Journal of Intelligent and Robotic Svsrems 5: 49-62, 1992, 49
(3 1992 Khower Academic Publishers. Printed in the Netheriands.

Graphical Simulation for Sensor Based
Robot Programming

NICHOLAS TARNOFF, ADAM JACOFF and RONALD LUMIA
Robot Systems Division. National Institute of Standards and Technology (NIST), Gaithershurg,
MD 20899, U5 A

{Received: 14 November 1990: revised 15 August 1991)

Abstract. The programming of robots is slowly ¢volving from traditional teach pendant methods to
graphical Off-Line Programming (OLP) mcthods. Graphical simulation tools, such as OLP, are very useful
for developing and testing robot programs before they are run on real industrial equipment, OLF systems
are also vsed to develop task lével programs. Traditional OLP systems. however, suffer from the limitations
of using only position control which docs not account for inherent robot inaccuracies and dynamic
environments. This paper describes our work on improving and supplementing traditjonal position control
programming methods. A buscline OLP system was implemented al NIST's Automated Manufacturing
Reseurch Facility {AMRE). Experience gained in implementing this system showed that an effective OLP
system must accurately simulate the real world and must support scnsor programming Lo compensate for
real-world changes that cannot he simulated. The developed OLP geontetric world model is calibrated
using robel mounted uitrasound ranging sensors. This measurement capability produces a baseline
geometric model of relatively good static accuracy for off-line programming. The graphical environment
must also provide representations of sensor features. For this specific application, force is simulated in
order 1o include force based commands in our robot programs. These sensor based programs arc able to
run reliably and safely in an unpredictabic industrial environment. The last portion of this paper extends
OLP und describes the functionality of a complete system for programming complex robol tasks.

Key words. Of-line programming, robot programming, simulation, computer graphics, scnsor program-
ming, sensor modchng, robetics, world modeling, calibration.

1. Introduction

A graphical Off-Line Programming (OLP) system provides a simulation of the real
world for programming robotic tasks without the use of the real equipment. This
approach is potentially very beneficial in improving the safety and cost-effectiveness
of Tobetic workstations. Human safety is significantly improved by limiting physical
interaction between the operator and a powered robotic workstation. OLP also
protects the equipment, by using simulations to check for robot programming errors
that might otherwise have catastrophic results. In addition, programs generated
off-line, reduce robot down time which ordinarily occurs when programs are generated
using the teach-pendant method.

OLP systems are recognized as very useful for rapid prototyping and debugging of
complex robotic workstations and several commercial systems are available for that
purpose [1]. However, commercial OLP applications rarely produce the final robot
control programs. Despite the significant benefits of using OLP as a production tool,
OLP largely remains a prototyping tool for one major reason. Traditional OLP

50 NICHOLAS TARNOFF ET AL,

programs, based on position controls, do not compensate well for inherent robot or
world model inaccuracies. We are, therefore, working to improve off-line world model
accuracy and, most importantly, support sensor based robot programming.

OLP 1s also used in advanced robot control to program at a level of control called
the task level. Task level commands target the actions of one manipulator on one
complete object such as ‘deburr part A’ [2]. This level of abstraction is very similar
to the way in which humans interact with their environment. OLP, therefore, is an
intuitive tool for programming at the task level.

While our OLP work is primarily geared toward industrial applications, it is
very important to understand how our work relates to accomplishments in the
field of advanced robot control at the task level. In general, OLP is a graphical
tool for programming complex robotic tasks that are difficult to program only
textually. The inherent limitations of the human mind require the assistance of tools
to store, recall and interact with large amounts of information simultaneously. OLP
is such a tool for manipulating mostly geometric information to arrive at a reliable
robot program. The complexity and volume of information involved at the task level,
however, is one of the major reasons little progress exists at this level of control.
Research of 1ask level functions 1s very sparse as compared to research of the lower
control levels such as hybnd force/position or PID control. Traditional task level
research 15 concerned with automating either top/down (c.g., assembly plans) or
bottom/up (e.g., compliant motion) functions. These two approaches are typically
used to solve three types of robot independent actions; path planning (gross motion),
grasping and mating (contact) [3]. In contrast, it is important to understand our more
pragmatic approach which involves iterating between top/down and bottomjup
design. We are building a tool that will provide a coherent environment for program-
ming, testing and simulating task level functions for the purpose of automating those
functions.

Our current research focuses on solving the inherent inaccuracies of an artificial and
remote world model and the limitations of traditional pesition control programs.
These two issues arc discussed and related to the OLP implementation at the Cleaning
and Deburring Workstation (CDWS) in the AMRF.

2. Application

An OLP system was implemented at the Cleaning and Deburring Workstation
{CDWS) in the AMRF [4] in order to study OLP issues, The CDWS, shown in
Figure 1. consists of two robots for deburring, buffing and cleaning of machined
workpicces [5]. The OLP project involves programming the Unimate 2000 robot for
buffing workpieces. Both the Unimate and the Puma 760 robots perform part hand-
ling to and from the supply trays, deburring vise and washer/dryer. In addition the
Puma 760 performs deburring operations. The workstation control scheme allows for
concurrent tasks. Conflicting tasks that could lead to a collision are prioritized and
one robot at a time is allowed to operate in the common work area. An Automated

SENSOR BASED ROBOT PROGRAMMING 51

Washer-Dryer

System
Tool
Rack
Water Tank 0 1.5m
& Air HeateJI:]]
Scale
| Tray
[1] Station #1
7] Buffing
= Wheels Tray
Dust Station #2
Collecto

Unimate 2000 Robot

Fig. . The cleaning and deburring workstation at the AMRF.

Guided Vehicle (AGY) delivers and retrieves workpieces between workstations and
the material buffering system.

The goal of OLP at the CDWS is to program the gross and, more importantly, fine
motions of the Unimate 2000 buffering process. While the application area is very
specific, the intent for the project is to develop generic capabilities of OLP which are
transferable to any robot programming task [6]. In fact, this generic OLP technology
is being applied to a new Advanced Deburring and Chamfering System (ADACS)
under development in the AMRF.

The initial OLP imptementation completed two years ago provided an integrated
baseline system. Using this OLP system first involves transferring a CAD wireframe
model of the workpiece from a commercial CAD system (CADDS from Computer-
Vision) to a commercial OLP system (CimStation from Silma, Inc.) via the Initial
Graphics Exchange Specification {IGES) [7]. IGES 3.0 is a standard file format for
passing CAD data between systems. The imported IGES workpiece model is added
to the OLP world model. The operator then models the remaining worksiation
components within the CimStation graphical simulation environment. Robot trajec-
tories are created by defining frames on the graphics screen’s rendering of the
simulated workstation using a mouse and an on-screen pointer. The operator pro-
grams robots in simulation by the direct manipulation of the robot model using the
computer mouse. The robot can also be movd by entering absoiute or relative tool
coordinates and orientations. The user then generates programs textually and graphi-
cally to operate and synchronize all workstation devices such as robots, material
handlers, fixtures and tooling. The resulting programs are tested and revised based
on collision detection and other simulated criteria such as sensor input. The final

52 NICHOLAS TARNOFF ET AL.

simulation is saved and the Cartesian or joint space robot trajectorics are post-
processed for downloading to the Unimate VAL II robot controller. Qur experience
in implementing and using this baseline OLP system has lead to our current research
in trying to improve the accuracy and scope of the world model.

The major impediment to effective OLP is the inconsistency between an OLP
system’s world model and the real world. The world model acts as a link to the real
world for the OLP system and eventually the control system [8]. The first part of the
solution lies in improving the world model’s geometric fidelity using calibration. The
second part of the solution lies in having a world model that facilitates the off-line
programming of sensory interactive tasks.

3. OLP Enhancements

3.1, CALIBRATION

Graphical simulation is an intuitive and flexible method of programming robots. The
world models on which these simulations are based must be accurate. An effective
OLP system must first establish a geometric and kinematic world model of baseline
accuracy. This modeling accuracy is not a visually noticeable part of the graphical
simulation but may affect the relizbility of a program whose instructions depend on
a minimum accuracy. For example, a gross motion followed by a guarded motion will
have catastrophic results if the simulated distance reserved for the guarded motion is
less than the positive error incurred during the real gross motion. The resulting gross
motion will cause a collision between the end effector and the workpiece before being
able to switch to guarded motion. Another interesting problem arises when the world
model error at a robot’s work volume boundary results in an invalid robot command
to move outside of its work volume. To help in maintaining an accurate world model
and avoid problems such as the two just mentioned, the CAD model of the workpiece
is imported directly into the simulation environment. This method preserves the
model accuracy of the workpiece as designed in CAD. For devices such as the robot
or a fixture, the model must be calibrated against the real devices in order to account
for significant geometric changes due to wear for example.

An array of contact position transducers mounted on three normal surfaces of a
fixed jig is often used to perform calibration {9]. Robot mounted non-contact cali-
bration, however. is more flexible. This calibration method is made possible by
compact ranging sensors such as ultrasound or recently developed laser triangulation
sensors [10]. An instrumented gripper was built that consists of two ultraseund
ranging sensors on each gripper finger. The ultrasound ranging sensors are aimed
normat to a fixed hard surface and the return sound pulse delay is recorded and
converted to a distance, The sensor control electronics are integrated with the CDWS
controller and enable automatic data retrieval and manipulation [11]. The calibration
gripper is equipped with a quick change adapter enabling the Unimate 2000 robot to
attach or detach the calibration gripper when manipulates a target when the object

SENSOR BASED ROBOT PROGRAMMING 53

under calibration cannot be used itself as an ultrasound measurement target. The
RPS-300 Migatron ultrasound sensor’s reliable range is between 3 and 14 inches and
+ 6 degrees off the normal. The accuracy of the sensor is specified to be 0.76 mm. Our
implementation of the sensors resulted in a resolution and repeatability of 1.1 and
2.0mm, respectivety. The Unimate 2000 robot, which performs the calibration, is
repeatable to within +2.5cm. Compared to the traditional fixed calibration device,
our robot mounted ultrasound calibration scheme is non-contact, last, flexible, and
automated. This implementation, however, can measure only along two normal axes
and around one axis. Measurement of the complete three-dimensional position and
orientation is achieved most effectively by mounting three ranging sensors in a
triangle pattern, repeated on three normal surfaces such as that of a cube [12]. This
configuration is also easily implemented as a non-contact robot mounted device.

World model calibration using ultrasound sensors consists of two steps; measuring
the pose (position and orientation) of objects relative to the robot; and generating a
three-dimensional scalar map of robot end effector positioning erros in a volume
surrounding a work area of interest. Both of these calibration procedures transform
primarily joint space errors into Cartesian space errors and are assumed valid for
small distances and angles. Calibration results, therefore. are valid only in the vicinity
of the calibrated object or volume. Measurements of object poses are uploaded to the
OLP system for off-line calibration of object locations and robot trajectories, as
illustrated in Figure 2. An error map. on the other hand, consists of several pose
measurements within a volume of interest such as around a fixturing device. VAL 11
uses the on-line error map to compensate for positioning errors. Positioning errors for
the Unimate 2000 in the vicinity of the CDWS vise, for example, vary between 10 and
20%.

Static calibration only reduces the world model’s static errors within the limit of the
calibration sensor’s accuracy. Calibration sensors have a finite accuracy, and dynamic

OFF-LINE ON-LINE

CAD GRAPHICAL ROBOT
SYSTEM OLP SYSTEM]CONTROLLEH
CALIBRATION *
DESIGN v AND FORCE MCDEL
ITERAJ;I’]ONS (OTHER:VISION MODEL} POSITION SERVOING,
(OTHERS: FORCE AND
4 VISION SERVOING)

(REAL WORLD)

Fig. 2. OLP implementation.

54 NICHOLAS TARNOFF ET AL.

changes in geometry (for example due to temperature fluctuations or wear) are very
difficult to model and/or track. On-line, real-time use of sensors is needed to compen-
sate for an unpredictable environment unaccounted for by position control. Reliable
OLP programs, therefore, must be sensor based.

3.2. FORCE MODEL

Sensory-interactive programming features, such as force models, are necessary to
overcome minor perturbations in a robot work environment. The baseline OLP
system built on top of CimStation’s simulation capabilities limits the user to robot
position control without sensory-interaction. Position control alone, while useful, is
not sufficient for robust off-line programming of robots. The reason is that simu-
lations will never attain perfect geometry, kinematic or dynamic replicas of the real
world. Due to robot positioning errors and world model inaccuracies, the location of
the CDWS’s real buffing wheel, relative to the robot, differs from the OLP represen-
tation. Therefore, sensors must be used to compensate for errors in the workstation
world model and inaccuracies associated with position control of robots [13]. Sensor
programming of robot tasks uses sensor feedback from the environment, or environ-
mental models, to account for these errors. An effective OLP sytem must be capable
of genecrating sensor programs based on environmental models.

Environmental models are developed using sensors such as proximity, vision or
force/torque sensors. The goal of environmental modeling is to quantify certain
features in a subset volume of the workstation world model. Features may include
obstacles in robot pathways, textures or shapes of various parts in an assembly, or
forces generated on the robot by dynamic (but predictable) events in the workstation.
These environmental models are then incorporated into the OLP process to enhance
the world model by providing detailed information about regions of interest within
the world model. An example of environmental modeling is the world model calibration
via ultrasound proximity sensing introduced above. Development of a vision sensing
model, to compensate for unknown workpiece placement, is a future goal of this project.
The following sections of this paper discuss recently completed work on environ-
mental modeling of forces at the AMRF’s Cleaning and Deburring Workstation,

The CDWS application to buffing machined parts was suitable for development of
an environmental force model because it involves physical interaction between a robot
and spinning cotton wheel. The goal of this automated bufling application is to
maintain a desired buffing force on a workpiece held by the robot. The spinning
cotton wheel produces a gradual increase in force with depth into the wheel. Position
control errors in workpiece placement inte the spinning buffing wheel can result in
inferior buffing or dangerously high forces on the workpiece and the robot, The
environmenial model, developed and implemented at the CDWS, was a force/position
model of the buffing wheel. The force/position model was then incorporated into our
OLP cnvironment so that robot trajectories, programmed off-line, could be tolerant
of the actual forces incurred by a robot (with workpiece} during buffing.

SENSOR BASED ROBOT PROGRAMMING 55

The force/position model refates actual buffing forces on a workpiece to position
of the workpiece within the buffing wheel. The actual buffing forces were gathered
experimentally using the force sampling end-effector shown in Figure 3(a). The force
sampling end-effector was designed and built at NIST specifically to obtain the
relationship between buffing forces and relative position within the spinning buffing
wheel. The force sampling end-effector is a box-like tool which contains a force/
torque sensor. One of three different size probes is mounted to the force/torque sensor
and coincides with a hole in the faceplate. The faceplate is large enough to appear as
an infinite plate to the spinning wheel and the probe tip is flush with the faceplate to
avoid vertical (y axis) forces on the probe. The force-sampling end-effector is also
equipped with a quick-change adapter enabling the Unimate 2000 to attach/detach
the end-effector when a new force/position model becomes necessary. Force readings
were taken at 12.7mm intervals both vertically { y axis) and horizontally (x axis},
relative to the buffing wheel, and at Smm intervals into the buffing wheel (z axis).
Surface plots generated at each (y) level of entry into the buffing wheel are illustrated
in Figure 3(b). These surface plots show the wave-like representation of the forces
incurred during buffing as the probe penetrates the wheel. The buffing wheel’s force/
position model consists of a three-dimensional compilation of these surface plots.
Linear interpolation was used to determine forces at locations between Lhe experi-
mentally obtained nedes in the force/position model. The buffing wheel’s force/position
model is applied off-line during simulation of the buffing trajectory to monitor the
expected forces on the workpiece. Given a known workpiece position within the
bufling wheel, the forcefposition model outputs the expected force that the workpiecc
will feel based on the experimental data of that buffing wheel.

It should be noted that the force/position model is intended as an intermediate step
toward on-line, real-time, sensor based robot programming. For on-line compen-
sation of inherent world model inaccuracies and real world changes, real-time force
feedback to a sensory interactive controller is necessary. This would allow for robot
programming according to the expected force/position model, and then actively
serving to the programmed force.

3.3. PROGRAMMING INTERFACE

The most visible feature of a graphical OLP system is the operator interface. Our
sensory-interactive OLP system was built on top of the simulation capabilities of
CimStation. The graphical representation of the CDWS with the buffing wheel’s x-y--
axis force display (upper left) is shown in Figure 4. Using this graphical simulation,
the user can visually verify that the robot correctly executes its programmed trajec-
tory. In addition, programs using environmental models can report pertinent data
from that model to the user graphically, textually or both, as with the force/position
model. Environmental models give the user more insight into robot interaction with
the environment, aiding in the development of useful and safe robot programs. In
this case, the modelled environment is the buffing wheel. The force/position model

56 NICHOLAS TARNOFF ET AL.

Fig. 3(a). Force sampling cnd-effector. Fig. 3(b). Surface plot of forces (y = 0).

SENSOR BASED ROBOT PROGRAMMING 37

et iy b e :
St viELD

Y B

Fig. 4. CimStation simulation of CDWS with force display.

represents the buffing forces acting on the workpiece at various locations within the
buffing wheel. The bar graph force display allows the user to adjust the programmed
buffing trajectory, off-line, according to the allowable forces of the task, not just by
position. The force/position model of the buffing wheel 1s applied during the robot’s
simulated buffing trajectory. The position of the workpiece within the simulated
buffing wheel is known and is monitored continuously using CimStation’s “object
monitor’ feature. The workpiece face is divided into smaller facets, in simulation.
which are each tracked for collisions with the buffing wheel. Highlighting of the
simulated workpiece and buffing wheel signifies a collisions between any facet on the
face of the workpiece and the buffing wheel,

The position of each facet within the simulated buffing wheel corresponds to a force
within the buffing wheel’s force/position model. According to the forcefposition
model, the expected forces on each facet colliding with the bufling wheel are summed
over the whole workpiece. The total force on the workpiece is represented (x, v, and
= axis) in the bar-graph force display (shown in Figure 4) which advises the user of
excessive or inadequate forces incurred during a particular‘ simulated bulfing trajec-
tory. The expected forces in the x, y, and z directions are monitored graphically using
color coded scales. The color code is as follows: a green or yellow force is acceptable,
a red force is unacceptable or dangerous. The expected forces on the workpiece can

58 NICHOLAS TARNOFF ET AL.

| 5inches)

red

yellow

green (15-23 sec)

cyan

B / white (0 sec)

Fig. 5. Mosaic pattern on simulated part face.

also be monitored numerically. Therefore, the force display allows the user to visually
examine the expected forces associated with a programmed trajectory and adjust the
trajectory as necessary.

Another trajectory evaluation tool, developed for off-line use, is the simulated
mosaic pattern shown in Figure 5. The mosaic pattern represents a time-based
evaluation of buffing trajectories. Each facet on the face of the simulated workpiece
is colored according to the length of time it is exposed to the buffing forces within the
wheel. The mosaic pattern represents the time exposure of cach facet over the entire
buffing trajectory. The mosaic color code is similar to the force display. Facets which
are red tn color indicate excessive buffing time. Facets which are vellow and green
indicate acceptable buffing time. Other colors indicate inferior buffing and white
facets are untouched by the buffing wheel. The mosaic pattern distinguishes the areas
of most concentrated buffing for a given trajectory, allowing the user to adjust a
particular trajectory according to the shape of the workpiece or the desired buffing
pattern.

The user can also develop programmed trajectories which isolate sections of the
workpiece for safety reasons. For example, if the leading {top) edge of the actual
workpiece were to contact the spinning buffing wheel, excessive vertical ¢ y) forces

SENSCOR BASED ROBOT PROGRAMMING 59

would immediately slap the workpiece from the gripper. Dangerous situations can
be avoided using the mosaic pattern, off-line, to identify and change trajectories
which include contact between the simulated workpiece’s leading edge and the buffing
wheel.

The mosaic tool is used in conjunction with the calibration apparatus and the
force/position model to augment the base-line graphical simulation of the CDWS.
Together, these environmental models comprise a robust sensory-interactive OLP
system which is capable of utilizing sensors to calibrate, model and reflect the
environment in which a robot must interact to conduct tasks. This OLP system, with
sensor interaction, is used to develop robot programs that are tested to be safe and
effective prior to downloading to actual equipment. Therefore, it provides a necessary
link in improving the quality of automation while reducing risk to costly machinery
in the workstation,

4. Conclusions

4.1. SYSTEM FUNCTIONALITY

Sensor based programming and the corresponding support from off-line graphical
simulation is necessary for effective off-line programming of complex robot tasks.
Traditional position control of robots is one of the greatest impediments to expanded
robot use. Roboticists know that current actuator and sensor technology are capable
of supporting complex sensory-interactive tasks, but the complexity of programming
such tasks requires the tools and techniques described in this paper. Our future work
will investigate tools that provide graphical three-dimensional and two-dimensional
interfaces using strong underlying models as shown in Figure 6. The system will
support a fast iterative process for the programming of sensory interactive robot tasks

{ DOWNLOAD RCBOT TASK PROGRAMS :>
ROBOT TASK PROGRAMMING SYSTEM | (

USER INTERFACE CONTROL SYSTEM
30 GRAPHICAL ANIMATION/ 20 TEXTUAL AND SYSTEM STATUS
SIMULATION INTERFACE ICONIC INTERFACE AND OPERATION

[
£

ACTUATCR, SENSOR

WORLD MOCELS SYSTEM MODELS AND WORLD STATUS
ACTUATOR AND
ARCHITECTURAL. DATA
SENSGA MODELS FLOW AND BEHAVIORAL
ENVIRONMENTAL MODELS
FMODELS

—

&—‘> [TRANSFER MODEL INF ORMATION FOR USE IN PREGIGTIVE GONTROL :> Q
<

CALIBRATE OFF-LINE WORLD MODEL]

Fig. 6. Robot task programming system and evolution of modules.

60 NICHOLAS TARNOFF ET AL.

SENSOR WORLD TASK
PROCESSING MODELING DECOMPOSITION
PLAN
MODEL EXECUTE

DETECT
INTEGRATE EVALUATE GOAL OPERATOR
ALOBAL O e EINTERFACE
MEMORY % Wiy 05 | MISSION
1
SERVICE
I_s% I:-‘{ Whs g | BAY
MAPS
oBJECT Sk WH, D, |rask
LISTS ’
STATE
VARIABLES _l_;"e_m W, ﬁ_;a_lE-MOVE
EVALUATION
FCNS I s
PROGRAM
FILES
N~ SENSE ACTION

Fig. 7. The NBS hierarchical control system architecture [2].

f14]. Our implementation of model calibration and sensor simulation are clear
examples of a systematic progression towards this goal.

4.2, SYSTEM ARCHITECTURE

The NASREM hierarchical control architecture as shown in Figure 7 is very import-
ant because it provides a consistent context for our robotic work. The NASREM
philosophy has evolved significantly and the current thinking is detailed in [2, 13].
Figure 7 is a simplified illustration of the NASA/NBS Standard Reference Model
control structure. The structure has six decompeosition levels (Mission, Service Bay,
Task, Elementary-Move, Primitive and Servo) and three vertical hierarchies (Sensory
Processing, World Modeling and Task Decomposition). Communication is possible
between any two modules in the structure by way of the global distributed database.
The world model modules facilitate the transfer of data to and from the database thus
decoupling Sensory Processing and Task Decomposition. Data communication is
primarily horizontal and much more voluminous than the primarily vertical com-
munication of commands and status feedback. Successive decompositions of tasks
across both time and space result in a tree structure of task decomposition modules.
Each task decomposition module assigns jobs, plans and executes, Planning is more
active at the higher task decomposition levels while modules at the lower levels do
more process execution.

The role of OLP in the development and operation of a control system is evolution-
ary. First, the OLP system is a tool for programming the desired control, feedback
and data functions of the hierarchical control system. Once the control system is ready
for operation, the off-line world models are transferred to the control system for use
in predictive control. The OLP graphical interface now provides a user interface for

SENSOR BASED ROBOT PROGRAMMING 6l

monitoring as well as operating the automated control system. This evolution is
actually an iterative process as the control system continues to develop and improve
with operation.

To successfully achieve this process, the OLP system must be modular and include
a partial image of the hierarchical control structure [16]. The system must also include
simulated actuator, sensor and environmental events. These components form the
basis for a graphical OLP system used primarily at the task level for programming and
operation.

4.3. FUTURE DEVELOPMENTS

A three-dimensional graphieal interface is necessary for manipulating geometric and
sensor feedback information. However, it is not well suited as a two-dimensional
interface for architectural, data flow and behavioral analysis of task level robot
programs. These functions require a different user interface to support the program-
ming of complex robot tasks including sensor based and exception handling func-
tions. Such analysis tools can provide a centralized interface for itcrating between
bottom/up and top/down program development. For example, constraints on the
kinds of actuators and sensors that are available will determine the contents of the
world model (bottom/up). On the other hand, the logic and data flow behind a
sequence of task level actions must be analyzed from the task level down to the
simulated actuator and sensor results (top/down). The task decomposition, data flow
and behavioral analysis functions are currently done using manuatly intensive methods
such as a text editor. This programming method significantly limits the user to
relatively simple task level programs and hence impedes research. This very same
problem is recognized in the computer science field and Computer Aided Software
Engineering {CASE) tools are being developed to analyses complex software and
hardware systems. CASE concepts are alse beginning to appear in robot control work
f17, 18]. More importantly, certain CASE prototyping tools are beginning to support
a variety of control system paradigms that enable the control systems engineer to
implement a better system rather than being constrained by rigid analysis methods.
Those same tools correctly place a heavy emphasis on graphical interaction as a
means of programming and analyzing a system.

Our graphical OLP system will be the three-dimensional componeni of a robot
programming "CASE tool’, This software engineering tool will enable the application/
programming expert to quickly program and test new domain specific (e.g., deburring)
tasks such as one related to a new sensor capability. In addition, the expert will be
responsible for grouping tested robot tasks into simplified application specific tem-
plates. The expert will further simplity the programming process for the operator by
automating appropriate programming functions. The resulting application template
provides the factory operator/non-programmer with a simple set of commands and
rules as an interface to an otherwise complex robot controller. These tools enable the
factory operator to quickly and intuitively reprogram a workeell,

62 NICHOLAS TARNOFF ET AL.

This approach to programming robots for complex tasks provides a consistent,
modular and evolutionary programming method from research in task level program-
ming and sensor fusion through factory operations. The secondary but very import-
ant result of this process is the structuring and capturing of expert knowledge. The
formerly daunting process of having to develop task level programs is now partitioned
into a manageable and traceable subset of capabilities.

References

Imiportant Note: The National Bureau of Standards (NBS) became the National Institute of Standards and
Technology (NIST) on August 23, 1988.

. Gini Maria, 1987, The future of robot programming, Rebotica 5, 235-246.

2. Albus, 1.5, McCain, H.G., and Lumia, R., 19890, NASA/NBS standard reference model for telerobot
contrel system architecture (NASREM), NBS Technical Note 1235, National Institute of Standards
and Technology, Gaithersburg, MD. Also available as NASA document SS-GSFC-0027.

3. Latombe, J.C., 1988, Toward automatic programming, Proc, Control and Programming in Advance
Manufuacturing Systems Conference, IFS Pub, 85-102.

4, Simpson, J.A., Hocken, R.J., and Albus, 1.8., 1982, The automated manufacturing research facility of
the National Bureau of Standards, J. Manufacturing Systems 1{1), 17.

5. Murphy, K.M., Norcross, R.J., and Proctor, F.M., 1988, CAD directed robotic deburring, Second
International Symposium on Robotics and Manufacturing Research, Education and Applications
(ISRAM), Albuguerque, NM, 959-965.

6. Lumia, R., 1988, CAD-based off-line programming applied to 4 cleaning and deburring workstation.
NATO Advanced Research Workshop on CAD Based Programming for Sensor Based Robots, 1l Ciocco.

7. Craig, J.J., 1987, Silma CimStation technical overview — Version 3.0, Silma Inc., Los Altos, California.

8. Kent, EW. and Albus, 1.S., 1984, Servoed world models as interfaces between robot control systems
and scnsory data, Robotics 1, 17-25.

9. Nowrouzi, A., Kavina, Y.B.. Kochekali, H., and Whitaker, R.A., 1988, An overview of robot cali-
bration techniques, The Industrial Robot 12, 229-232.

10. Dietrich, J., Hirzinger, G., Heindl, J., and Schott, J., 1989, Multisensory telerobotic techniques,
NATO Advanced Research Workshop 'Traditional and Non-Traditional Rebot Sensors', Maralea, Haly.

i1. Bostelman, R., 1989, Electronic design of the infrared/ultrasound sensing for a robot gripper, National
Institute of Standards and Technology, NISTIR 89-4223,

12. Riley, D.L.. 1987, Robot calibration and performance specification determination, Proc. {7th Sym-
posium on Industrial Robots 10, 1-15.

13. Crane, C. and Duffy, J., 1981, An interactive animated display of man-controlled and autonomous
robots, Proc. ASME Computers in Engineering Conference, Chicago, IL.

14. Volz, Richard A., 1988, Report of the robot programming language working group: NATO Work-
shop on Robot Programming Languages, JEEE J. Roboticy Automar. 4, 86-90.

15. Albus, J.S., 1990, A theory of intelligent systems, Proc. 5th IEEE International Symposium on Intel-
ligent Control: Philadelphia, PA.

16. Tarnoff, N. and Lumia, R., 1988, The role of off-linc robot programming in hicrarchical control, 2ad
Internat. Symposium on Robotics and Manufacturing Research, Education and Applications. ISRAM.
Albuguerque, NM, 267-974,

17. Angermuller, G., Niedermanayr, E., and Roth, N.. 1989, Off-line programming and simulation of
flexible assembly, Assembly Automation 9.

18. Ghani, N., 1988, Sensor integration in ESPRIT, 2nd IFAC Symposium on Robot Control SYROCO 88,

323-328.

