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Output from the comparison submodules goes two places.

Abstract First, it is remurned directly to the WM module 1o update the
. world model prediction. Second, it is transmitted upward
The role of the sensory processing system is to transform to sublevels 2 and 3 for temporal and spatial integration.

sensory maps into world model maps and to extract
entity artributes and stazes. The role of the world modeling
system is to store best estimates of the extracted values, and
to generate from them, predicted inputs. There is a tight
coupling between sensory processing and world modeling.
The world model generates predicted sensory input from
stored state estimates. The sensory processing sysiem
compares predictions with observations, and returns the
difference signals to the world model for updating state
estimators. The sensory processing system also performs
spatia! and temporal integration on various combinations of
observed and predicted data, and compares the resulting
zce;rrclation function against thresholds of recognition and
tection.

Introduction

Sensory processing is the mechanism of perception,
Perception is the establishment and maintenance of
correspondence between the intemnal world model and the
external reat world. The function of sensory processing is to
extract information about surfaces, entities, cvents, states, and
relationships in the external world, so as keep the world model

accurate and up to date.

The intelligent control system architecture described in [1] f
co;\;:sts of a hicrarchy of task decomposition, ov.dvorld

modeling, sensory processing, and value judgment modules. - . o
In [2], the world model is defined in terms of maps, entities, I:)'g.":: ofl‘;nmﬁach mﬁms SP m:::ehﬂmmﬁ
and states. This pape;_ describes the sensory processing world modet W,.’mﬂm“s' 2) 2 set of”'m" 1 inisgrators that
system and its relationship to the world model. integrate similarities and differences, 3) a set of spatial
integrators that fuse information from different sensory data
streams, and 4) a set of threshold detectors that recognize entities

Ha
m

Sensory Processing SP Modules

At each leve! of the architecture proposed in {1], there exist 8 and detect evens.

pumber of sensory processing (SP) modules. Each SP

module consists of four sublevels, as shown in Figure 1 Sublevel 2 — temporal integration

Sublevel 1 - comparison Temporal integrator submodules operating on sensory data

alone may produce a summary, such as a total, or average,
of sensory information over a given time window.
Temporal integrator submodules operating on the

Each comparison submodule matches an observed sensory
variable with a world model prediction of that variabie.

This comparison typically involves an arithmetic operation, Py e .

such as mu!tiglicgtion or subtraction, which yiclds a :mem%:: &?ﬁmw cc ovm' ] g::‘ot:g by cm%’:;’gg
measure of similarity and difference between an observed error functions between the model and the observed data.
variable and s predicted varigble. Similarities indicatc the These correlation and error functions are measures of how
degree to which ?."’MWM pmdmtxg:s mbgotwﬂ::t' g‘ghm‘i’g well the dynamic properties of the world modsl entity
are a measure of the correspondence between tho Wor match those of the real world entity. The boundrics of the
model and reality. Differences indicate a lack of temporal integration window may be derived f WM

correspondence between world model predictions and : A
sensory observations. Differences imply that either the’ :grseos:?_‘t::gg: m%mw: oy ?:g;:&;m s]‘;‘él;sa:

sensor data or world model is incorrect. lemporal “chunk:ing". or cl“sming. of infurmaﬁon.
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Sublevel 3 - spatial integration

Spatial integrator submodules integrate similarities and
differences between predictions and observations over
regions of space. This produces spatial cross-correlation
or convolution functions between the model and the
observed data. Spatial integration summarizes sensory
information from multiple sources at a single point in time.
It determines whether the geometric properties of a world
model entity match those of a real world entity. For
example, the product of an edge operator and an inpum
image may be summed (i.e. integrated) over the area of the
operator to obtain the comelation between the image and the
edge operator at a point. The limits of the spatial
integration window may be determined by world model
predictions of entity size. Spatial integration produces a
spatial "chunking”, or clustering, of information,

In some cases, the order of temporal and spatial integration
may be reversed, or interleaved, Both temporal and spatial
integration of correlations and differences may be used by
the value judgment system to compute confidence and
believability factors.

Sublevel 4 -- recognition/detection threshold
When the spatio-temporal correlation function exceeds
some threshold, object recognition (or event detection)
occurs. For example, if the spatio-temporal summation
over the area of an edge operator exceeds threshold, an
edgeissaidtobedctectedatmeoenmofmearea.

Figure 2 illustrates the nature of the SP-WM interactions
between an intelligent vision system and the world mode! at
one level. On the left of Fifgure 2, the world of reality is
viewed through the window of an egosphere such as exists in
the primary visual cortex. On the right is a world model
congisting of: 1) a symbolic entity frame in which entity
auributes are stored, and 2) an iconic predicted image that is
registered in real-time with the sensory image. The predicted
image is initialized by a graphics engine operating on the
symbolic entity frame, and updated by observed differences
between itself and the observed sensory input. In the center
of Figure 2 is a comparator where the expected image is
subtracted from (or otherwise compared with) the observed
image.

Difference images from the comparator 20 two places:

1} They are returned directly to the WM for real-time
local pixel atribute updates. This produces a tight
feedback loop whereby the world model predicted image
becomes an array of Kalman filter state estimators,
Difference images are thus error signals by which each
pixel of the predicted image can be "servoed” into
correspondence with current sensory input.

2) They are also transmitted upward to the integration
sublevels where they are integrated over time and space
in order to recognize and detect global entity atwibutes.
This integration constitutes a “chunking” of sensory data
into entities. At cach level, lower order entities are
“chunked” into higher order entities, i.e. points into
lines, lines into surfaces, surfaces into objects, objects
into groups, etc.

Recognized entities output from level(i) are entered into the
entity database at level(i+1) of the world model. This closes a
slower, more global, servo loop between WM and SP

modules through the symbolic entity frames. Many examples
of this type of slow Jooping interaction can be found in the
model matching and model based recognition literature for
static images [3]. Application of tight closed loop concepts 10
dynamic systems modeling has been used in aircraft flight
control systems for years, and has recently been demonstrated
in a control system for high speed visual guidance of
autonomous road vehicles [4].

Figure 2. Interaction between world model and sensory
Pprocessing. Difference images are generated by comparing
predicied images with observed images. Feedback of difference
images produces a Kalman filter best estimate for each data
varizble in the world model. Spatial and temporal integration
produce cross-correlation functions between the estimated
aitribuies in the world model and the real world auributes

measured in the observed image, When the carrelation exceeds

In biological or neural network implementations, SP modules
may contain thousands, even millions, of comparison
submodules, temporal and spatial integrators, and threshold
submodules. Maps with many different overlays, as well as
entire lists of symbolic attributes, can be processed in parallel
in real-time. Multiple hypotheses may be compared with the
sensory data stream at multiple hierarchical levels, all
simultaneously.

World Model Update

Attributes in the world model icted image may be updated
by a formula of the form predi

X(+1) =X() + A §©) + B ue) + K1) [x(0) - £0)]

where (1) is the best estimate vector of world
model i-order entity atrributes at time ¢

A is a matrix that computes the
expected rate of change of x(t) given the current best estimate
of the i+1 order entity attribute vector ¥

B is a martrix that computes the
expected rate of change of X(t) due to external input u(t)



K(v) is a confidence factor vector for

updating X(t)
The value of K (t) may be computed by a formula of the form
K@ =KGoll- KnG:0)

where KqGit) is the confidence in the sensory
observation of the j-th real world attribute x(j,t) at time t

K (i) is the confidence in the world
model prediction of the j-th artribute X(j,1) at Gme t

The confidence factors (Kp and K) in the above formulas

ma on the statistics of the correspondence between
the world model entity and the real world entity (e.8. the
aumber of data samples, the mean and stan deviation of
[x(t) - X0}, etc.). A high degree of correlation between X (1)
and (1) in both temparal and spatial domains indicates that
entities or events have been correcily recognized, and staies
and attributes of entities and events in the world model
correspond to those in the real world environment. World
model data elements that match observed sensory data
clements are reinforced by increasing the confidence, or
believability factor, K G.t) for the entity or state at location j

in the world model attribute lists, World model entities and
states that fail to match sensory observations have their
confidence factors Ky i) reduced. The confidence factor

K 4(j.t) may be derived from the signal-to-noise ratio of the j-th
sensory data stream.

The numerical value of the confidence factors may be
computed by a variety of statistical methods such Baysian or
Dempster-Shafer statistics, or Kalman fileer methods.

Measurement of Surfaces

World mode] maps are updated by sensory measurement of
surfaces. Such information is usually derived from vision o
touch sensors, although some intelligent systems may derive
surface information from sonar, radar, or laser sensors.

The most direct method of measuring surfaces is through
touch. Many creatures, from insects to mammals, have
antennae or whiskers that are used to measure the position and
orientation of surfaces in the environment. Virtually all
creatures have tactile sensors in the skin, particularly in the
digits, lips, and tongue. Proprioceptive sensors indicate the
position of the fecler or tactile sensor relative to the seif when
contact is made with an external surface. This, combined with
knowledge of the kinematic position of the feeler endpoint,
provides the information necessary to compute the position on
the egosphere of cach point contacted. A series of felt points
defines a surface on the egosphere.

Another primitive measure of surface orientation and depth is
available from image flow (i.c. motion of an image on the
retina of the eye). Image flow may be caused either by motion
of objects in the world, or by motion of the eye through the
world. The image flow of stationary objects caused by
ganslation of the eye is inversely proportional 1o the distance

from the ¢ye to the point being observed. Thus, if eye rotation
is zero, and the translational velocity of the eye is known,
range 10 any stationary point in the world can be computed
directly from image flow.

Knowledge of eye velocity, both translational and rotational,
may be computed by the vestibular system, the locomotion
system, and/or high jevels of the vision system. Depth from
image flow enables creatures of nature, from fish and insects
10 birds and mammals, to maneuver rapidly through natural
environments filled with complex obstacles without collision.
Moving objects can be segmented from stationary by their
failure to match world model ictions for smationary objects.
Near objects can be segmented from distant by their
differential flow rates.

Distance to surfaces may also be computed from stereovision.
The angular disparity between images in two eyes separated by
ahxowndismnoecanbeusedtownpmem . Depth from
stereo is more complex than depth from image flow in that it
tequires identification of corresponding points in images from
different eyes. Hence it cannot be computed locally.
However, stereo is simpler than image flow in that it does not
require eye translation and is not confounded by eye rotation
or by moving objects in the world.

Distance to surfaces may also be computed from sonar by
measuring the time delay between emitting radiation and
receiving an echo. Difficulties arise from poor angular
resolution and from a variety of sensitivity, scattering,
multipath problems. Creatures such as bats and marine
mammals use multi uaisigmlssuchaschirpsandclicksm
minimize confusion from these effects.

All of the above methods for deriving surfaces are primitive in
the sense that they compute directly from sensory input
without recognizing entities or understanding anything about
the scene. Depth measurements from primitive processes can
immediately generate maps that can be used directly by the
lower leveis of the task decomposition hierarchy to avoid
obstacles and approach surfaces.

Additional information about surface position and orientation
may also be computed from shading, shadows, and texture
gradients. These methods typically depend on higher levels
of visual perception such as geometric reasoning, recognition
of objects, detection of events and states, and the
understanding of scenes.

Recognition and Detection

Recognition is the establishment of a one-10-one match, or
correspondence, between a real world entity and a world
model entity .

with information that can be used to predict atwributes of
corresponding entities observed in the world. The process of
recognition begins by b esizing a world model entity and
comparing its predic attributes with those of the observed
entity. When the similaritics and differences between the
worid model prediction and the sensory observation are
integrated over & space-time window covering an eatity, a
matching, or cross-correlation value is computed between the
entity and the model. If the comrelation value rises above a
selected threshold, the entity is said 1o be recognized. If not,
the hypothesized entity is rejecied and another tried. The
recognition process proceeds until a match is found, or the list




of world model entities is exhausted. Many matching
Processes may take place in parallel.

If a SP module recognizes a specific entity, the WM at that
level updates the atributes in the frame of that specific WM
entity with information from the sensory system.

If the SP module fails to recognize a specific entity, but instead
achieves a martch between the sensory input and a generic
model entity, a new specific WM entity will be created with a
frame that initially inherits the features of the gencric entity.
Slots in the specific entity frame can then be updated with
information from the senosry input.

If the SP module fails to recognize either a specific or a generic
entity, the WM may creale an "unidentified” entity with an
empty frame. This may then be filled with in Ormation
gathered from the sensory input.

When an unidentified entity occurs in the world model, the
task decomposition system may (depending on other priorities)
select a new goal 1o <identify the unidentified entity>. This
may initiate an exploration task that Positions and focuses the
sensor systems on the unidentified entity, and possibly even
probes and manipulates it, until a world model frame is
constructed that adequately describes the entity. The
sophistication and complexity of the exploration task

on task knowledge about exploring things. Such knowledge
may be very advanced and include sophisticated tools and
procedures, or very primitive, Entities may, of course, simply
remain labeled as "unidentified”,

Event detection is analogous to entity recognition. Observed
states of the real world are compared with states predicted by
the world model, Similarities and differences are integrated
Over an event space-time window, and a matching, or cross-
correlation value is computed between the observed event and
the model event. When the cross-correlation value rises above
a given threshold, the event is detected,

The Context of Perception

If, as suggested in 11, there exists in the world mode] at every
hierarchical level a short term memory in which is stored a
temporal history consisting of a series of past values of time
dependent entity and event atributes and states, it can be
assumed that at any point in time, an intelligent system has in
its short term memory a record of how it reached its current
state. [1] also suggests that, for every planner in each task
decomposition (TD) module at each level, there exists a plan,
and that each executor is currently executing the first step in its
respective plan. Finally, it can be assumed that the knowledge
in all these plans and temporal histories, and all the task,
entity, and event frames referenced by them, is available in the
world model.

The effect is that the intelligent system almost always knows
where it is on a world map, knows how it got there, where it
is going, what it is doing, and has a current list of entities of
atiention, each of which has a frame of state variables that
describe their recent past, and g;pvide a basis for predicting
their future states, This includes a prediction of where and
how object surfaces will appear, and which surface

undaries, vertices, and points will be visible in the image
produced by the sensor system. It also means that the position
and motion of the eyes, cars, and tactile sensors relative o
surfaces and objects in the world are known, and this
knowledge is available to be used by the sensory processing

system for constructing maps and overlays, recognizing
entitics, and detecting events,

Were the above not the case, the intelligent system would exist
in a situation analogous to a person who suddenly awakens at
an unknown point in space and time. In such cases, it
typically is necessary for humans o perform a series of tasks
designed to "regain their bea.rin&s:. Le. 10 bring their world
model into correspondence with the state of the external world,
and to initialize plans and system state variables,

It is, of course, possible for an intelligent creature 1o function
in a totally unknown environment, but not well, and not for
long. Not well, because every intelligent creature makes much
good use of the a priori information that forms the historical
context of its current task. Without information about where it
is, and what is going on, even the most intelligent creature is
severely handicapped. Not for long, because the world model
continuously accumulates information about the current
situation and its recent historical development, so that for
example, within a few seconds a functionally adequate map of
the surrounding space can usually be acquired.

The Mechanisms of Attention

In any intelligent system, Sensory processing is an active
process which is directed by goals and priorities generated in
the task decomposition system,

In each node of the imielligent system hierarchy, the task
decomposition TD modules request information needed for the
current task from sensory processing SP modules. By means
of such requests, the TD modules control the processing of
sensory information and focus the attention of the WM and SP
modules on the entities and regions of space that are important
to the success of the intelligent system in achieving its
behavioral goals. Requests by TD modules for specific types
of information cause SP modules to select particular sensory
processing masks ang filters to apply to the incoming sensory
data. Requests from TD modales enable the WM to selece
which world model data to use for predictions, and which
prediction algorithm to apply to the world model data, TD
requests also define which correlation and differencing
operators o use, and which spatial and temporal integration
windows and detection thresholds to apply.

Task decomposition TD modules in the attention subsystem
thus actively point the eyes and ears, and direct the tactile
sensors of antennae, fingers, tongue, lips, and teeth toward
objects of attention. TD modules in the vision subsystem
control the motion of the eyes, adjust the iris and focus, and
actively point the fovea to probe the environment for the visual
information needed to pursue behavioral goals [5,6).
Similarly, TD modules in the auditory subsystem actively
direct the cars and tune audio filters to mask background
noises and discriminate in favor of acoustic signals of
importance to behavioral goals,

The act of perception involves both sequential and parallel
operations. For example, the eye consists of an array of rods
and cones that collect the image in parallel, but the
photodectors on the retina are not uniformly distributed. They
are focused into a high resolution fovea that is typically
scanned sequentially over points of attention in the visual field
[5]. While this sequential scanning is going on, paraliel
recognition processes hypothesize and compare entities at all
levels simultaneously,



The Sensory Processing Hierarchy

lthaslongheenmcopizedmat Sensory processing occurs in a
hierarchy of ﬁtocessing modules, _apd that perception

by "chunking", 1.c. by recOgnIZIing patterns, groups,
strings, of clusters of points at onc level as a single feature, or
point in a higher level, more abstract space. It also has been
observed that this chunking proecss'proceeds by about an
order of magnitude per level, both spatially and temporally 7
Thus, &t each level in the proposed architecture, as SP
modules extract from the sensory data stream the informaton

needed 10 update the world model and service the task
decomposition modules at that level, they also integrate, of
chunk, information over space and time by about an order

Figure 3. The nature of the interactions that take place
betweentheworldmddmdsensmyprmsingmomﬂes. M
each level, predicied entities are compared with observed.
Errors are returned directly 10 the world model to update the
model.uweﬂufmrdedupwudtobeinwmdmﬁm
mdspwewindowswidedbymewldmodel. Correlations

Figure 3 describes the nature of the interactions that are
hypothesized to take place between the sensory processing and
world modeling modules at the first four levels, as the
recognition process proceeds. The functional properties of the
SP modules arc coupled to, and determined by, the
requirements of the TD and WM modules in their respective

processing nodes.

It can be hypothesized that there exists a correspondence
between the egosphere and world mode] map representations
suggested here, and hierarchical levels known to exist in the
mammalian vision system. Figure 4 summarizes this
hypothesis.

On the retina, visual input data varigbles consist of photometric
intensities I(k, AX, EL, 1) measured by rods and cones, where
k is the sensor egosphere index, AZ is the azimuth and EL is
the elevation of the pixel on the egosphere where intensity lis
observed at time t. Retinal sensor signals may vary over time
intervals on the order of a millisecond or less.

On the retina, image preprocessing is performed by horizontal,
bipolar, amacrine, and ganglion cells. Output data variables
from the retina are spatial and temporal gradients carried by
ganglion cell axons. Center-surround receptive fields of "on-
center” and “off-center” detect both spatial and temporal
derivatives at each point in the visual field. Outputs from the
retina become input 10 sensory processing level 1 as shown
in Figure 4. Level 1 inputs correspond to events of a few
milliseconds duration.

In the brain, the leve] 1 vision processing module consists of
the neurons in the lateral geniculate bodies and the tectum {ar
superior colliculus). Optic nerve inputs from two cyes arc
overlaid such that the visual ficlds from left and right eyes are
in registration. Data from stretch sensors in the occular
muscles provides information to the tectum (or superior
colliculus), and possibly also to the lateral geniculate, about
eye convergence, pan, tilt, and roll of the retina relative to the
head. This allows map points in retinal coordinates to be
transformed into head coordinates (or vice versa) so that visual
and acoustic position data can be regisiered and fused [8,9]. It
also provides the basis for range from stereo to be computed
for points. However, experimental evidence seems o0 SUEgest
that range from sterco is not computed before level 2 [10].

Additional data from the vestibular sysiem and the locomotion
systems provides the basis for estimating rotary and linear
head and eye velocitics and hence image flow direction.
Center-surround receptive fields can be subtracted to derive
spatial derivatives along image flow lines. At each point in the
image where the spatial derivative along the flow direction is
non-zero, spatial and temporal derivatives can be combined
with eye velocity to compute the image flow rate. Range to
each pixel can thus be computed directly and in paralle! from
local image data.

Level 1 inputs are integrated into level 1 output events
spanning a few tens of milliseconds.

The level 2 vision processing module is hypothesized to
consist of neurons in the primary visual cortex (arca 17). At
level 2, point entitics are clustered and connected to form lincar
entities. Individual neurons detect edges and lines at particular
orientations. Other neurons detect edge points, curves,
trajectories, vertices, and boundarics. Level 2 inputs are
integrated into level 2 output events spanning a few hundreds
of milliseconds.

Input to the world model from the vestibular sysiem as to the
direction of gravity and the rotation of the head, allows the
level 2 world model to transform head egosphere
representations into inertial egosphere coordinates where the
warld is perceived to be stationary.

The level 3 vision processing module is hypothesized to reside
in the secondary visual cortex (arca 18). Clusters of linear
entities are recognized ss surface entities. Cells that detect
motion of edges in specific directions provide indication of
surface boundaries and depth discontinuities. Correlations and
differences between world model predictions and sensory
observations of surfaces give rise to meaningful image
segmentation and recognition of surfaces. World model
knowledge of lighting and texture allow computation of
surface orientation, discontinuities, boundaries, and physical
propertics,




Figure 4. Hypothesized correspondence between levels in the proposed model and neuranatomical structares in the human vision system. At
cach level, the observed image is compared with a predicied image. At each level, additiona) map overlays are computed. There may be no
reduction in resolution in the iconic representations of the first four levels; simply aggregation of pixels into more global entities.

Strings of level 2 events are integrated into level 3 events
spanning & few seconds. (This does not imply that it
necessarily takes seconds to recognize surfaces, but that both
surfaces and patterns of motion that occupy a few seconds are
recognized at level 3. For example, the recognition of a
gesture that involves the tracking of the surface of an arm for
a period of a second ar more might occur at this level.)

World model knowledge of the position of the self relative 10
surfaces enables level 3 to transform inertial egosphere
Tepresentations into object coordinates.

The level 4 vision processing module is hypothesized to reside
in the tertiary visual cortex. At level 4, contiguous surfaces
are recognized as objects. Correlations and differences
between world model predictions and sensory observations of
objects allows sets of surfaces to be clustered and recognized
as objects and volumes. Strings of level 3 events are grouped
into level 4 events spanning a few tens of seconds.

World model input from the locomotion and navigation
systems allow level 4 10 transform object coordinates into
world coordinates,

Level 5 vision is hypothesized to reside in the association areas
of the parictal and temporal cortex. At level 5, clusters of
objects are recognized as groups, Strings of level 4 events are
grouped into Ievel 5 events spanning a few minutes. Outputs
are transformed into a level 6 scale world coordinate map with
larger span and lower resolution than level 5,

At higher levels, clusters of groups are recognized as higher
level groups, and strings of events are grouped into higher
Ievel events spanning longer time intervals. Worid maps have
larger spans and lower resolution.

Gestalt effects

When an observed entity is recognized at a particular
hierarchical level, its entry into the Provides predictive
support (o the level below. The recognition is also passed
upward so s to prune the search tree at the level above, For
example, a lincar feature recognized and entered into the world
model at leve] 2, can be used to Benerate expected points at
level 1. It can also be used to narrow the search at level 3 to
entities that contain that particular type of lincar feature.
Similarly, surface features recognized at level 3 can generate
specific expected linear features at level 2, and limit the search
at Jevel 4 10 objects with such surfaces, etc, The recognition of
an cntity at any level thus provides to both lower and higher
levels information that is useful in selecting processing
algorithms and setting spatial and temporal integration
ui'lingfsws to integrate lower level features into higher level
chunks,

If the comrelation function at any level falls below threshold,
the corrent world model entity or event at that level will be
rejected, and others tried, When an entity or event is rejected,
the rejection also propagates both upward and downward,
ing the search space at both higher and lower Ievels,

At each level, the SP and WM modules are embedded in a
feedback loop that has the properties of a relaxation process,
or phase-lock loop. WM predictions are compared with SP
observations, and the correlations and differences are fed back
to modify subsequent WM predictions. WM predictions can
thus be “servoed” into correspondence with the SP
observations. Such looping interactions will either converge
to a tight corrcs{»ondcnce between predictions and
observations, or will diverge wo produce a definitive set of
irreconcilable differences,



Perception is complete only when the correlation functions at
all levels exceed threshold simultaneously. It is the nature of
closed loop processes for Jock-on to occur with a positive
"gnap”. This is especially pronounced in systems with many
coupled loops that lock on in quick succession. The resultisa
gestalt "wha" effect that is characteristic of many human

perceptions.
Flywheeling, Hysteresis, and INusion

Once recognition occurs, the looping 35 between SP and
WM acts as a tracking filter. is enables the WM model

ictions 1o track real world entities through noise, data
dropouts, and occlusions.

In the system described above, recognition will occur when
the first hypothesized entity exceeds threshold. Once
recognition occurs, the search process is terminated, and the
thresholds for all competing recognition hypotheses_are
effectively raised. This creates a hysteresis effect that tends 10
keep the WM predictions locked onto sensory input during the
tracking mode. It may also produce undesirable side effects,
such as a tendency to ive only what is expected, and a
tendenc d-to jgnore what does not fit preconceived models of
the wor!

In cases where sensory data is ambiguous, there is more than
one model that can match a particalar observed object. The
first model that matches will be recognized, and other models
will be suppressed. This explains the effects produced by
ambiguous figurcs such as the wire-frame cube.

Once an entity has been recognized, the world model projects
its predicted appearance 50 that it can be compared with the
sensory input. If this icted information is added to
sensory input (or multiplied by a positive bias), perception at
higher levels, will be based on a mix of sensory observations
and world model predictions. By this mechanism, the world
model may fill in sensory data that is missing, and provide
information that may be left out of the sensory data. For
example, it is well known that the audio system routinely
“flywheels” through interruptions in speech data, and fills-in
over noise bursts.

This merging of world model predictions with sensory
observations may account for many familiar optical illusions.
In pathological cases, it may also account for visions and
voices, and an inability to distinguish between reality and
imagination.

Summary and Conclusions

Both the sensory processing and world modeling systems are
hypothesized 10 be hierarchical, with a tight coupling between
SP and WM modules at each level of the hierarchy. At every
level, world model predictions are compared with sensory
observations. Correlations and differences are used to
improve estimated values stored in the world model. The
world model consists of both symbolic and iconic
representations, and mechanisms for transforming from one
1o the other. The sensory processing system consists of iconic
images, coordinate transformers, and mechanisms for
comparison, correlation, recognition, and detection.

close coupling between Sensory processing and world
modeling produces the phenomenal capacity of an intelligent

system 10 recognize objects, detect events, and perceive what

is important for successful behavior in the natural world.
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