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Abstract

By analysis of the driving-point admittance, it is shown how time-delays and discrete control
can create instabilities for a simple position controller in contact with the environment. The lowest
frequency of contact instability due to time-delay or sampling is determined analytically. It is
shown how mechanical compliance between the motor and point of contact can eliminate these in-
stabilities.To achieve the best relative stability when contacting arbitrary environments, the me-
chanical/control design of manipulators should maintain a critical relationship between the fre-
quency of the compliant mode and a frequency associated with contact instability.

1. Introduction

The simple proportional-derivative (PD) controllers used for controlling most robots show a
remarkable robustness in a number of tasks including those which involve contact with the envi-
ronment. Recently, some authors have noted that the time-delays and sampling in these controllers
should have a detrimental effect on stability during contact with certain environments [1,2]. How-
ever, since such instabilities are not often observed in practice, these authors conclude that inherent
mechanical compliance ultimately stabilizes these systems. The idea that the robustness of simple
position controllers in contact is due to mechanical compliance is analyzed in detail in this paper.

First, consider a force generator (motor) u acting on a damped mass, as shown in Figure 1. An
ideal proportional-derivative position control law

U= Kp (x4—x) — Ky ¢))]

with Ky, Ky > 0, would produce a stable system, both in free-space and in contact, since it has a

passive physical equivalent [1]. That is, the same control could be achieved by attaching a physical
spring and damper to the mass, and physical systems are always passive, or energy dissipating. Al-
ternatively, one could examine the passivity of the driving-point admittance of the mechanical sys-
tem, If the driving-point admittance does not have more than 90° of phase shift, then there is a pas-
sive physical equivalent and the system will be stable in contact with any passive environment
[1,2]. To investigate stability it is only necessary to look at the admittance due to feedback [2], so
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Figure 1. Damped mass system.
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for (1), the driving-point admittance is

-v(s) _ 5

Ye) =55 = Us+B)s+ (K, +K,3) &)

The phase of Y(jw) for this system is between 90° and -90° for all ® > 0, and the system is stable
in contact with arbitrary environments.

2, Effect of Time-Delay
For the controller (1) with a time-delay T, the driving-point admittance is
B
Y(s) =
Us+B)s+ [K,+K,s]e )
The real part of Y(jw) is

K, 0*cos (Tw) — K, wsin (Tw) +Bw?

[ Jo?sin (Tw) +Bowcos (Tw) +K,a] >+ [~ Bosin (Tw) —Jo?cos (To) +K,] 2

The positive real condition, Real{ Y(jw) } = 0, can be used to test the passivity of the admittance
[1]. As also derived in [1], this yields that the system presents a passive admittance as long as

K wcos (Tw) — Kp sin (Tw) +Bw=0 4)

which indicates that the system may exhibit passivity violations for frequencies above a certain val-
ue. These violations are characterized by phase in excess of -90° over specific frequency intervals,
which means that the system will exhibit instability in contact with springs of certain stiffnesses.
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Figure 2. Effect of time-delay on the passivity of the damped mass system.
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Figure 3. System with compliance.

Figure 2(a) shows the phase of Y(jw) for J=1, B=0, T=0.01, Kp=360, and K,=27. (Any consistent
set of units may be chosen for these numbers.)

Without friction, the frequencies delimiting the passivity violations are the intersections of the
line K, /K, with tan(Tw), as depicted in Figure 2(b). The frequency of the first such intersection
is the frequency , at which passivity is first violated. The presence of friction may stabilize the

system. The amount of damping required to completely stabilize the contact instability can be used
as a measure of relative stability. For the system of (3), damping can stabilize the system only at
unreasonable levels. Suppose substantial friction of B=K exists. Then (4) can be written

Ko sin (Tw) To
KP 1+cos (Tw) tan(_f) ©)

which indicates that contact instabilities still exist but for stiffer environments. Note also that as B
increases, so does ®,. Only when B>>K, can the system be completely stabilized. Such high levels

of friction clearly limit performance.

For most robots there is some compliance between the motor and the point of contact [3]. The
presence of this compliance may help stabilize the system during contact. The damped mass mode!
can be modified to include a compliant transmission modeled as a damped spring [1], as shown in
Figure 3. To simplify initially, let B,=0. Computing Real{ Y(jw) } = N(w)/D(w), yields

N(w) = 16K K, 0 cos (Tw) - 16K/K, wsin (Tw) + 16K, Bw? (6)

Since D(w)>0 for ®>0, as before, the system will be stable in contact with arbitrary passive envi-
ronments provided N(®)=0. This produces condition (4) again, and apparently the system with
compliance will suffer the same type of passivity violations as before. However, the effect of the
compliance is to improve the relative stability of the system by requiring less damping at certain
frequencies.

The undamped natural frequencies of the system are

2K, 4K,
D =NT 0 T T

At contact frequencies below @y, the masses move together with the spring unstretched [4], such

that the transmission damping has little effect. At these frequencies the situation of (4) applies,
which requires significant motor-side friction B to stabilize. Above ®y; the masses move out of



phase and the system may be stabilized by a smaller amount of friction By in the transmission. In

order to have a system with the best relative stability, i.e., which can be stabilized by the least
amount of friction, the requirement is

©, < w, 7
where
4K,
0,= " ®)

This relation can be achieved by decreasing the time-delay, which increases w,, or by decreasing
the stiffness of the transmission K;. Although the presence of friction will also affect these values,
a system design maintaining ;. < @y, assuming no friction, will retain good relative stability in the
actual system.

As an example, Figure 4 shows the phase of Y(jw) for the system of Figure 3 with J=1, con-
trolled by (1) with a time-delay of T=0.01, and Kp=360, K,=27. When B=B=0, w,=148.1 rad/s,
as obtained from the graph of Figure 2(b). When K;=3000, @, < @y, and the system is made com-
pletely passive by transmission damping of B=0.55. On the other hand, when K;=60000, the sys-
tem requires B,>100 (B=0) or B>100 (B=0) for passivity.

3. Effect of Discrete Control

A computer implementation of (1) will introduce sample and hold elements into the control
law. For a discrete controller with a zero-order hold
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Figure 5. Discrete controller with derived rate.

Here it is assumed that any computational delays are small compared to h. Following the same rea-
soning as before, the positive real condition for this controller reduces to

K, wsin (hw) +Kpcos (hw) +ma2—Kp20 (h=0) (10)
which, when B=0 and ® < w/h, can be written
K -
,® > 1 .cos (hw) - tan (h_o)) (11)
KP sin (h®) 2

This shows that the effect of discrete control on system passivity is the same as the effect of time-
delay. Likewise, the effect of compliance between the motor and the point of contact is to improve
the relative stability provided the condition (7) is maintained.

A position controller with an analog velocity loop

1—ehs
u= T(KP (x;,—x)) —K,v (12)
will generally not exhibit contact stability problems since the positive real condition is
K, (cos (h@) = 1) +hK,0*20  (h=0) (13)

and this condition is only violated when hK, > 2K,. Contact instabilities in simple position con-
trollers are principally due to delays in the velocity feedback loop.

As another example, consider the controller depicted in Figure 5 applied to the damped mass
system. The positive real condition yields

2K, cos? (hw) — (2K, + kK ) cos (hw) + (hK,—BH'@’) <0 (h20)  (14)
From which we obtain the condition

(2K, +hK,) -T (2K, +hK,) +T
AKX <cos (hw) < K (15)

v v

T = [8BKa’K, + (2K, - hK )’

As with the previous discrete controllers, there are multiple frequency intervals of phase in excess
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of -90°. The intervals above the first interval of passivity violation, however, have relatively little
phase excess, as shown in Figure 6. The figure shows the phase for h=0.01, K,=360, and K,=27.

From (15) with B=0), the first interval of passivity violation begins at the frequency
_1 (kK
mp = ’—lcos (ZKV (16)

The minimum damping B required for passivity can be obtained from (15) as well. Large
amounts of damping may be required depending on the gains and sampling rate chosen. For the
example of Figure 6, B>13 is required to make the system completely passive. As with the time-
delay problem, the controller of Figure 5 has the same positive real condition (14) when a trans-
mission compliance is inserted as in Figure 3. Thus, as before, the presence of transmission com-
pliance will improve the relative stability when @, < .

4. Effect of Discrete Control with Torque Loop

The effect of compliance external to the controller was examined in prior sections. Some mod-
ern manipulators, however, use drive transmissions surrounded by torque loops [5]. This approach
places the major mechanical compliance of the device inside the controller. To see how this affects
stability, consider the model of Figure 7. A spring representing the drive compliance has been in-
serted between a motor mass and a damped load. The position and velocity at the load are con-
trolled using the equivalent of a torque loop, which attempts to control the force in the spring. The
analog force control law is given by

Y=K{—N (17)
where the desired force f; is the input u from the position controller in Figure 5, and f is the sensed
force produced by the transmission spring K. The resonant frequency of the force loop is



Figure 7. System with compliance internal to control.

_ K (K+1) (18)
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Applying the positive real condition when there is no damping, B,=0, B=0, and B=0,

R KK, [J, @ - (K+ 1)K} [2K,cos (k) — kK] [cos (hw) =11 20

The frequency (16) is still a determining boundary of the first instability interval, but the actual fre-
quency interval is given by

w, Sw<®  when (cop <o) (19)
or
WSO o, when (@, < cop) (20)

Thus, for the torque loop model, there is a prominent first region of contact instability. For the
first case (19), the system may be passive in the upper part of the region provided that w, is suffi-
ciently far from ey to hold the entire first instability interval starting at @y, In this case, the relative
stability of the system in contact is similar to that of the damped mass system— a large amount of
friction is needed to stabilize the system. Damping requirements will also be large when the system
is unstable at o, which can be a problem for (20) as well. This is due to the resonant frequency term

J 02— (K+ 1)K, 21

in the positive real condition. For a given @y, this is most problematic when J;;, is small, since I,
determines the steepness of (21) around ;.

Again, B, is most effective in stabilizing the system for (20), rather than (19). In general, some
damping is needed to stabilize the higher frequency non-passive intervals. B will work as well as
B, for this. However, there is another way to stabilize the prominent first interval, provided J, is
not too small, as is illustrated in Figure 8. The following base set of parameters is chosen for the
figure: Byy=0, B=0, Bj=0, Ji=1, J=2, K=12000, K;=360, K,=27, h=0.01. With K=7, the situation
is that of (19), and the phase of the driving-point admittance is shown as the solid line in Figure 8.
Only with damping of B,>19 and Bj=0.1, can this admittance be made completely passive. An ex-

ample of (20) can be obtained by using K=1. The result is shown in Figure 8 as the dashed line.
Note that the passivity violation for this case is due to phase in excess of 90°, rather than -90°. Thus,
the system can be made passive by the addition of phase lag in the PD loop. Since the controller



@p =150.4 rad/s

90°

Figure 8. Phase of the driving-point
admittance of torque loop model con-

trolled by derived rate controller.
OO

i — K=7

. K=1

-90°

1 1 1

1 10 100 1000 10000 (rad/s)

will typically contain some phase lag due to computational delay, it is possible to design the system
so that it is completely passive without excessive damping provided ®; < @, For this example, lag

due to a computational delay of T=0.0035 and Bj=0.15 makes the system stable in contact with ar-
bitrary environments.

5. Conclusions

Simple position controllers may exhibit contact instabilities, particularly when low sampling
rates and long time-delays are involved. Most commercial robot controllers are stable in contact
because they are typically controlled with analog PD controllers. When commercial systems use
discrete control, they use sampling rates as high as possible. This generally ensures that the fre-
quencies of passivity violations are above the resonant mode of the mechanical structure, wp > O
As shown in this paper, achieving this relationship for these two critical frequencies makes contact
stability much easier to achieve.
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