating systems or compilers. Other examples of environmental
configuration changes for a controller “C” are: a changed version of controller “H” that
issues commands to “C”, a changed version of controller “L.”’ that receives commands from
“C”, and a change to IMDAS.



Phases of AMRF Integration Testing  The testing of a large system is done in phases to
manage complexity and to permit concurrent development of the subsystems. AMRF
testing is done in four phases: interface testing; standalone subsystem testing; step-wise
integration testing; and regression testing.

Configuration control is important in proceeding from one phase to the next.
Complexity is reduced when tested conditions and data are carried forward to the next
phase. The ability to isolate changes in the system as testing progresses is a key to
achieving repeatable system tests.

Interface testing exercises the subsystem functions that interact with other subsystems.
Typical AMREF functions are communications protocols, and exchange of command and
status information. Selected modules of subsystems are run without involving the
processing of control programs and control inputs. Interface testing simplifies the system
testing by simplifying subsystem operation. It also permits system testing to be started
before all subsystems are complete.

n ing is performed in two phases. First, a controller is run
while all interfacing subsystems are emulated. The objective is to thoroughly test internal
functions of the controller and the interfaces between control modules and external
functions. Decision making and processing of control information by the controller is
tested. Next, in the hierarchical systems of the AMRF, lower-level subsystems and their
interfaces to the controller are added. The goal is to aggregate complete control systems;
i.e. a controller plus all of its lower-level hardware or control processes. The higher level
interface to the controller is exercised via operator utilities.

The goal of step-wise integration testing is to connect the control systems that were
tested in standalone mode by replacing operator utilities at high level interfaces with the
actual controller. If the global data system was not previously tested, it is included at this
stage.

ing is required when subsystems are changed, usually to improve
them via operating system upgrades, partial redesign, or when they are replaced with a new
implementation with the same functionality.

Designing Manufacturing Subsystems for System Testability

Modular subsystem structure is essential for effective system integration testing.
There are three steps for incorporating testability needs in subsystem design.

1) Modularize the subsystem to accommodate the four phases of system testing.
Specific requirements are stated in recommendations 1-3. Verify that the design is correct
by planning a scenario of the four phases of system testing. Some checks on the design
are: Can interfacing functions be run independently of control processes? Can information
exchanged between functions be examined and/or manipulated? Have interfaces to operator
utilities been designed?

2) Incorporate the features described in recommendations 4 and 5.

3) Generate sets of information to be used in system testing. See also reference
[4]. Step 3 is a cooperative effort with staff from other subsystem projects. This is not
strictly a design task, but it involves the same personnel and should be done immediately
after design is complete, and before implementation is begun. This step contributes to the
overall understanding of system operation and of the communications and control protocols
between subsystems. The early establishment of test data contributes to effective
configuration control throughout the four testing phases.



RECOMMENDATIONS FOR INTEGRATION TESTING

The theme of these recommendations is to isolate and constrain system complexity.
Two measures of success in efficient testing are: tests that can be run with repeatable
results, and the ability of developers to predict test results.

Design Principles and Features

Some measures to control testing complexity affect the design of system components.
The key is to anticipate system test methods. Subsystems operating in an integrated
environment must have certain configuration change capabilities to support stepwise
development and testing.

1) Incorporate into subsystem design the ability to select the testing configurations
listed in Table 1. Don’t wait until after modules are coded and then patch in changes to
accommodate testing.

2) Modularize controller functions that are linked to integration interfaces. Data
exchanged between modules should pass through buffers that are accessible to operator
utilities. This structure, plus the ability to manipulate buffer data, allows configuration
changes to be made more efficiently, and tests of different configurations will be more
repeatable. See the example.

3) Put configuration information used for subsystem initialization in data files, not in
source code. It must not be necessary to compile a different version of source code to
reconfigure a system. The operator procedure for startup should be to select and set all
configuration parameters in the file, then load the subsystem software. These initialization
files must be covered by configuration management.

4) These operator capabilities for controllers are useful testing features:

* Pause the controller--examine status information--resume, with minimal operator
action needed.

» Pause--manually or automatically manipulate outputs--then resume.

 Switch between local and remote database systems dynamically (i.e., without
reloading, restarting, or recompiling software).

* Manually initiate module tasks, including external communications

* Assess controller status and activity, especially with a continuous display that does
not require keystrokes to invoke.

« Initialize and activate subsystems using automated procedures (rather than step-by-
step manual actions).

» Change controller configuration via operator interface while the controller is
running. This is the most useful and versatile technique for changing
configuration.

5) Controller developers must provide tested software utilities that support the
configuration changes listed in Table 1. These utilities emulate or simulate the interactions
of other controllers and subsystems.

Integration Testing Procedures

- Before integration testing begins -

6) Test subsystems in stand-alone mode, to verify their start-up and performance.

7) Stand-alone testing must exercise subsystem integration interfaces and protocols.
That is, emulated input information should be expressed in the format specified by the
integration interface--stand-alone testing using internal representations of interface
information is not adequate. See the testing example at the end of the report. The
integration buffers are B1 and B2, the internal buffer is B3.

8) Confirm that the performance of emulations of other subsystems used in
standalone testing conform to interface specifications. Note: the deliberate generation of



bad interface information is a useful technique for testing subsystem error detection and
correction.

9) Specify the design of interfaces with documents that are based on a well-written
narrative description of subsystem interactions and information formats. Program listings
of procedures and/or data definitions can be used to supplement the narrative, but should
not be the sole mechanism for conveying interface information to people.

10) If a tested subsystem is modified (hardware or software) retest it in stand-alone
mode before it is included in further integration tests. Also retest when initialization data
changes, even if source code did not change.

11) Consider choosing a project-neutral test coordinator to coordinate test activities,
centralize configuration control, and provide impartial judgment during troubleshooting.

12) Provide for and enforce central configuration control for subsystem versions of
software, hardware, and initialization data. Developers often cannot “see” effects of
changes to their subsystems on system operation.

13) Design integration tests before the test is begun. Elements of a good Test
Design are:

* Purpose of the test: what will we find out by trying the test; by successfully
completing the test?

* Definition of the system to be tested, configuration of the subsystems, and
description of the environment. Use drawings or sketches in addition to narrative.

» A functional scenario, including description of initial conditions

» A technical scenario: how functions are done and what interfaces are involved.

» Criteria to use in determining a test’s success. These form a prediction of the results
of a successful test. Criteria include technical results as well as operational
procedures (e.g. the criterion “The subsystem performs well with a non-expert
operator.”’) Quantify criteria when possible, e.g., the robot will process and
perform four different commands, the workstation controller will perform three
different types of IMDAS transactions.

14) Use a Test Plan to describe tests that are a subset of a given Test Design. In
this way, ambitious, longer-range Test Designs can be generated that do not cover details of
individual tests. Smaller scope, step-wise tests can be run without generating a new Test
Design each time. A Test Plan can reference specific sections of the Design, and note
exceptions if applicable.

15) Use a standard form for Test Design and Test Results documents. The formats
and titles should be easily recognizable. Make forms easy to read and to complete.

16) Perform upgrades of subsystem computer operating systems or compiler
versions after reliable system operation has been achieved. Do not make changes when
some progress has been made, but more testing is needed. Notify all subsystem staff
before changes are made.

17) Experts on interface protocols and system design should publish examples of
transactions or data encodings for use by other project staff. It is especially important to
illustrate transactions that affect the most subsystems: in the AMRF these were Network
and IMDAS transactions.

18) Generate tools to produce and manage diagnostic trace information. Use “save”
files to preserve data in case it is needed later. Develop, document, and use procedures for
cleaning up and reclaiming file space after tests.

- Procedures for Integration Testing -

19) All subsystem modules that will run in integration testing must first be
successfully run in the stand-alone test.

20) Activation procedures for subsystems and the integrated system must be in
written form or directed by interactive software utilities--not remembered by operators.
Include activation procedures in configuration control.



21) The following documentation must be on-hand during tests:
» software listings
» hardware wiring diagrams and manuals
» interface specifications (not just well documented software listings)
» a test plan or test design
« standard initialization and startup procedures
« an integration testing policy (recommendations 1 through 30).

22) Dedicate shared resources such as multi-user computers to integration testing, at

least in the early stages, so that baseline performance can be assessed.
- Regression testing (retesting of a previously tested system)
23) Retest a subsystem if any of its modules is changed.
24) Retest the system when the configuration of any subsystem has
changed, including the apparently harmless removal of diagnostics.

25) Provide utilities for each subsystem for examining interface information for
inputs and outputs. Note: continuous display of important system status parameters,
without need for keystrokes, is a very desirable capability.

26) Do not train operators of subsystems or the system during integration tests.

27) Do not change operators during critical testing phases. Operator performance
may change, and a new operator may not be aware of the latest changes in procedures and
environmental conditions.

28) Develop, test and use procedures for orderly system shutdowns. This includes
orderly process exits and file space cleanup. Failure to do so can produce conditions that
can corrupt subsequent tests.

29) The test coordinator should not operate a subsystem during an integration test.

- After Testing -

30) Issue reports of test results to the participants. This is their feedback; to know
if the test was successful, to learn how other subsystems performed, what the overall
problems were, what progress was made, and what additional testing may be necessary.

Human Factors

31) To help communication among test personnel, develop scenarios of system
operation, system test procedures and desired results of system operation. These scenarios
are elements of good Test Designs.

32) Plan milestones and goals in steps. Early and intermediate successes help
build confidence and morale. There are some differences between integration testing and
testing of small projects regarding personal factors. Integration testing is a team activity in
which individuals’ satisfaction is linked strongly to cooperative success. Also, results of
the cooperative testing are visible to members of the team. In smaller project development
intermediate results may only be known to that project’s staff.

33) Visual displays

» Make operator interfaces instructive, not terse. Eliminate distracting information on
visual displays.

* Don’t leave displays blank during process execution. Use positive feedback to indicate a
process’s state, such as “Process Begun”, “Requesting Data”, “Loading Part”. Also see
[12], p. 98, 213, 223, 308, 311, 312, 325.

34) When applicable, identify and document a common high-level methodology to
be used in system and subsystem design by all personnel . This provides a common
ground that simplifies interpersonal communications and produces more consistent designs
of subsystems and interfaces. The example in the AMRF is the concept of hierarchical
control and characteristics of all command-status interfaces.



AN EXAMPLE OF AMRF INTEGRATION TESTING

This example shows the flexibility that should be designed into controllers to allow the
configuration changes required for step-wise development and for integration testing. The
configuration change is between integrated and stand-alone modes. The most important
design principle is to modularize controller functions. The controller configuration is then
changed by controlling module execution and manipulating data that is exchanged between
modules, rather that by compiling different versions of software.

Figure 3 shows the internal modules and information buffers of a controller. In
integrated operation a Network mailbox conveys commands from a higher level controller.
The Common Memory Protocol (the AMRF communications paradigm) module copies the
information into an internal buffer. The conversion module processes the standard AMRF
format information into an internal representation of commands and parameters that is used
directly by the controller’s decision process.
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Figure 3. Processing modules and information buffers of a controlier.

In stand-alone configuration an operator generates the command used by the
controller. The operator utilities can produce information that is inserted into any of three
information buffers, either the Network mailbox B1, or the internal copy buffer B2, or the
internal representation buffer B3. The utilities also display and provide ability to change all
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information in the buffers, including commands and the status information produced by the
controller.

There are four testing activities that benefit from the modular controller structure
and the use of buffers for information exchange:
1) Changing controller configuration. In integrated configuration a higher-level controller
produces command data in buffer B1. In stand-alone mode the operator utilities would
produce the command information--the configuration of internal modules is identical to that
of integrated operation. If the absence of the Network dictated that buffer B1 was not
physically present, then the operator utilities would generate data for buffer B2.
2) Stepwise controller development can be performed by first testing the decision process
via B3, then adding the conversion module by using B2, then adding mailbox
communications functions by using B1.
3) An effective diagnostic technique is to isolate the actions of modules by manipulating
input data in buffers, running the module, and observing results. Modules that exchange
data can also be run in “single-step” mode so testers can trace controller internal
performance.
4) Error recovery can be performed via operator intervention in some cases by pausing the
controller, clearing the local error and replacing the error status report in buffer B3 with a
status report of DONE. The controller can be restarted, it will report its DONE status to the
higher control level, and be ready for the next command.
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