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ABSTRACT

This paper deals with new and simple representations of 3-D points in a moving-
observer coordinate system. Assuming rectilinear motion with no rotation of an
observer where the optical axis coincides with the direction of motion, and a stationary
scene, points in 3-D space that lie on a particular 3-D surface produce constant value of
some nonlinear function of the measurable image optical flow. Five sets of different
surfaces are introduced and there is one optical-flow based constant value for each sur-
face. We called these values "invariants". It is shown how to extract these invariants
and how to use them for representing 3-D space.
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1. INTRODUCTION

During eye motion in a stationary environment, the projection of objects in the
world is continuously changing, but we perceive the world as stationary. Are there pro-
perties of the image that under some transformation remain constant during the motion
of the eye? In other words, are there visual invariants?

Gibson [11] capured this idea as follows:

"If invariants of the energy flux at the receptors of an organism exist and if these
invariants correspond to the permanent properties of the environment, and if they are
the basis of the organism’s perception of the environment instead of the sensory data
on which we have thought it based, then I think there is new support for realism in
epistemology as well as for a new theory of perception in psychology."

This paper deals with new and simple representations of 3-D points in a moving-
observer coordinate system. Assuming rectilinear motion with no rotation of an
observer where the optical axis coincides with the direction of motion, and a stationary
scene, points in 3-D space that lie on a particular 3-D surface produce constant value of
some nonlinear function of the measurable image optical flow. Five sets of different
surfaces are introduced and there is one optical-flow based constant value for each sur-
face. We called these values "invariants”. For example, one invariant corresponds to
all points in 3-D that lie at the same distance from an observer. This means that a non-
linear function of optical flow will result in the same value for all points on a particular
sphere that surrounds the observer.

The optical flow analysis takes place in a spherical (R—6—®) coordinate system
(rather than X-Y-Z). In this representation, since we deal with translation only along
the optical axis, any point in this coordinate system moves along a constant ¢ radial
line and can be processed independently of any other point.

There are several advantages to using these invariants:

1. They are measured in camera coordinates, i.e., there is no need to transform to
object’s coordinate system.

2. They can be very useful when local qualitative as well as quantitative vision-based
motion related decisions need to be made e.g., how to avoid an obstacle.

3.  Only one camera is needed to extract these invariants, and all measurements can
be obtained from the visual data.

4. The magnitude of the camera velocity vector need not be known. The invariants
are measured in time units rather than distance units.



5. Using the invariants it is possible to obtain simple representation of space, and
define obstacles in a relatively simple way.

6. The measurement of these invariants become very simple when logarithmic retinas
are used.

7. These calculated values of optical flow can be used to find relative locations of 3-
D points without first reconstructing the 3-D world.

Several uses of the invariants such as understanding of fixation, analysis of loom-
ing, robust methods for 3-D reconstruction, etc. are mentioned in the text.

2. COORDINATE SYSTEM FOR 3-D SPACE

In a rectilinear motion with no rotation, points in the image plane move away
from the Focus of Expansion (FOE) (Figure 1a) and towards the Focus of Contraction
(FOC) (Figure 1b). Based on this observation we use an R-©@-® spherical rather than
an X -Y-Z cartesian representation of points in space, which reduces to a ©-® represen-
tation in the image domain.

Figures 2 and 3 show the chosen coordinate system and the definitions of r and
the angles 6 and ¢. (Note that the R -©-® coordinate system corresponds to the velocity
egosphere defined in [7].) If the optical axis coincides with the translational vector then,
in the image domain, constant ¢ corresponds to a radial line that emerges from the FOE
and constant 6 corresponds to a circle whose center is the FOE. Given a point in carte-
sian coordinate system, it can be transformed to a (r—6—¢) point in the (R-0-®)
domain and vice versa.

In this paper we assume that the camera (observer) undergoes translational
motion along the optical axis. Using the R—~8—® coordinate system, any point in the
image domain moves radially i.e., along a constant ¢ line. In this coordinate system a
point in the image can be processed independently of any other point, and a constant ¢
line may be processed as a 1-D image. For example, in a translational motion when the
optical axis coincides with the translation vector, each point on an edge in the image
moves radially away from the FOE. This point can be traced and both its optical flow
and location in the image can be obtained independently of any other point in the
image.

3. MOTION INVARIANTS

We describe five invariants. First, we derive the general relationship between the
moving observer and a point in 3-D space. Based on this relationship the invariants are
obtained. It is shown that points in space that lie on a specific 3-D surface share the
same time-dependent invariant. Geometrical invariants are introduced, followed by a
derivation of each invariant from the image optical flow.



The invariants are time-dcpcndcn; only, i.e., points in space are described in terms
of time (scaled space) [1,2,4] rather than their location in space.

Refer to Figure 4. For a rectilinear and continuous motion of the camera, any
point in space obeys:

Al =V At sin® 1)
Al = (r-Ar) tanA® 2)
Except for =0 and 6=r, then from (1) and (2), for At —0, tanAB—AB, and AGAr —0
0
V=r——
" sin0 ®)

where the dot denotes differentiation with respect to time. 6 is the optical flow along a

radial line, i.e., for constant ¢. The value r Si?'l 8

those with 6=0 and ©=r) in 3-D space. If, in addition, the velocity V of the_observcr
remains constant, then this relationship holds for all time instants. © and 0 can be

is the same for all points (except

measured/computed at each instant of time, and hence the nonlinear function —e—e can

sin
be obtained.
The following is a description of the five invariants in terms of optical flow. We

denote them by L, —1—, —l—, —1-, and —l-—. They all have units of —1—
TR r Ts Tc Tp nime

1.  The equal range invariant -tl-=s—:l-6- (Figure 5): All points in 3-D space (except
R

those that lie on the motion axis, i.c., with 6=0 and 6=n) that lic on a sphere
whose center is the pinhole point of the camera share this invariant, i.e., have the
same Tp. In this case the radius r is constant, and so, using Equation (3), the

ratio - is kept constant, and E%é remains constant. The meaning of this invari-

ant is that the modified optical flow —
sinB

(except those which are on the axis motion of the camera). Points inside the

.

is the same for all points on a sphere

sphere ("close" points) produce higher values of s—lex;é- and points outside the

sphere ("far" points) produce smaller values of . Therefore it is possible to

sin®
find the relative distance of a point simply by calculating or measuring this value.
Points in 3-D space can be viewed as lying on shells, each of which has a

) 1 . .
different Tt—— invariant.
R



The fixation invariant ?1T-=6 (Figure 6): All points in 3-D space (except those that

lie on the motion axis, i.e., with 8=0 and 6=n) that lie on a torus obtained by
rotating a circle which is tangent to the direction of motion axis about this axis,
share this invariant, i.e., have the same Ty. This circle is an "Equal Flow Circle"

(EFC) as described in [6]. In this case the diameter of the torus, i.e., si; 0

stant, and so using Equation (3), 6 remains constant. (Note that r is the distance
from the observer to the point and not the radius of the torus.) An extension of
this invariant to a more general motion of a camera has led to a quantitative
approach to camera fixation [5,6] and to road following [10].

is con-

The looming invariant %—=_ta—?16 (Figure 7): All points in 3-D space (except
S
those that lie on the motion axis, i.e., with 6=0 and 6=r) that lie on a sphere

which lies in front of the camera share this invariant, i.e., have the same tg. The
center of the sphere lies on the optical axis of the camera, and the camera lies on

is constant, and
0s0

so, using Equation (3), gne—e— remains constant. It has been shown by Raviv in [9]

that all points on a particular sphere result in the same visual looming.

. . 1 0

The clearance invariant —=—
Tc sin“0
those that lie on the motion axis, i.c., with 6=0 and 6=r) that lie on a cylindrical
surface whose axis coincides with the camera translational motion vector share

this invariant, i.e., have the same t-. In this case the radius of the cylinder r sin6

the sphere’s surface. In this case the diameter of the sphere S 4

(Figure 8): All points in 3-D space (except

remains constant. This invariant

is constant, and so, using Equation (3), — 3
sin“0
has been used by Raviv [3] to develop a robust, integration-based, and massively
parallel method for reconstructing 3-D scenes. Albus [7] has suggested that this
invariant can be used to measure clearance.
20
sin20
(except those that lie on the motion axis, i.e., with 6=0 and 6=r) that lie on a
plane which is perpendicular to the direction of motion of the camera, share this

invariant, i.e., have the same Tp. In this case rcosB (the distance from the sur-

The time to contact invariant ;—1—= (Figure 9): All points in 3-D space
P

remains constant.

. . 20
i ¢ ] ;] tl 3 ] .
face) is constant, and so, using Equation (3) <28



Tp is the "time to contact” as described by Lee in [1], and by Lee and Reddish
[2]. Lee observed that two macroscopic visual parameters are essential for animals’

behavior, the time-to-contact t and its derivative % He also showed how to derive

these parameters from the optical flow. These parameters "tell" the animal how to con-
trol its motion in order to avoid collision. Diving birds use it to fold wings for entry
into water [2]. 7T is specific to the immediacy of contact (i.e., when contact will be
art
dt
environmental surface. In this paper we referred to the "time to contact” as tp and
showed its formulation in an image centered spherical coordinate system. More about

extraction of Tp from visual data can be found in [3].

made), and is specific to the harshness of contact (i.e., the type of contact) with the

Figure 10 is a summary of the invariants. It shows the basic relationship between
space, speed and optical flow (top equation), from which the five invariants are derived.
Based on geometrical properties, the time-dependent invariants are shown as a function
of optical flow. The geometrical interpretations of all invariants are summarized at the
bottom of Figure 10.

4. REPRESENTATIONS USING MOTION INVARIANTS
Two different representations of 3-D space using the invariants are shown in Fig-

ure 11. Figure 11a shows a representation that uses the clearance invariant -'tl-= '926
) c sin
(Figure 8) and time to contact invariant ?1—= siige (Figure 9). Figure 11b shows a
P

representation that uses the fixation invariant —1:1;-':9 (Figure 6) and the looming invari-

ant ?1_=Ta§n—9- (Figure 7). In both 11a and 11b Figures, the third dimension is ®.
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