
IEEE TRANSACnONS ON SYSTEMS, MAN. AND CYBERNETICS, VOL 21, NO. 3. MAYNUNE 1991 473

Outline for a Theory of Intelligence
James S. Albus

Absfmct-Intelligence i s defined as that which produces SUC-

cessful behavior. Intelligence is assumed to result from natural
selection. A model is proposed that integrates knowledge from
research in both natural and artificial systems. The model con-
sists o f a hierarchical system architecture wherein: 1) control
bandwidth decreases about an order of magnitude at each higher
level, 2) perceptual resolution o f spatial and temporal patterns
contracts about an order-of-magnitude at each higher level, 3)
goals expand in scope and planning horizons expand in space
and time about an order-of-magnitude at each higher level, and
4) models of the world and memories of events expand their
range in space and time by about an order-of-magnitude at
each higher level. At each level, functional modules perform
behavior generation (task decomposition planning and execution),
world modeling, sensory processing, and value judgment. Sensory
feedback contml loops are closed at every level.

I.INTRODUCTION

UCH IS UNKNOWN about intelligence, and muchMwill remain beyond human comprehension for a very
long time. The fundamental nature of intelligence is only
dimly understood, and the elements of self consciousness,
perception, reason, emotion, and intuition are cloaked in
mystery that shrouds the human psyche and fades into the
religious. Even the definition of intelligence remains a subject
of controversy, and so must any theory that attempts to
explain what intelligence is, how it originated, or what are
the fundamental processes by which it functions.

Yet, much is known, both about the mechanisms and func-
tion of intelligence. The study of intelligent machines and the
neurosciences are both extremely active fields. Many millions
of dollars per year are now being spent in Europe, Japan,
and the United States on computer integrated manufacturing,
robotics, and intelligent machines for a wide variety of military
and commercial applications. Around the world, researchers in
the neurosciences are searching for the anatomical, physiolog -
ical, and chemical basis of behavior.

Neuroanatomy has produced extensive maps of the inter-
connecting pathways making up the structure of the brain.
Neurophysiology is demonstrating how neurons compute func-
tions and communicate information. Neuropharmacology is
discovering many of the transmitter substances that modify
value judgments, compute reward and punishment, activate
behavior, and produce learning. Psychophysics provides many
clues as to how individuals perceive objects, events, time,
and space, and how they reason about relatianships between
themselves and the external world. Behavipral psychology
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adds information about mental development, emotions, and
behavior.

Research in learning automata, neural nets, and brain mod-
eling has given insight into learning and the similarities
and differences between neuronal and electronic comput -
ing processes. Computer science and artificial intelligence
is probing the nature of language and image understanding,
and has made significant progress in rule based reasoning,
planning, and problem solving. Game theory and operations
research have developed methods for decision making in
the face of uncertainty. Robotics and autonomous vehicle
research has produced advances in real-time sensory process -
ing, world modeling, navigation, trajectory generation, and
obstacle avoidance. Research in automated manufacturing and
process control has produced intelligent hierarchical controls,
distributed databases, representations of object geometry and
material properties, data driven task sequencing, network com-
munications, and multiprocessor operating systems. Modern
control theory has developed precise understanding of stability,
adaptability, and controllability under various conditions of
feedback and noise. Research in sonar, radar, and optical signal
processing has developed methods for fusing sensory input
from multiple sources, and assessing the believability of noisy
data.

Progress is rapid, and there exists an enormous and rapidly
growing literature in each of the previous fields. What is
lacking is a general theoretical model of intelligence that ties
al l these separate areas of knowledge into a unified framework.
This paper is an attempt to formulate at least the broad outlines
of such a model.

The ultimate goal is a general theory of intelligence that
encompasses both biological and machine instantiations. The
model presented here incorporates knowledge gained from
many different sources and the discussion frequently shifts
back and forth between natural and artificial systems. For
example, the definition of intelligence in Section I1 addresses
both natural and artificial systeqs. Section I11 treats the origin
and function of intelligence from the standpoint of biological
evolution. In Section IV, both natural and artificial system
elements are discussed. The system architecture described
in Sections V-VI1 derives almost entirely from research in
robotics and control theory for devices ranging from undersea
vehicles to automatic factories. Sections VIII-XI on behavior
generation, Sections XI1 and XI11 on world modeling, and
Section XIV on sensory processing are elaborations of the
system architecture of Section V-VII. These sections al l con-
tain numerous references to neurophysiological, psychological,
and psychophysical phenomena that support the model, and
frequent analogies are drawn between biological and artificial
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systems. The value judgments, described in Section XV, are
mostly based on the neurophysiology of the limbic system and
the psychology of emotion. Section XVI on neural computa -
tion and Section XVlI on learning derive mostly from neural
net research.

The model is described in terms of definitions, axioms,
theorems, hypotheses, conjectures, and arguments in support
of them. Axioms are statements that are assumed to be true
without proof. Theorems are statements that the author feels
could be demonstrated true by existing logical methods or
empirical evidence. Few of the theorems are proven, but each
is followed by informal discussions that support the theorem
and suggest arguments upon which a formal proof might
be constructed. Hypotheses are statements that the author
feels probably could be demonstrated through future research.
Conjectures are statements that the author feels might be
demonstrable.

11. DEFINITION OF INTELLIGENCE

In order to be useful in the quest for a general theory, the
definition of intelligence must not be limited to behavior that
is not understood. A useful definition of intelligence should
span a wide range of capabilities, from those that are well
understood, to those that are beyond comprehension. I t should
include both biological and machine embodiments, and these
should span an intellectual range from that of an insect to
that of an Einstein, from that of a thermostat to that of the
most sophisticated computer system that could ever be built.
The definition of intelligence should, for example, include the
ability of a robot to spotweld an automobile body, the ability
of a bee to navigate in a field of wild flowers, a squirrel to
jump from limb to limb, a duck to land in a high wind, and
a swallow to work a field of insects. I t should include what
enables a pair of blue jays to battle in the branches for a
nesting site, a pride of lions to pull down a wildebeest, a flock
of geese to migrate south in the winter. I t should include what
enables a human to bake a cake, play the violin, read a book,
write a poem, fight a war, or invent a computer.

At a minimum, intelligence requires the ability to sense the
environment, to make decisions, and to control action. Higher
levels of intelligence may include the ability to recognize
objects and events, to represent knowledge in a world model,
and to reason about and plan for the future. In advanced forms,
intelligence provides the capacity to perceive and understand,
to choose wisely, and to act successfully under a large variety
of circumstances so as to survive, prosper, and reproduce in a
complex and often hostile environment.

From the viewpoint o f control theory, intelligence might
be defined as a knowledgeable “helmsman of behavior”.
Intelligence i s the integration of knowledge and feedback
into a sensory -interactive goal-directed control system that can
make plans, and generate effective, purposeful action directed
toward achieving them.

From the viewpoint of psychology, intelligence might be
defined as a behavioral strategy that gives each individual a
means for maximizing the likelihood of propagating its own
genes. Intelligence is the integration of perception, reason,

emotion, and behavior in a sensing, perceiving, knowing,
caring, planning, acting system that can succeed in achieving
its goals in the world.

For the purposes of this paper, intelligence wil l be defined
as the ability of a system to act appropriately in an uncertain
environment, where appropriate action is that which increases
the probability o f success, and success is the achievement of
behavioral subgoals that support the system’s ultimate goal.

Both the criteria of success and the systems ultimate goal
are defined external to the intelligent system. For an intelligent
machine system, the goals and success criteria are typically
defined by designers, programmers, and operators. For intelli -
gent biological creatures, the ultimate goal is gene propagation,
and success criteria are defined by the processes of natural
selection.

Theorem: There are degrees, or levels, of intelligence,
and these are determined by: 1) the computational power
of the system’s brain (or computer), 2) the sophistication
of algorithms the system uses for sensory processing, world
modeling, behavior generating, value judgment, and global
communication, and 3) the information and values the system
has stored in its memory.

Intelligence can be observed to grow and evolve, both
through growth in computational power, and through accu-
mulation of knowledge of how to sense, decide, and act in a
complex and changing world. In artificial systems, growth in
computational power and accumulation of knowledge derives
mostly from human hardware engineers and software program-
mers. In natural systems, intelligence grows, over the lifetime
of an individual, through maturation and learning; and over
intervals spanning generations, through evolution.

Note that learning is not required in order to be intelligent,
only to become more intelligent as a result of experience.
Learning is defined as consolidating short-term memory into
long-term memory, and exhibiting altered behavior because of
what was remembered. In Section X, learning is discussed as
a mechanism for storing knowledge about the external world,
and for acquiring skills and knowledge of how to act. I t is,
however, assumed that many creatures can exhibit intelligent
behavior using instinct, without having learned anything.

111. THE ORIGIN AND FUNCTIONOF INTELLIGENCE

Theorem: Natural intelligence, like the brain in which i t
appears, is a result of the process of natural selection.

The brain is first and foremost a control system. Its primary
function is to produce successful goal-seeking behavior in find-
ing food, avoiding danger, competing for territory, attracting
sexual partners, and caring for offspring. Allbrains that ever
existed, even those of the tiniest insects, generate and control
behavior. Some brains produce only simple forms of behavior,
while others produce very complex behaviors. Only the most
recent and highly developed brains show any evidence of
abstract thought.

Theorem: For each individual, intelligence provides a mech-
anism for generating biologically advantageous behavior.

Intelligence improves an individual’s ability to act effec -
tively and choose wisely between alternative behaviors. All
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else being equal, a more intelligent individual has many
advantages over less intelligent rivals in acquiring choice
territory, gaining access to food, and attracting more desirable
breeding partners. The intelligent use of aggression helps
to improve an individual’s position in the social dominance
hierarchy. Intelligent predation improves success in capturing
prey. Intelligent exploration improves success in hunting and
establishing territory. Intelligent use of stealth gives a predator
the advantage of surprise. Intelligent use of deception improves
the prey’s chances of escaping from danger.

Higher levels of intelligence produce capabilities in the
individual for thinking ahead, planning before acting, and
reasoning about the probable results of alternative actions.
These abilities give to the more intelligent individual a com-
petitive advantage over the less intelligent in the competition
for survival and gene propagation. Intellectual capacities and
behavioral skills that produce successful hunting and gathering
of food, acquisition and defense of territory, avoidance and
escape from danger, and bearing and raising offspring tend to
be passed on to succeeding generations. Intellectual capabili -
ties that produce less successful behaviors reduce the survival
probability of the brains that generate them. Competition
between individuals thus drives the evolution of intelligence
within a species.

Theorem: For groups of individuals, intelligence provides
a mechanism for cooperatively generating biologically advan-
tageous behavior.

The intellectual capacity to simply congregate into flocks,
herds, schools, and packs increases the number of sensors
watching for danger. The ability to communicate danger
signals improves the survival probability of all individuals
in the group. Communication is most advantageous to those
individuals who are the quickest and most discriminating
in the recognition of danger messages, and most effective
in responding with appropriate action. The intelligence to
cooperate in mutually beneficial activities such as hunting and
group defense increases the probability of gene propagation
for all members of the group.
All else being equal, the most intelligent individuals and

groups within a species will tend to occupy the best territory,
be the most successful in social competition, and have the
best chances for their offspring surviving. All else being equal,
more intelligent individuals and groups will win out in serious
competition with less intelligent individuals and groups.

Intelligence is, therefore, the product of continuous com-
petitive struggles for survival and gene propagation that has
taken place between billions of brains, over millions of years.
The results of those struggles have been determined in large
measure by the intelligence of the competitors.

A. Communication and Language

Definition: Communication is the transmission of informa -
tion between intelligent systems.

Definition: Language is the means by which information is
encoded for purposes of communication.

Language has three basic components: vocabulary, syntax,
and semantics. Vocabularv is the set of words in the language.

Words may be represented by symbols. Syntax, or grammar,
i s the set of rules for generating strings of symbols that
form sentences. Semantics is the encoding of information into
meaningful patterns, or messages. Messages are sentences that
convey useful information.

Communication requires that information be: 1) encoded,
2) transmitted, 3) received, 4) decoded, and 5) understood.
Understanding implies that the information in the message has
been correctly decoded and incorporated into the world model
of the receiver.

Communication may be either intentional or unintentional.
Intentional communication occurs as the result of a sender
executing a task whose goal i t is to alter the knowledge or be-
havior of the receiver to the benefit of the sender. Unintentional
communication occurs when a message is unintentionally sent,
or when an intended message is received and understood by
someone other than the intended receiver. Preventing an enemy
from receiving and understanding communication between
friendly agents can often be crucial to survival.

Communication and language are by no means unique to
human beings. Virtually all creatures, even insects, commu-
nicate in some way, and hence have some form of language.
For example, many insects transmit messages announcing their
identity and position. This may be done acoustically, by smell,
or by some visually detectable display. The goal may be to
attract a mate, or to facilitate recognition mYor location by
other members of a group. Species of lower intelligence, such
as insects, have very little information to communicate, and
hence have languages with only a few of what might be called
words, with little or no grammar. In many cases, language
vocabularies include motions and gestures (i.e., body or sign
language) as well as acoustic signals generated by variety of
mechanisms from stamping the feet, to snorts, squeals, chirps,
cries, and shouts.

Theorem: In any species, language evolves to support the
complexity of messages that can be generated by the intelli -
gence of that species.

Depending on its complexity, a language may be capable of
communicating many messages, or only a few. More intelli-
gent individuals have a larger vocabulary, and are quicker to
understand and act on the meaning of messages.

Theorem: To the receiver, the benefit, or value, of commu-
nication is roughly proportional to the product of the amount of
information contained in the message, multiplied by the ability
of the receiver to understand and act on that information,
multiplied by the importance of the act to survival and gene
propagation of the receiver. To the sender, the benefit is the
value of the receiver’s action to the sender, minus the danger
incurred by transmitting a message that may be intercepted by,
and give advantage to, an enemy.

Greater intelligence enhances both the individual’s and the
group’s ability to analyze the environment, to encode and
transmit information about it, to detect messages, to recognize
their significance, and act effectively on information received.
Greater intelligence produces more complex languages capable
of expressing more information, i.e., more messages with more
shades of meaning. ,

In social soecies. communication also orovides the basis
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for societal organization. Communication of threats that warn
of aggression can help to establish the social dominance
hierarchy, and reduce the incidence of physical harm from
fights over food, territory, and sexual partners. Communication
of alarm signals indicate the presence of danger, and in some
cases, identify its type and location. Communication of pleas
for help enables group members to solicit assistance from one
another. Communication between members of a hunting pack
enable them to remain in formation while spread far apart, and
hence to hunt more effectively by cooperating as a team in the
tracking and killing of prey.

Among humans, primitive forms of communication include
facial expressions, cries, gestures, body language, and pan-
tomime. The human brain is, however, capable of generating
ideas of much greater complexity and subtlety than can be
expressed through cries and gestures. In order to transmit mes-
sages commensurate with the complexity of human thought,
human languages have evolved grammatical and semantic
rules capable of stringing words from vocabularies consisting
of thousands of entries into sentences that express ideas
and concepts with exquisitely subtle nuances of meaning. To
support this process, the human vocal apparatus has evolved
complex mechanisms for making a large variety o f sounds.

B. Human Intelligence and Technology

Superior intelligence alone made man a successful hunter.
The intellectual capacity to make and use tools, weapons,
and spoken language made him the most successful of al l
predators. In recent millennia, human levels of intelligence
have led to the use of fire, the domestication o f animals,
the development of agriculture, the rise of civilization, the
invention of writing, the building of cities, the practice of
war, the emergence of science, and the growth of industry.
These capabilities have extremely high gene propagation value
for the individuals and societies that possess them relative to
those who do not. Intelligence has thus made modem civilized
humans the dominant species on the planet Earth.

For an individual human, superior intelligence is an asset in
competing for position in the social dominance hierarchy. I t
conveys advantage for attracting and winning a desirable mate,
in raising a large, healthy, and prosperous family, and seeing to
i t that one’s offspring are well provided for. In competition be-
tween human groups, more intelligent customs and traditions,
and more highly developed institutions and technology, lead to
the dominance of culture and growth of military and political
power. Less intelligent customs, traditions, and practices, and
less developed institutions and technology, lead to economic
and political decline and eventually to the demise of tribes,
nations, and civilizations.

Iv. THE ELEMENTS OF INTELLIGENCE

Theorem: There are four system elements of intelligence:
sensory processing, world modeling, behavior generation, and
value judgment. Input to, and output from, intelligent systems
are via sensors and actuators.
I)Actuators: Output from an intelligent system is produced

by actuators that move, exert forces, and position arms,

legs, hands, and eyes. Actuators generate forces to point
sensors, excite transducers, move manipulators, handle tools,
steer and propel locomotion. An intelligent system may have
tens, hundreds, thousands, even millions of actuators, al l of
which must be coordinated in order to perform tasks and
accomplish goals. Natural actuators are muscles and glands.
Machine actuators are motors, pistons, valves, solenoids, and
transducers.

2) Sensors: Input to an intelligent system is produced by
sensors, which may include visual brightness and color sen-
sors: tactile, force, torque, position detectors; velocity, vibra-
tion, acoustic, range, smell, taste, pressure, and temperature
measuring devices. Sensors may be used to monitor both
the state of the external world and the internal state of the
intelligent system itself. Sensors provide input to a sensory
processing system.

3) Sensory Processing: Perception takes place in a sensory
processing system element that compares sensory observations
with expectations generated by an internal world model.
Sensory processing algorithms integrate similarities and dif -
ferences between observations and expectations over time
and space so as to detect events and recognize features,
objects, and relationships in the world. Sensory input data
from a wide variety o f sensors over extended periods of
time are fused into a consistent unified perception of the
state of the world. Sensory processing algorithms compute
distance, shape, orientation, surface characteristics, physical
and dynamical attributes of objects and regions of space.
Sensory processing may include recognition of speech and
interpretation of language and music.

4) World Model: The world model is the intelligent sys-
tem’s best estimate of the state of the world. The world model
includes a database of knowledge about the world, plus a
database management system that stores and retrieves infor-
mation. The world model also contains a simulation capability
that generates expectations and predictions. T h e world model
thus can provide answers to requests for information about
the present, past, and probable future states of the world. T h e
world model provides this information service to the behavior
generation system element, so that i t can make intelligent
plans and behavioral choices, to the sensory processing system
element, in order for i t to perform correlation, model matching,
and model based recognition of states, objects, and events, and
to the value judgment system element in order for i t to compute
values such as cost, benefit, risk, uncertainty, importance,
attractiveness, etc. The world model is kept up-to-date by the
sensory processing system element.

5) Value Judgment: T h e value judgment system element
determines what is good and bad, rewarding and punishing,
important and trivial, certain and improbable. The value judg-
ment system evaluates both the observed state of the world
and the predicted results of hypothesized plans. I t computes
costs, risks, and benefits both of observed situations and of
planned activities. It computes the probability of correctness
and assigns believability and uncertainty parameters to state
variables. I t also assigns attractiveness, or repulsiveness to
objects, events, regions of space, and other creatures. The
value judgment system thus provides the basis for making



ALBUS. OUTLINE FOR A THEORY OF INTELLIGENCE 471

decisions-for choosing one action as opposed to another,
or for pursuing one object and fleeing from another. Without
value judgments, any biological creature would soon be eaten
by others, and any artificially intelligent system would soon
be disabled by its own inappropriate actions.

6) Behavior Generation: Behavior results from a behavior
generating system element that selects goals, and plans and ex -
ecutes tasks. Tasks are recursively decomposed into subtasks,
and subtasks are sequenced so as to achieve goals. Goals are
selected and plans generated by a looping interaction between
behavior generation, world modeling, and value judgment
elements. The behavior generating system hypothesizes plans,
the world model predicts the results o f those plans, and the
value judgment element evaluates those results. The behavior
generating system then selects the plans with the highest
evaluations for execution. The behavior generating system
element also monitors the execution of plans, and modifies
existing plans whenever the situation requires.

Each of the system elements of intelligence are reasonably
well understood. The phenomena of intelligence, however,
requires more than a set of disconnected elements. Intelligence
requires an interconnecting system architecture that enables
the various system elements to interact and communicate with
each other in intimate and sophisticated ways.

A system architecture is what partitions the system elements
of intelligence into computational modules, and interconnects
the modules in networks and hierarchies. I t is what enables the
behavior generation elements to direct sensors, and to focus
sensory processing algorithms on objects and events worthy
of attention, ignoring things that are not important to current
goals and task priorities. I t is what enables the world model
to answer queries from behavior generating modules, and
make predictions and receive updates from sensory processing
modules. I t is what communicates the value state-variables that
describe the success of behavior and the desirability of states
of the world from the value judgment element to the goal
selection subsystem.

v. A PROPOSED ARCHITEC~~REFOR INTELLIGENT SYSTEMS

A number of system architectures for intelligent machine
systems have been conceived, and a few implemented. [11-[15]
The architecture for intelligent systems that will be proposed
here is largely based on the real-time control system (RCS) that
has been implemented in a number of versions over the past 13
years at the National Institute for Standards and Technology
(NIST, formerly NBS). RCS was first implemented by Barbera
for laboratory robotics in the mid 1970’s [7] and adapted by
Albus, Barbera, and others for manufacturing control in the
NIST Automated Manufacturing Research Facility (AMRF)
during the early 1980’s [ll],[12]. Since 1986, RCS has been
implemented for a number of additional applications, including
the NBSDARPA Multiple Autonomous Undersea Vehicle
(MAUV) project [13], the Army Field Material Handling
Robot, and the Army TMAP and TEAM semiautonomous land
vehicle projects. RCS also forms the basis o f the NASAPJBS
Standard Reference Model Telerobot Control System Archi -
tecture (NASREM) being used on the space station Flight
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Fig. 1. Elements of intelligence and the functional relationships
between them.

Telerobotic Servicer [14] and the Air Force Next Generation
Controller.

The proposed system architecture organizes the elements of
intelligence so as to create the functional relationships and
information flow shown in Fig. 1. In al l intelligent systems,
a sensory processing system processes sensory information to
acquire and maintain an internal model of the external world.
In a l l systems, a behavior generating system controls actuators
so as to pursue behavioral goals in the context of the perceived
world model. In systems o f higher intelligence, the behavior
generating system element may interact with the world model
and value judgment system to reason about space and time,
geometry and dynamics, and to formulate or select plans based
on values such as cost, risk, utility, and goal priorities. The
sensory processing system element may interact with the world
model and value judgment system to assign values to perceived
entities, events, and situations.

The proposed system architecture replicates and distributes
the relationships shown in Fig. 1over a hierarchical computing
structure with the logical and temporal properties illustrated
in Fig. 2. On the left is an organizational hierarchy wherein
computational nodes are arranged in layers like command
posts in a military organization. Each node in the organiza -
tional hierarchy contains four types of computing modules:
behavior generating (BG), world modeling (WM), sensory
processing (SP), and value judgment (VJ) modules. Each
chain of command in the organizational hierarchy, from each
actuator and each sensor to the highest level of control, can
be represented by a computational hierarchy, such as is shown
in the center of Fig. 2.

At each level, the nodes, and computing modules within
the nodes, are richly interconnected to each other by a com-
munications system. Within each computational node, the
communication system provides intermodule communications
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Fig. 2. Relationships in hierarchical control systems, On the left is an organizational hierarchy consisting of a tree of command
centers, each of which possesses one supervisor and one or more subordinates. In the center i s a computational hierarchy consisting of
BG, WM, SP, and VJ modules. Each actuator and each sensors is serviced by a computational hierarchy. On the right is a behavioral
hierarchy consisting of trajectories through state-time-space. Commands at a each level can be represented by vectors, or points in
state-space. Sequences of commands and be represented as trajectories through sfate-time-space.

of the type shown in Fig. 1. Queries and task status are
communicated from BG modules to WM modules. Retrievals
of information are communicated from WM modules back to
the BG modules making the queries. Predicted sensory data is
communicated from WM modules to SP modules. Updates to
the world model are communicated from SP to WM modules.
Observed entities, events, and situations are communicated
from SP to VJ modules. Values assigned to the world model
representations of these entities, events, and situations are
communicated from VJ to W M modules. Hypothesized plans
are communicated from BG to WM modules. Results are
communicated from WM to VJ modules. Evaluations are
communicated from VJ modules back to the BG modules that
hypothesized the plans.

The communications system also communicates between
nodes at different levels. Commands are communicated down-
ward from supervisor BG modules in one level to subordinate
BG modules in the level below. Status reports are commu-
nicated back upward through the world model from lower
level subordinate BG modules to the upper level supervisor
BG modules from which commands were received. Observed
entities, events, and situations detected by SP modules at one
level are communicated upward to SP modules at a higher
level. Predicted attributes of entities, events, and situations
stored in the WM modules at a higher level are communi -
cated downward to lower level WM modules. Output from
the bottom level BG modules is communicated to actuator
drive mechanisms. Input to the bottom level SP modules is
communicated from sensors.

T h e communications system can be implemented in a va-
riety of ways. In a biological brain, communication is mostly
via neuronal axon pathways, although some messages are
communicated by hormones carried in the bloodstream. In
artificial systems, the physical implementation of communica -

tions functions may be a computer bus, a local area network,
a common memory, a message passing system, or some
combination thereof. In either biological or artificial systems,
the communications system may include the functionality
of a communications processor, a file server, a database
management system, a question answering system, or an
indirect addressing or list processing engine. In the system
architecture proposed here, the input/output relationships of the
communications system produce the effect of a virtual global
memory, or blackboard system [15].

The input command string to each of the BG modules
at each level generates a trajectory through state-space as
a function of time. The set of a l l command strings create
a behavioral hierarchy, as shown on the right o f Fig. 2.
Actuator output trajectories (not shown in Fig. 2) correspond
to observable output behavior. All the other trajectories in the
behavioral hierarchy constitute the deep structure of behavior

VI. HIERARCHICALVERSUS HORIZONTAL

Fig. 3 shows the organizational hierarchy in more detail,
and illustrates both the hierarchical and horizontal relation -
ships involved in the proposed architecture. The architecture
is hierarchical in that commands and status feedback flow
hierarchically up and down a behavior generating chain of
command. The architecture is also hierarchical in that sensory
processing and world modeling functions have hierarchical
levels of temporal and spatial aggregation.

The architecture is horizontal in that data is shared hori-
zontally between heterogeneous modules at the same level.
At each hierarchical level, the architecture is horizontally
interconnected by wide-bandwidth communication pathways
between BG, WM, SP, and VJ modules in the same node,
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Fig. 3. An organization of processing nodes such that the BG modules form
a command tree. On the right are examples or the functional characteristic
of the BG modules at each level. On the left are examples of the type of
visual and acoustical entities recognized by the SP modules at each level. In
the center of level 3 are the type of subsystems represented by processing
nodes at level 3.

and between nodes at the same level, especially within the
same command subtree. The horizontal flo:;. of information
is most voluminous within a single node, less so between
related nodes in the same command subtree, and relatively low
bandwidth between computing modules in separate command
subtrees. Communications bandwidth is indicated in Fig. 3 by
the relative thickness of the horizontal connections.

The volume of information flowing horizontally within a
subtree may be orders of magnitude larger than the amount
flowing vertically in the command chain. The volume of in-
formation flowing vertically in the sensory processing system
can also be very high, especially in the vision system.

The specific configuration of the command tree is task
dependent, and therefore not necessarily stationary in time.
Fig. 3 illustrates only one possible configuration that may
exist at a single point in time. During operation, relationships
between modules within and between layers of the hierarchy
may be reconfigured in order to accomplish different goals, pri-
orities, and task requirements. This means that any particular
computational node, with its BG, WM, SP, and VJ modules,
may belong to one subsystem at one time and a different
subsystem a very short time later. For example, the mouth may
be part of the manipulation subsystem (while eating) and the
communication subsystem (while speaking). Similarly, an arm
may be part of the manipulation subsystem (while grasping)
and part of the locomotion subsystem (while swimming or
climbing).

In the biological brain, command tree reconfiguration can
be implemented through multiple axon pathways that exist,
but are not always activated, between BG modules at dif-
ferent hierarchical levels. These multiple pathways define a
layered graph, or lattice, o f nodes and directed arcs, such as
shown in Fig. 4. They enable each BG module to receive
input messages and parameters from several different sources.

Fig. 4. Each layer of the system architecture contains a number of nodes,
each of which contains BG, WM, SP, and VJ modules, The nodes are
interconnected as a layered graph, or lattice, through the communication
system. Note that the nodes are richly but not fully, interconnected. Outputs
from the bottom layer BG modules drive actuators. Inputs to the bottom
layer SP modules convey data from sensors. During operation, goal driven
communication path selection mechanisms configure this lattice structure into
the organization tree shown in Fig. 3.

During operation, goal driven switching mechanisms in the BG
modules (discussed in Section X) assess priorities, negotiate
for resources, and coordinate task activities so as to select
among the possible communication paths of Fig. 4. As a
result, each BG module accepts task commands from only
one supervisor at a time, and hence the BG modules form a
command tree at every instant in time.

The SP modules are also organized hierarchically, but as
a layered graph, not a tree. At each higher level, sensory
information is processed into increasingly higher levels o f
abstraction, but the sensory processing pathways may branch
and merge in many different ways.

VII. HIERARCHICALLEVELS

Levels in the behavior generating hierarchy are defined by
temporal and spatial decomposition of goals and tasks into
levels of resolution. Temporal resolution is manifested in terms
of loop bandwidth, sampling rate, and state-change intervals.
Temporal span is measured by the length of historical traces
and planning horizons. Spatial resolution is manifested in the
branching of the command tree and the resolution of maps.
Spatial span is measured by the span of control and the range
of maps.

Levels in the sensory processing hierarchy are defined by
temporal and spatial integration of sensory data into levels of
aggregation. Spatial aggregation is best illustrated by visual
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images. Temporal aggregation is best illustrated by acoustic
parameters such as phase, pitch, phonemes, words, sentences,
rhythm, beat, and melody.

Levels in the world model hierarchy are defined by temporal
resolution of events, spatial resolution of maps, and by parent-
child relationships between entities in symbolic data structures.
These are defined by the needs of both SP and BG modules
at the various levels.

Theorem: In a hierarchically structured goal-driven, sensory -
interactive, intelligent control system architecture:

1) control bandwidth decreases about an order of magni-
tude at each higher level,

2) perceptual resolution of spatial and temporal patterns
decreases about an order-of-magnitude at each higher
level,

3) goals expand in scope and planning horizons expand
in space and time about an order-of-magnitude at each
higher level, and

4) models of the world and memories of events decrease
in resolution and expand in spatial and temporal range
by about an order-of-magnitude at each higher level.

I t i s well known from control theory that hierarchically
nested servo loops tend to suffer instability unless the band-
width of the control loops differ by about an order of mag-
nitude. This suggests, perhaps even requires, condition 1).
Numerous theoretical and experimental studies support the
concept of hierarchical planning and perceptual “chunking”
for both temporal and spatial entities [17], [18]. These support
conditions 2), 3), and 4).

In elaboration of the aforementioned theorem, we can con-
struct a timing diagram, as shown in Fig. 5. The range of the
time scale increases, and its resolution decreases, exponentially
by about an order of magnitude at each higher level. Hence the
planning horizon and event summary interval increases, and
the loop bandwidth and frequency of subgoal events decreases,
exponentially at each higher level. The seven hierarchical
levels in Fig. 5 span a range of time intervals from three
milliseconds to one day. Three milliseconds was arbitrarily
chosen as the shortest servo update rate because that is
adequate to reproduce the highest bandwidth reflex arc in the
human body. One day was arbitrarily chosen as the longest
historical -memory/planning -horizonto be considered. Shorter
time intervals could be handled by adding another layer at the
bottom. Longer time intervals could be treated by adding layers
at the top, or by increasing the difference in loop bandwidths
and sensory chunking intervals between levels.

The origin of the time axis in Fig. 5 is the present, i.e.,
t = 0. Future plans lie to the right of t = 0, past history to
the left. The open triangles in the right half-plane represent
task goals in a future plan. The filled triangles in the left
half-plane represent recognized task-completion events in a
past history. At each level there is a planning horizon and a
historical event summary interval. The heavy crosshatching on
the right shows the planning horizon for the current task. The
light shading on the right indicates the planning horizon for
the anticipated next task, The heavy crosshatching on the left
shows the event summary interval for the current task. T h e

Fig. 5. liming diagram illustrating the temporal flow of activity in the task
decomposition and sensory processing systems. At the world level, high-level
sensory events and circadian rhythms react with habits and daily routines to
generate a plan for the day. Each elements of that plan is decomposed through
the remaining six levels of task decomposition into action.

light shading on the left shows the event summary interval for
the immediately previous task.

Fig. 5 suggests a duality between the behavior generation
and the sensory processing hierarchies. At each hierarchical
level, planner modules decompose task commands into strings
of planned subtasks for execution. At each level, strings of
sensed events are summarized, integrated, and “chunked” into
single events at the next higher level.

Planning implies an ability to predict future states of the
world. Prediction algorithms based on Fourier transforms or
Kalman filters typically use recent historical data to compute
parameters for extrapolating into the future. Predictions made
by such methods are typically not reliable for periods longer
than the historical interval over which the parameters were
computed. Thus at each level, planning horizons extend into
the future only about as far, and with about the same level of
detail, as historical traces reach into the past.

Predicting the future state of the world often depends on
assumptions as to what actions are going to be taken and what
reactions are to be expected from the environment, including
what actions may be taken by other intelligent agents. Planning
of this type requires search over the space of possible future
actions and probable reactions. Search-based planning takes
place via a looping interaction between the BG, WM, and VJ
modules. This is described in more detail in the Section X
discussion on BG modules.

Planning complexity grows exponentially with the number
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t = o

Fig. 6. Three levels of real-time planning illustrating the shrinking planning
horizon and greater detail at successively lower levels of the hierarchy. At
the top level, a single task is decomposed into a set of four planned subtasks
for each of three subsystem. At each of the next two levels, the first task in
the plan of the first subsystems is further decomposed into four subtasks for
three subsystems at the next lower level.

of steps in the plan (i.e., the number of layers in the search
graph). If real-time planning is to succeed, any given planner
must operate in a limited search space. I f there are too much
resolution in the time line, or in the space of possible actions,
the size of the search graph can easily become too large for
real-time response.. One method of resolving this problem
is to use a multiplicity of planners in hierarchical layers
[14], [I81 so that at each layer no planner needs to search
more than a given number (for example ten) steps deep in a
game graph, and at each level there are no more than (ten)
subsystem planners that need to simultaneously generate and
coordinate plans. These criteria give rise to hierarchical levels
with exponentially expanding spatial and temporal planning
horizons, and characteristic degrees of detail for each level.
The result of hierarchical spatiotemporal planning is illustrated
in Fig. 6. At each level, plans consist of at least one, and on
average 10, subtasks. The planners have a planning horizon
that extends about one and a half average input command
intervals into the future.

In a real-time system, plans must be regenerated periodically
to cope with changing and unforeseen conditions in the world.
Cyclic replanning may occur at periodic intervals. Emergency
replanning begins immediately upon the detection of an emer-
gency condition. Under full alert status, the cyclic replanning
interval should be about an order of magnitude less than
the planning horizon (or about equal to the expected output
subtask time duration). This requires that real-time planners
be able to search to the planning horizon about an order of
magnitude faster than real time. This is possible only if the
depth and resolution of search is limited through hierarchical
planning.

Plan executors at each level have responsibility for react-
ing to feedback every control cycle interval. Control cycle
intervals are inversely proportional to the control loop band-

width. Typically the control cycle interval is an order o f
magnitude less than the expected output subtask duration.
I f the feedback indicates the failure of a planned subtask,
the executor branches immediately (i.e., in one control cycle
interval) to a preplanned emergency subtask. The planner
simultaneously selects or generates an error recovery sequence
that is substituted for the former plan that failed. Plan executors
are also described in more detail in Section X.

When a task goal is achieved at time t = 0, i t becomes a
task completion event in the historical trace. To the extent that
a historical trace is an exact duplicate of a former plan, there
were no surprises; i.e., the plan was followed, and every task
was accomplished as planned. To the extent that a historical
trace is different from the former plan, there were surprises.
The average size and frequency of surprises (i.e., differences
between plans and results) is a measure of effectiveness of a
planner.

At each level in the control hierarchy, the difference vector
between planned (i.e., predicted) commands and observed
events i s an error signal, that can be used by executor
submodules for servo feedback control (i.e., error correction),
and by VJ modules for evaluating success and failure.

In the next eight sections, the system architecture out-
lined previously will be elaborated and the functionality of
the computational submodules for behavior generation, world
modeling, sensory processing, and value judgment will be
discussed.

VIII. BEHAVIOR GENERATION

Definition: Behavior is the result of executing a series of
tasks.

Definition: A task is a piece of work to be done, or an
activity to be performed.

Axiom: For any intelligent system, there exists a set of tasks
that the system knows how to do.

Each task in this set can be assigned a name. The task
vocabulary is the set of task names assigned to the set of tasks
the system is capable of performing. For creatures capable of
learning, the task vocabulary is not fixed in size. I t can be
expanded through learning, training, or programming. It may
shrink from forgetting, or program deletion.

Typically, a task is performed by a one or more actors on
one or more objects. The performance of a task can usually
be described as an activity that begins with a start-event and
is directed toward a goal-event. This is illustrated in Fig. 7.

Definition: A goal i s an event that successfully terminates
a task. A goal is the objective toward which task activity is
directed.

Definirion: A task command is an instruction to perform
a named task. A task command may have the form:
DO <Tasknarne(parameters)> AFTER <Start Event> UNTIL
<Goal Event> Task knowledge is knowledge of how to
perform a task, including information as to what tools,
materials, time, resources, information, and conditions are
required, plus information as to what costs, benefits and risks
are expected.
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Fig. 7. A task consists of an activity that typically begins with a start event
and is terminated by a goal event. A task may be decomposed into several
concurrent strings of subtasks that collectively achieve the goal event.

Task knowledge may be expressed implicitly in fixed cir-
cuitry, either in the neuronal connections and synaptic weights
of the brain, or in algorithms, software, and computing hard-
ware. Task knowledge may also be expressed explicitly in data
structures, either in the neuronal substrate or in a computer

Task knowledge is typically difficult to discover, but once
known, can be readily transferred to others. Task knowledge
may be acquired by trial and error learning, but more often i t
is acquired from a teacher, or from written or programmed
instructions. For example, the common household task of
preparing a food dish is typically performed by following
a recipe. A recipe is an informal task frame for cooking.
Gourmet dishes rarely result from reasoning about possible
combinations of ingredients, sti l l less from random trial and
error combinations of food stuffs. Exceptionally good recipes
often are closely guarded secrets that, once published, can
easily be understood and followed by others.

Making steel is a more complex task example. Steel making
took the human race many millennia to discover how to do.
However, once known, the recipe for making steel can be
implemented by persons of ordinary skill and intelligence.

In most cases, the ability to successfully accomplish com-
plex tasks is more dependent on the amount of task knowledge
stored in task frames (particularly in the procedure section)
than on the sophistication of planners in reasoning about tasks.

IX. BEHAVIOR GENERATION
memory.

Behavior generation is inherently a hierarchical process.knowledge can be stored.
At each level of the behavior generation hierarchy, tasks are
decomposed into subtasks that become task commands to

[19] can be defined for each task in the task An the next lower level. At each level of a behavior generation
hierarchy there exists a task vocabulary and a correspondingexample of a task frame is:

set of task frames. Each task frame contains a procedure state-
graph. Each node in the procedure state-graph must correspond
to a task name in the task vocabulary at the next lower level.

thing to be acted upon Behavior generation consists of both spatial and temporal
event that successfully terminates or renders the decomposition. Spatial decomposition partitions a task into
task successful jobs to be performed by different subsystems. Spatial task

decomposition results in a tree structure, where each node
status (e.g. active, waiting, inactive)
timing requirements corresponds to a BG module, and each arc of the tree cor-
source of task command responds to a communication link in the chain of command

perform the task Temporal decomposition partitions each job into sequential
subtasks along the time line. The result is a set of subtasks,

disabling conditions that or intempt, al l of which when accomplished, achieve the task goal, as

the task illustrated in Fig. 7.
information that may be required In a plan involving concurrent job activity by different
a state-graph or state-table defining a plan for subsystems, there may requirements for coordination, or mu-
executing the task tual constraints. For example, a start -event for a subtask

algorithms that may be needed activity in one subsystem may depend on the goal-event for
expected results of task execution a subtask activity in another subsystem. Some tasks may
expected costs, risks, benefits require concurrent coordinated cooperative action by several
estimated time to complete subsystems. Both planning and execution of subsystem plans

Definifion: A task frame is a data structure in which task

In systems where task knowledge is explicit, a task frame

TASKNAME name of the task
type generic or specifi
actor agent performing the task
action activity to be performed
object
goal

parameters priority

requirements tools, time, resources, and materials needed to as illustrated in Fig. 3.

enabling conditions that must be satisfied to begin,

or continue, the task

functions that may be called

procedures

eKeets

may thus need to be coordinated.Explicit representation of task knowledge in task frames has
There may be several alternative ways to accomplish a task.

a variety of uses. For example, task planners may use it for
Alternative task or job decompositions can be represented by

for predicting the results o f hypothesized actions. T h e value The decision as to which of several alternatives to choose is
judgment system may use i t for computing how important the made through a series of interactions between the BG, WM,
goal is and how many resources to expend in pursuing it. Plan SP, and VJ modules. Each alternative may be analyzed by the
executors may use i t for selecting what to do next. BG module hypothesizing it, WM predicting the result, and VJ

generating hypothesized actions. The may use it an AND/OR graph in the procedure section of the task frame.
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Fig. 8. The job assignment JA module performs a spatial decomposition of
the task command into N subsystems. For each subsystem, a planner PL(j)
performs a temporal decomposition of its assigned job into subtasks. For each
subsystem, an executor EX(j) closes a real-time control loop that servos the
subtasks to the plan.

evaluating the result. The BG module then chooses the “best”
alternative as the plan to be executed.

X. BG MODULES

In the control architecture defined in Fig. 3, each level of
the hierarchy contains one or more BG modules. At each level,
there is a BG module for each subsystem being controlled. The
function of the BG modules are to decompose task commands
into subtask commands.

Input to BG modules consists of commands and priorities
from BG modules at the next higher level, plus evaluations
from nearby VJ modules, plus information about past, present,
and predicted future states of the world from nearby WM
modules. Output from BG modules may consist of subtask
commands to BG modules at the next lower level, plus status
reports, plus “What Is?” and “What If?”queries to the WM
about the current and future states of the world.

Each BG module at each level consists o f three sublevels
[9], [14] as shown in Fig. 8.

The Job Assignment Sublevel-JA Submodule: The JA sub-
module is responsible for spatial task decomposition. I t par-
titions the input task command into N spatially distinct jobs
to be performed by N physically distinct subsystems, where
N is the number of subsystems currently assigned to the BG
module. The JA submodule many assign tools and allocate
physical resources (such as arms, hands, legs, sensors, tools,
and materials) to each of its subordinate subsystems for their
use in performing their assigned jobs. These assignments are
not necessarily static. For example, the job assignment sub-
module at the individual level may, at one moment, assign an
arm to the manipulation subsystem in response to a cusetoob
task command, and later, assign the same arm to the attention
subsystem in response to a ctouch/feel> task command.

The job assignment submodule selects the coordinate sys-
tem in which the task decomposition at that level is to be
performed. In supervisory or telerobotic control systems such

as defined by NASREM [14], the JA submodule at each level
may also determine the amount and kind of input to accept
from a human operator.

The Planner Sublevel -PL(j) Submodules j=l,2, . . .N: For
each of the N subsystems, there exists a planner submodule
PL(j). Each planner submodule is responsible for decompos -
ing the job assigned to i ts subsystem into a temporal sequence
of planned subtasks.

Planner submodules PL(j) may be implemented by case-
based planners that simply select partially or completely pre-
fabricated plans, scripts, or schema [20]-[22] from the proce-
dure sections of task frames. This may be done by evoking sit -
uation/action rules of the form, IF(case-s)/THEN(useglan -y).
The planner submodules may complete partial plans by pro-
viding situation dependent parameters.

The range of behavior that can be generated by a library
of prefabricated plans at each hierarchical level, with each
plan containing a number of conditional branches and error
recovery routines, can be extremely large and complex. For
example, nature has provided biological creatures with an
extensive library of genetically prefabricated plans, called
instinct. For most species, case-based planning using libraries
of instinctive plans has proven adequate for survival and gene
propagation in a hostile natural environment.

Planner submodules may also be implemented by search-
based planners that search the space of possibile actions. This
requires the evaluation of alternative hypothetical sequences
of subtasks, as illustrated in Fig. 9. Each planner PL(j)
hypothesizes some action or series of actions, the WM module
predicts the effects of those action(s), and the VJ module
computes the value of the resulting expected states of the
world, as depicted in Fig. 9(a). Th is results in a game (or
search) graph, as shown in 9(b). The path through the game
graph leading to the state with the best value becomes the plan
to be executed by EX(j). In either case-based or search-based
planning, the resulting plan may be represented by a state-
graph, as shown in Fig. s(~).Plans may also be represented
by gradients, or other types of fields, on maps [23], or in
configuration space.

Job commands to each planner submodule may contain
constraints on time, or specify job-start and job-goal events.
A job assigned to one subsystem may also require synchro -
nization or coordination with other jobs assigned to different
subsystems. These constraints and coordination requirements
may be specified by, or derived from, the task frame. Each
planner PL(j) submodule is responsible for coordinating
its plan with plans generated by each of the other N - 1
planners at the same level, and checking to determine if
there are mutually conflicting constraints. I f conflicts are
found, constraint relaxation algorithms [24] may be applied,
or negotiations conducted between PL(j) planners, until a
solution is discovered. If no solution can be found, the planners
report failure to the job assignment submodule, and a new job
assignment may be tried, or failure may be reported to the
next higher level BG module.

The Executor Sublevel-EX(j) Submodules: There i s an ex-
ecutor EX(j) for each planner PL(j). The executor sub-
modules are responsible for successfully executing the plan
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Fig. 9. Planning loop (a) produces a game graph (b). A trace in the game
graph from the Stan to a goal state is a plan that can be represented as a plan
graph (c). Nodes in the game graph correspond to edges in the plan graph,
and edges in the game graph correspond to nodes in the plan graph. Multiple
edges exiting nodes in the plan graph correspond to conditional branches.

state-graphs generated by their respective planners. At each
tick of the state clock, each executor measures the difference
between the current world state and its current plan subgoal
state, and issues a subcommand designed to null the difference.
When the world model indicates that a subtask in the current
plan is successfully completed, the executor steps to the next
subtask in that plan. When all the subtasks in the current
plan are successfully executed, the executor steps to the first
subtask in the next plan. If the feedback indicates the failure
of a planned subtask, the executor branches immediately to a
preplanned emergency subtask. Its planner meanwhile begins
work selecting or generating a new plan that can be substi-
tuted for the former plan that failed. Output subcommands
produced by executors at level i become input commands to
job assignment submodules in BG modules at level i- 1.

Planners PL(j) operate on the future. For each subsystem,
there is a planner that i s responsible for providing a plan
that extends to the end of its planning horizon. Executors
EX(j) operate in the present. For each subsystem, there is an
executor that is responsible for monitoring the current (t = 0)
state of the world and executing the plan for its respective
subsystem. Each executor performs a READ-COMPUTE -
WRITE operation once each control cycle. At each level, each
executor submodule closes a reflex arc, or servo loop. Thus,
executor submodules at the various hierarchical levels form a
set o f nested servo loops. Executor loop bandwidths decrease
on average about an order of magnitude at each higher level.

XI. THE BEH~VIORGENERATING HIERARCHY

Task goals and task decomposition functions often have
characteristic spatial and temporal properties. For any task,

there exists a hierarchy of task vocabularies that can be
overlaid on the spatial/temporal hierarchy of Fig. 5.

For example:
Level 1 is where commands for coordinated velocities and

forces of body components (such as arms, hands, fingers, legs,
eyes, torso, and head) are decomposed into motor commands
to individual actuators. Feedback servos the position, velocity,
and force of individual actuators. In vertebrates, this is the
level of the motor neuron and stretch reflex.

Level 2 is where commands for maneuvers of body com-
ponents are decomposed into smooth coordinated dynamically
efficient trajectories. Feedback servos coordinated trajectory
motions. This is the level o f the spinal motor centers and the
cerebellum.

Level 3 is where commands to manipulation, locomotion,
and attention subsystems are decomposed into collision free
paths that avoid obstacles and singularilies. Feedback servos
movements relative to surfaces in the world. This is the level
of the red nucleus, the substantia nigra, and the primary motor
cortex.

Level 4 is where commands for an individual to perform
simple tasks on single objects are decomposed into coordi -
nated activity o f body locomotion, manipulation, attention, and
communication subsystems. Feedback initiates and sequences
subsystem activity. This is the level of the basal ganglia and
pre-motor frontal cortex.

Level 5 is where commands for behavior of an intelligent
self individual relative to others in a small group are decom-
posed into interactions between the self and nearby objects or
agents. Feedback initiates and steers whole self task activity.
Behavior generating levels 5 and above are hypothesized to
reside in temporal, frontal, and limbic cortical areas.

Level 6 is where commands for behavior of the individual
relative to multiple groups are decomposed into small group
interactions. Feedback steers small group interactions.

Level 7 (arbitrarily the highest level) is where long range
goals are selected and plans are made for long range behavior
relative to the world as a whole. Feedback steers progress
toward long range goals.

The mapping of BG functionality onto levels one to four
defines the control functions necessary to control a single
intelligent individual in performing simple task goals. Func-
tionality at levels one through three is more or less fixed and
specific to each species of intelligent system [25]. At level
4 and above, the mapping becomes more task and situation
dependent. Levels 5 and above define the control functions
necessary to control the relationships of an individual relative
to others in groups, multiple groups, and the world as a whole.

There i s good evidence that hierarchical layers develop in
the sensory -motor system, both in the individual brain as the
individual matures, and in the brains of an entire species as the
species evolves. I t can be hypothesized that the maturation of
levels in humans gives rise to Piaget’s “stages of development”

Of course, the biological motor system is typically much
more complex than is suggested by the example model de-
scribed previously. In the brains of higher species there may
exist multiple hierarchies that overlap and interact with each

(261.
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other in complicated ways. For example in primates, the
pyramidal cells of the primary motor cortex have outputs
to the motor neurons for direct control of fine manipulation
as well as the inferior olive for teaching behavioral skills
to the cerebellum [27]. There is also evidence for three
parallel behavior generating hierarchies that have developed
over three evolutionary eras [28]. Each BG module may thus
contain three or more competing influences: 1) the most basic
(IF i t smells good, THEN eat it), 2) a more sophisticated
(WAIT until the “best” moment) where best is when success
probability i s highest, and 3) a very sophisticated (WHAT are
the long range consequences of my contemplated action, and
what are all my options).

On the other hand, some motor systems may be less complex
than suggested previously. Not al l species have the same
number of levels. Insects, for example, may have only two or
three levels, while adult humans may have more than seven. In
robots, the functionality required of each BG module depends
upon the complexity of the subsystem being controlled. For
example, one robot gripper may consist o f a dexterous hand
with 15 to 20 force servoed degrees of freedom. Another
gripper may consist of two parallel jaws actuated by a single
pneumatic cylinder. In simple systems, some BG modules
(such as the Primitive level) may have no function (such
as dynamic trajectory computation) to perform. In this case,
the BG module will simply pass through unchanged input
commands (such as <Grasp>).

XII. THE WORLD MODEL

Definition: The world model is an intelligent system’s
internal representation of the external world. I t is the system’s
best estimate o f objective reality. A clear distinction between
an internal representation of the world that exists in the
mind, and the external world of reality, was first made in
the West by Schopenhauer over 100 years ago [29]. In the
East, i t has been a central theme of Buddhism for millennia.
Today the concept of an internal world model is crucial
to an understanding of perception and cognition. The world
model provides the intelligent system with the information
necessary to reason about objects, space, and time. The world
model contains knowledge of things that are not directly and
immediately observable. I t enables the system to integrate
noisy and intermittent sensory input from many different
sources into a single reliable representation of spatiotemporal
reality.

Knowledge in an intelligent system may be represented
either implicitly or explicitly. Implicit world knowledge may
be embedded in the control and sensory processing algorithms
and interconnections of a brain, or of a computer system.
Explicit world knowledge may be represented in either natural
or artificial systems by data in database structures such as
maps, lists, and semantic nets. Explicit world models require
computational modules capable of map transformations, indi-
rect addressing, and list processing. Computer hardware and
software techniques for implementing these types of functions
are well known. Neural mechanisms with such capabilities are
discussed in Section XVI.
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Fig. 10. Functions performed by the WM module. 1) Update knowledge
database with prediction errors and recognized entities. 2) Predict sensory
data. 3) Answer “What is?” queries from task executor and return current
state of world. 4) Answer “What if?”queries from task planner and predict
results for evaluation.

A. WM Modules

The WM modules in each node of the organizational hi-
erarchy of Figs. 2 and 3 perform the functions illustrated in
Fig. 10.

3)

WM modules maintain the knowledge database, keeping
i t current and consistent. In this role, the WM modules
perform the functions of a database management system.
They update WM state estimates based on correlations
and differences between world model predictions and
sensory observations at each hierarchical level. The
WM modules enter newly recognized entities, states,
and events into the knowledge database, and delete
entities and states determined by the sensory processing
modules to no longer exist in the external world. T h e
WM modules also enter estimates, generated by the VJ
modules, of the reliability of world model state variables.
Believability or confidence factors are assigned to many
types of state variables.
WM modules generate predictions of expected sensory
input for use by the appropriate sensory processing
SP modules. In this role, a W M module performs the
functions of a signal generator, a graphics engine, or
state predictor, generating predictions that enable the
sensory processing system to perform correlation and
predictive filtering. W M predictions are based on the
state o f the task and estimated states of the external
world. For example in vision, a WM module may use
the information in an object frame to generate real-time
predicted images that can be compared pixel by pixel,
or entity by entity, with observed images.
W M modules answer “What is?” questions asked by the
planners and executors in the corresponding level BG
modules. In this role, the WM modules perform the func-
tion of database query processors, question answering
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systems, or data servers. World model estimates o f the
current state of the world are also used by BG module
planners as a starting point for planning. Current state
estimates are used by BG module executors for servoing
and branching on conditions.

4) WM modules answer “What if?”questions asked by the
planners in the corresponding level BG modules. In this
role, the W M modules perform the function of simula -
tion by generating expected status resulting from actions
hypothesized by the BG planners. Results predicted by
W M simulations are sent to value judgment VJ modules
for evaluation. For each BG hypothesized action, a WM
prediction is generated, and a VJ evaluation is returned
to the BG planner. This BG-WM-VJ loop enables BG
planners to select the sequence of hypothesized actions
producing the best evaluation as the plan to be executed.

Data structures for representing explicit knowledge are
defined to reside in a knowledge database that is hierarchically
structured and distributed such that there is a knowledge
database for each WM module in each node at every level
of the system hierarchy. The communication system provides
data transmission and switching services that make the WM
modules and the knowledge database behave like a global
virtual common memory in response to queries and updates
from the BG, SP, and VJ modules. The communication
interfaces with the WM modules in each node provides a
window into the knowledge database for each of the computing
modules in that node.

XIII. KNOWLEDGE REPRESEWATION

The world model knowledge database contains both apriori
information that is available to the intelligent system before
action begins, and a posteriori knowledge that i s gained
from sensing the environment as action proceeds. I t contains
information about space, time, entities, events, and states o f
the external world. The knowledge database also includes
information about the intelligent system itself, such as values
assigned to motives, drives, and priorities; values assigned to
goals, objects, and events; parameters embedded in kinematic
and dynamic models of the limbs and body; states of internal
pressure, temperature, clocks, and blood chemistry or fuel
level; plus the states of all of the processes currently executing
in each of the BG, SP, WM, and VJ modules.

Knowledge about space is represented in maps. Knowledge
about entities, events, and states i s represented in lists, or
frames. Knowledge about the laws of physics, chemistry, op-
tics, and the rules of logic and mathematics are represented as
parameters in the WM functions that generate predictions and
simulate results o f hypothetical actions. Physical knowledge
may be represented as algorithms, formulae, or as I F m E N
rules of what happens under certain situations, such as when
things are pushed, thrown, dropped, handled, or burned.

The correctness and consistency of world model knowledge
is verified by sensory processing mechanisms that measure
differences between world model predictions and sensory
observations.

A. Geometrical Space

From psychophysical evidence Gibson [30] concludes that
the perception of geometrical space is primarily in terms of
“medium, substance, and the surfaces that separate them”.
Medium is the air, water, fog, smoke, or falling snow through
which the world is viewed. Substance is the material, such as
earth, rock, wood, metal, flesh, grass, clouds, or water, that
comprise the interior of objects. The surfaces that separate the
viewing medium from the viewed objects is what are observed
by the sensory system. The sensory input thus describes the
external physical world primarily in terms of surfaces.

Surfaces are thus selected as the fundamental element for
representing space in the proposed WM knowledge database.
Volumes are treated as regions between surfaces. Objects
are defined as circumscribed, often closed, surfaces. Lines,
points and vertices l ie on, and may define surfaces. Spatial
relationships on surfaces are represented by maps.

B. Maps

Definition: A map is a two dimensional database that
defines a mesh or grid on a surface.

The surface represented by a map may be, but need not be,
Rat. For example, a map may be defined on a surface that
is draped over, or even wrapped around, a three-dimensional
(3-D) volume.

Theorem: Maps can be used to describe the distribution of
entities in space.

I t is always possible and often useful to project the physical
3-D world onto a 2-D surface defined by a map. For example,
most commonly used maps are produced by projecting the
world onto the 2-D surface of a flat sheet of paper, or the
surface of a globe. One great advantage of such a projection
is that i t reduces the dimensionality of the world from three
to two. This produces an enormous saving in the amount
of memory required for a database representing space. The
saving may be as much as three orders of magnitude, or more,
depending on the resolution along the projected dimension.
I)Map Overlays: Most of the useful information lost in the

projection from 3-D space to a 2-D surface can be recovered
through the use of map overlays.

Definition: A map overlay is an assignment of values, or
parameters, to points on the map.

A map overlay can represent spatial relationships between
3-D objects. For example, an object overlay may indicate the
presence of buildings, roads, bridges, and landmarks at various
places on the map. Objects that appear smaller than a pixel on
a map can be represented as icons. Larger objects may be
represented by labeled regions that are projections of the 3-D
objects on the 2-D map. Objects appearing on the map overlay
may be cross referenced to an object frame database elsewhere
in the world model. Information about the 3-D geometry of
objects on the map may be represented in the object frame
database.

Map overlays can also indicate attributes associated with
points (or pixels) on the map. One of the most common map
overlays defines terrain elevation. A value of terrain elevation
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R IO surface covered (from(z) overlaid at each (z,y) point on a world map produces a range

topographic map. egosphere origin)

may indicate brightness, color, temperature, even “behind” or
“in-front”. A brightness or color overlay may correspond to world map location

a visual image. For example, when aerial photos or satellite
images are registered with map coordinates, they become world map location

brightness or color map overlays.
Map overlays may indicate terrain type, or region names, h e a r feature pointer

or can indicate values, such as cost or risk, associated with
regions. Map overlays can indicate which points on the ground surface feature pointer

are visible from a given location in space. Overlays may
also indicate contour lines and grid lines such as latitude and object pointer

longitude, or range and bearing.

For example, terrain elevation and other characteristics may
be useful for route planning in tasks of rnenipulation and
locomotion. Object overlays can be useful for analyzing scenes
and recognizing objects and places. Indirect addressing through pixel frame pointers can allow

A map typically represents the configuration of the world value state-variables assigned to objects or situations to be
at a single instant in time, i.e., a snapshot. Motion can be inherited by map pixels. For example, value state-variables
represented by overlays of state variables such as velocity such as attraction -repulsion, love-hate, fear-comfort assigned
or image flow vectors, or traces (Le., trajectories) of entity to objects and map regions can also be assigned through
locations. Time may be represented explicitly by a numerical inheritance to individual map and egosphere pixels.
parameter associated with each trajectory point, or implicitly There is some experimental evidence to suggest that map
by causing trajectory points to fade, or be deleted, as time pixel frames exist in the mammalian visual system. For ex-

passes. ample, neuron firing rates in visual cortex have been observed
Definition: A map pixel frame is a frame that contains to represent the values of attributes such as edge orientation,

attributes and attribute -values attached to that map pixel. edge and vertex type, and motion parameters such as velocity,
Theorem: A set of map overlays are equivalent to a set o f rotation, and flow field divergence. These firing rates are

map pixel frames. observed to be registered with retinotopic brightness images

every map pixel, then the set of a l l overlay parameter values
for each map pixel defines a frame for that pixel. Conversely,
the frame for each pixel describes the region covered by that c- MQPResolurion
Pixel. The set of al l Pixel f m n e s thus defines a set of map The resolution required for a world model map depends on
overlays, one overlay for each attribute in the pixel frames. how the map is generated and how it i s used. dl overlays

Q.E.D. need not have the same resolution. For predicting sensory
For example, a Pixel frame may describe the color, range, input, world model maps should have resolution comparable

and orientation of the surface covered by the pixel. I t may to the resolution of the sensory system. For vision, map
describe the name of (or pointer to) the entities to which the resolution may be on the order of @K to a million pixels. This
surface covered by the Pixel belongs. I t may also contain the corresponds to image arrays of 256 x 256 pixels to 1000 x 1000
location, Or address, of the region Covered by the Pixel in pixels respectively. For other sensory modalities, resolution
other coordinate systems. can be considerably less.

In the case of a video image, a map Pixel frame might have For planning, different levels of the control hierarchy require
the following form: maps of different scale. At higher levels, plans cover long

distances and times, and require maps of large area, but low
resolution. At lower levels, plans cover short distances and
times, and maps need to cover small areas with high resolution.

World model maps generated solely from symbolic data in
long term memory may have resolution on the order of a few
thousand pixels or less. For example, few humans can recall
from memory the relative spatial distribution of as many as
a hundred objects, even in familiar locations such as their
own homes. T h e long term spatial memory of an intelligent
creature typically consists of a finite number of relatively small
regions that may be widely separated in space; for example,

az, e l of egosphere ray to surface

covered

I.y.:of map point on surface

covered

I, y.:of map point on surface

covered

pointer to frame of line, edge, or

vertex covered by pixel

pointer IO frame of surface

covered by pixel
pointer to frame of object covered

by pixel
S, Y, Z of surface covered in

object coordinates group pointer

pointer to group covered by pixel

A map can have any number of overlays. Map overlays head egosphere location

Map overlays may be useful for a variety of functions. object map location

Proof: I f each map overlay defines a parameter value for (311, [54].

[I81

PIXEL-NAME (.4Z, EL) location index on map

(Sensor egosphere coordinates)

brightness I

color Ir 9 I b . I g

spatial brightness gradient dIfd.42. dIIdEL (sensor
egosphere coordinates)

temporal brightness gradient d l ld t

image flow direction

image flow rate

B (velocity egosphere coordinates)

d.4/dt (velocity egosphere
coordinates)
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one's own home, the office, or school, the homes of friends
and relatives, etc. These known regions are typically connected
by linear pathways that contain at most a few hundred known
waypoints and branchpoints. The remainder of the world is
known little, or not at all. Unknown regions, which make up
the vast majority of the real world, occupy little or no space
in the world model.

The efficient storage of maps with extremely nonuniform
resolution can be accomplished in a computer database by
quadtrees [32], hash coding, or other sparse memory repre-
sentations [33]. Pathways between known areas can be eco-
nomically represented by graph structures either in neuronal
or electronic memories. Neural net input-space representa -
tions and transformations such as are embodied in a CMAC
[34], [35] give insight as to how nonuniformly dense spatial
information might be represented in the brain.

D. Maps and Egospheres

I t is well known that neurons in the brain, particularly in
the cortex, are organized as 2-D arrays, or maps. I t i s also
known that conformal mappings of image arrays exist between
the retina, the lateral geniculate, the superior colliculus, and
several cortical visual areas. Similar mappings exist in the
auditdty and tactile sensory systems. For every map, there
exists a coordinate system, and each map pixel has coordinate
values. On the sensor egosphere, pixel coordinates are defined
by the physical position of the pixel in the sensor array. T h e
position of each pixel in other map coordinate systems can be
defined either by neuronal interconnections, or by transform
parameters contained in each pixel's frame.

There are three general types of map coordinate systems
that are important to an intelligent system: world coordinates,
object coordinates, and egospheres.
I)World Coordinates: World coordinate maps are typically

flat 2-D arrays that are projections of the surface of the earth
along the local vertical. World coordinates are often expressed
in a Cartesian frame, and referenced to a point in the world.
In most cases, the origin is an arbitrary point on the ground.
The z axis is defined by the vertical, and the x and y axes
define points on the horizon. For example, y may point North
and 2 East. The value of z is often set to zero at sea level.

World coordinates may also be referenced to a moving point
in the world. For example, the origin may be the self, or some
moving object in the world. In this case, stationary pixels on
the world map must be scrolled as the reference point moves.

There may be several world maps with different resolutions
and ranges. These will be discussed near the end of this
section.

2) Object Coordinates: Object coordinates are defined with
respect to features in an object. For example, the origin
might be defined as the center of gravity, with the coordinate
axes defined by axes of symmetry, faces, edges, vertices, or
skeletons [36]. There are a variety of surface representations
that have been suggested for representing object geometry.
Among these are generalized cylinders [37], [38], B-splines
[39], quadtrees [32], and aspect graphs [40]. Object coordinate
maps are typically 2-D arrays of points painted on the surfaces

of objects in the form of a grid or mesh. Other boundary
representation can usually be transformed into this form.

Object map overlays can indicate surface characteristics
such as texture, color, hardness, temperature, and type of
material. Overlays can be provided for edges, boundaries,
surface normal vectors, vertices, and pointers to object frames
containing center lines, centroids, moments, and axes of sym-
metry.

3) Egospheres: An egosphere is a two-dimensional (2-D)
spherical surface that is a map of the world as seen by an
observer at the center of the sphere. Visible points on regions
or objects in the world are projected on the egosphere wherever
the line of sight from a sensor at the center o f the egosphere
to the points in the world intersect the surface of the sphere.
Egosphere coordinates thus are polar coordinates defined by
the self at the origin. As the self moves, the projection of the
world flows across the surface of the egosphere.

Just as the world map is a flat 2-D (x, y) array with multiple
overlays, so the egosphere is a spherical 2-D (AZ,EL)
array with multiple overlays. Egosphere overlays can attribute
brightness, color, range, image flow, texture, and other prop-
erties to regions and entities on the egosphere. Regions on the
egosphere can thus be segmented by attributes, and egosphere
points with the same attribute value may be connected by
contour lines. Egosphere overlays may also indicate the trace,
or history, of brightness values or entity positions over some
time interval. Objects may be represented on the egosphere
by icons, and each object may have in its database frame a
trace, or trajectory, of positions on the egosphere over some
time interval.

E. Map Transformations

Theorem: If surfaces in real world space can be covered by
an array (or map) of points in a coordinate system defined
in the world, and the surface of a W M egosphere is also
represented as an array of points, then there exists a function
G that transforms each point on the real world map into a point
on the WM egosphere, and a function G' that transforms each
point on the WM egosphere for which range is known into a
point on the real world map.

Proof: Fig. 11 shows the 3-D relationship between an
egosphere and world map coordinates. For every point (x, y, z)
in world coordinates, there is a point (AZ, EL,R) in ego
centered coordinates that can be computed by the 3 x 3 matrix
function G

(AZ, EL,R)T = G(z, y,

There, of course, may be more than one point in the world map
that gives the same (AZ, EL) values on the egosphere. Only
the (AZ, EL) with the smallest value of R will be visible
to an observer at the center of the egosphere. The deletion
of egosphere pixels with R larger than the smallest for each
value of (AZ, EL) corresponds to the hidden surface removal
problem common in computer graphics.

For each egosphere pixel where R is known, (x,y,z) can
be computed from (AZ, EL.R) by the function G'

(z! y. z ) ~= G'(AZ, EL,R)=
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Fig. 11. Geometric relationship between world map and egosphere
coordinates.

Any point in the world topological map can thus be projected
onto the egosphere (and vice versa when R is known).
Projections from the egosphere to the world map wil l leave
blank those map pixels that cannot be observed from the center
of the egosphere. Q.E.D.

There are 2 x 2 transformations of the form

(AZ, EL)T = F(az, el) T

and

(az,el) T = F'(A2, EL)T

that can relate any map point (AZ, EL) on one egosphere to
a map point (az,el) on another egosphere of the same origin.
The radius R to any egosphere pixel is unchanged by the
F and F' transformations between egosphere representations
with the same origin.

As ego motion occurs (i.e., as the self object moves through
the world), the egosphere moves relative to world coordinates,
and points on the egocentric maps flow across their surfaces.
Ego motion may involve translation, or rotation, or both; in
a stationary world, or a world containing moving objects. I f
egomotion is known, range to all stationary points in the world
can be computed from observed image flow; and once range to
any stationary point in the world is known, its pixel motion on
the egosphere can be predicted from knowledge of egomotion.
For moving points, prediction of pixel motion on the egosphere
requires additional knowledge of object motion.

F. Egosphere Coordinate Systems

The proposed world model contains four different types of
egosphere coordinates:
I)Sensor Egosphere Coordinates: The sensor egosphere is

defined by the sensor position and orientation, and moves as
the sensor moves. For vision, the sensor egosphere is the
coordinate system of the retina. The sensor egosphere has
coordinates of azimuth (AZ) and elevation (EL) fixed in the
sensor system (such as an eye or a TV camera), as shown
in Fig. 12. For a narrow field of view, rows and columns
(z. z) in a flat camera image array correspond quite closely
to azimuth and elevation (AZ. EL) on the sensor egosphere.
However, for a wide field of view, the egosphere and flat
image array representations have widely different geometries.
The flat image (x, z) representation becomes highly elongated
for a wide field of view, going to infinity at plus and minus
90 degrees. T h e egosphere representation, in contrast, is well

Fig. 12. Sensor egosphere coordinates. Azimuth (AZ) is measured clockwise
From the sensor y-axis in the x-y plane. Elevation (EL) is measured up and
down (plus and minus) from the r- y plane.

behaved over the entire sphere (except for singularities at the
egosphere poles).

The sensor egosphere representation is useful for the anal-
ysis of wide angle vision such as occurs in the eyes of most
biological creatures. For example, most insects and fish, many
birds, and most prey animals such as rabbits have eyes with
fields of view up to 180 degrees. Such eyes are often positioned
on opposite sides of the head so as to provide almost 360
degree visual coverage. The sensor egosphere representation
provides a tractable coordinate frame in which this type of
vision can be analyzed.

2) Head Egosphere Coordinates: T h e head egosphere has
(A2,EL) coordinates measured in a reference frame fixed
in the head (or sensor platform). The head egosphere repre-
sentation is well suited for fusing sensory data from multiple
sensors, each of which has its own coordinate system. Vision
data from multiple eyes or cameras can be overlaid and
registered in order to compute range from stereo. Directional
and range data from acoustic and sonar sensors can be overlaid
on vision data. Data derived from different sensors, or from
multiple readings of the same sensor, can be overlaid on the
head egosphere to build up a single image of multidimensional
reality.

Pixel data in sensor egosphere coordinates can be trans-
formed into the head egosphere by knowledge of the position
and orientation of the sensor relative to the head. For example,
the position of each eye in the head is fixed and the orientation
of each eye relative to the head is known from stretch sensors
in the ocular muscles. The position of tactile sensors relative
to the head is known from proprioceptive sensors in the neck,
torso, and limbs.

Hypothesis: Neuronal maps on the tectum (or superior
colliculus), and on parts of the extrastriate visual cortex, are
represented in a head egosphere coordinate system.

Receptive fields from the two retinas are well known to be
overlaid in registration on the tectum, and superior colliculus.
Experimental evidence indicates that registration and fusion of
data from visual and auditory sensors takes place in the tectum
of the barn owl (411 and the superior colliculus of the monkey
[42] in head egosphere coordinates. Motor output for eye
motion from the superior colliculus apparently is transformed
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Fig. 13. T h e velocity egosphere. On the velocity egosphere, the y-axis is
defined by the velocity factor. the r - ax is points to the horizon on the right. .4
is the angle between the velocity vector and a pixel on the egosphere, and B
is the angles between the z-axis and the plane defined by the velocity vector
and the pixel vector.

back into retinal egosphere coordinates. There is also evidence
that head egosphere coordinates are used in the visual areas
of the parietal cortex [43], [54].

3) Velocity Egosphere: T h e velocity egosphere is defined
by the velocity vector and the horizon. The velocity vector
defines the pole (y-axis) of the velocity egosphere, and the
x-axis points to the right horizon as shown in Fig. 13. The
egosphere coordinates (A,B) are defined such that A is the
angle between the pole and a pixel, and B is the angle between
the yoz plane and. the plane of the great circle flow line
containing the pixel.

For egocenter translation without rotation through a station-
ary world, image flow occurs entirely along great circle arcs
defined by B =constant. T h e positive pole of the velocity
egosphere thus corresponds to the focus-of-expansion. The
negative pole corresponds to the focus-of-contraction. The
velocity egosphere is ideally suited for computing range from
image flow, as discussed in Section XIV.

4) Inertial Egosphere: T h e inertial egosphere has coordi -
nates of azimuth measured from a fixed point (such as North)
on the horizon, and elevation measured from the horizon.

T h e inertial egosphere does not rotate as a result of sensor or
body rotation. On the inertial egosphere, the world is perceived
as stationary despite image motion due to rotation of the
sensors and the head.

Fig. 14 illustrates the relationships between the four ego-
sphere coordinate systems. Pixel data in eye (or camera)
egosphere coordinates can be transformed into head (or sensor
platform) egosphere coordinates by knowledge of the position
and orientation of the sensor relative to the head. For example,
the position of each eye in the head is fixed and the orientation
of each eye relative to the head is known from stretch
receptors in the ocular muscles (or pan and tilt encoders on a
camera platform). Pixel data in head egosphere coordinates
can be transformed into inertial egosphere coordinates by
knowing the orientation of the head in inertial space. This
information can be obtained from the vestibular (or inertial)
system that measures the direction of gravity relative to the
head and integrates rotary accelerations to obtain head position
in inertial space. The inertial egosphere can be transformed
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Fig. 14. A 2-D projection of four egosphere representations illustrating
angular relationships between egospheres. Pixels are represented on each
egosphere such that images remains in registration. Pixel attributes detected
on one egosphere may thus be inherited on others. Pixel resolution is not
typically uniform on a single egosphere, nor is i t necessarily the same for
different egospheres, or for different attributes on the same egosphere

into world coordinates by knowing the 2, y, z position of the
center of the egosphere. This is obtained from knowledge
about where the self i s located in the world. Pixels on any
egosphere can be transformed into the velocity egosphere by
knowledge of the direction of the current velocity vector on
that egosphere. This can be obtained from a number of sources
including the locomotion and vestibular systems.
All of the previous egosphere transformations can be in-

verted, so that conversions can be made in either direction.
Each transformation consists of a relatively simple vector
function that can be computed for each pixel in parallel. Thus
the overlay of sensory input with world model data can be
accomplished in a few milliseconds by the type of computing
architectures known to exist in the brain. In artificial systems,
full image egosphere transformations can be accomplished
within a television frame interval by state-of-the-art serial
computing hardware. Image egosphere transformations can be
accomplished in a millisecond or less by parallel hardware.

Hypothesis: The WM world maps, object maps, and ego-
spheres are the brains data fusion mechanisms. They provide
coordinate systems in which to integrate information from
arrays of sensors (i.e., rods and cones in the eyes, tactile
sensors in the skin, directional hearing, etc.) in space and
time. They allow information from different sensory modalities
(Le., vision, hearing, touch, balance, and proprioception) to be
combined into a single consistent model of the world.

Hypothesis: The W M functions that transform data between
the world map and the various egosphere representations are
the brain's geometry engine. They transform world model
predictions into the proper coordinate systems for real-time
comparison and correlation with sensory observations. This
provides the basis for recognition and perception.
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Transformations to and from the sensor egosphere, the ENTITY NAME
inertial egosphere, the velocity egosphere, and the world kind

map allow the intelligent system to sense the world from type

one perspective and interpret i t in another. They allow the position

intelligent system to compute how entities in the world would
look from another viewpoint. They provide the ability to
overlay sensory input with world model predictions, and to dynamics

compute the geometrical and dynamical functions necessary to
navigate, focus attention, and direct action relative to entities trajectory

geometryand regions of the world.

links

G. Enlities

Definition: An entity is an element from the set {point,
line, surface, object, group}.

The world model contains information about entities stored
in lists, or frames. The knowledge database contains a list of a l l
the entities that the intelligent system knows about. A subset
of this list is the set of current -entities known to be present in
any given situation. A subset o f the list of current -entities i s
the set of entities-of-attention.

There are two types of entities: generic and specific. A
generic entity is an example of a class of entities. A generic
entity frame contains the attributes of its class. A specific
entity is a particular instance of an entity. A specific entity
frame inherits the attributes of the class to which i t belongs.
An example of an entity frame might be:

ENTITY NAME
kind

type

position

dynamics

trqjectory

geometry

links

properties

capabilities

value state -variables

name of entity

class or species of entity

generic or specific point, line,
surface, object, or group

world map coordinates

(uncertainty); egosphere

coordinates (unceaainty)

velocity (uncertainty);acceleration

(uncertainty)

sequence of positions

center of gravity (uncertainty);

axis of symmetry

(uncertainty);size

(uncertainty);shape boundaries

(uncertainty)

subentities; parent entity

physical: mass; color; substance;

behavioral: social (of animate

objects)

speed, range

attract -repulse; confidence -fear;

love-hate

For example, upon observing a specific cow named Bertha,
an entity frame in the brain of a visitor to a fa rm might have
the following values:

properties

capabilities

value state-variables

Bertha

cow

specific object

r,y. z (in pasture map coordinates)

.4Z. EL. R (in egosphere image of

observer)

velocity. acceleration (in egosphere or

pasture map coordinates)

sequence of map positions while grazing

axis of symmetry (rightlleft)

size (G x 3 x 10 ft)

shape (quadruped)

subentities - surfaces (torso, neck, head,

legs, tail. elc.)

parent entity - group (herd)

physicalmass (1050 Ibs); color (black and

white);

substance (flesh, bone, skin, hair);

behavioral (standing, placid, timid, etc.)

speed, range

attract -repulse = 3 (visitor finds cows

moderately attractive)

confidence -fear= -2 (visitor slightly afraid

of cows)

love-hate = 1 (no strong feelings)

H. Map-Entiv Relationship

Map and entity representations are cross referenced and
tightly coupled by real-time computing hardware. Each pixel
on the map has in its frame a pointer to the list of entities
covered by that pixel. For example, each pixel may cover a
point entity indicating brightness, color, spatial and temporal
gradients of brightness and color, image flow, and range for
each point. Each pixel may also cover a linear entity indicating
a brightness or depth edge or vertex; a surface entity indicating
area, slope, and texture; an object entity indicating the name
and attributes of the object covered; a group entity indicating
the name and attributes of the group covered, etc.

Likewise, each entity in the attention list may have in
its frame a set of geometrical parameters that enables the
world model geometry engine to compute the set of egosphere
or world map pixels covered by each entity, so that entity
parameters associated with each pixel covered can be overlaid
on the world and egosphere maps.

Cross referencing between pixel maps and entity frames
allows the results of each level of processing to add map
overlays to the egosphere and world map representations. The
entity database can be updated from knowledge of image
parameters at points on the egosphere, and the map database
can be predicted from knowledge of entity parameters in the
world model. At each level, local entity and map parameters
can be computed in parallel by the type of neurological
computing structures known to exist in the brain.

Many of the attributes in an entity frame are time de-
pendent state-variables. Each time dependent state-variable
may possess a short term memory queue wherein is stored
a state trajectory, or trace, that describes its temporal history.
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At each hierarchical level, temporal traces stretch backward
about as far as the planning horizon at that level stretches
into the future. At each hierarchical level, the historical trace
of an entity state-variable may be captured by summarizing
data values at several points in time throughout the historical
interval. Time dependent entity state -variable histories may
also be captured by running averages and moments, Fourier
transform coefficients, Kalman filter parameters, or other anal-
ogous methods.

Each state-variable in an entity frame may have value
state-variable parameters that indicate levels of believability,
confidence, support, or plausibility, and measures of dimen-
sional uncertainty. These are computed by value judgment
functions that reside in the VJ modules. These are described
in Section XV.

Value state-variable parameters may be overlaid on the
map and egosphere regions where the entities to which they
are assigned appear. This facilitates planning. For example,
approach -avoidance behavior can be planned on an egosphere
map overlay defined by the summation of attractor and re-
pulsor value state-variables assigned to objects or regions that
appear on the egosphere. Navigation planning can be done on
a map overlay whereon risk and benefit values are assigned to
regions on the egosphere or world map.

I.Entity Database Hierarchy

The entity database is hierarchically structured. Each entity
consists of a set o f subentities, and is part of a parent entity.
For example, an object may consist of a set of surfaces, and
be part of a group.

The definition of an object is quite arbitrary, however, at
least from the point of view of the world model. For example,
i s a nose an object? If so, what i s a face? Is a head an object?
Or is i t part of a group of objects comprising a body? I f a
body can be a group, what is a group of bodies?

Only in the context of a task, does the definition of an
object become clear. For example, in a task frame, an object
may be defined either as the agent, or as acted upon by the
agent executing the task. Thus, in the context of a specific task,
the nose (or face, or head) may become an object because i t
appears in a task frame as the agent or object of a task.

Perception in an intelligent system is task (or goal) driven,
and the structure of the world model entity database is defined
by, and may be reconfigured by, the nature of goals and tasks.
I t is therefore not necessarily the role of the world model
to define the boundaries of entities, but rather to represent
the boundaries defined by the task frame, and to map regions
and entities circumscribed by those boundaries with sufficient
resolution to accomplish the task. I t is the role of the sensory
processing system to identify regions and entities in the
external real world that correspond to those represented in
the world model, and to discover boundaries that circumscribe
objects defined by tasks.

Theorem: The world model is hierarchically structured with
map (iconic) and entity (symbolic) data structures at each level
of the hierarchy.

At level 1, the world model can represent map overlays

for point entities. In the case of vision, point entities may
consist of brightness or color intensities, and spatial and
temporal derivatives of those intensities. Point entity frames
include brightness spatial and temporal gradients and range
from stereo for each pixel. Point entity frames also include
transform parameters to and from head egosphere coordinates.
These representations are roughly analogous to Marr’s “primal
sketch” [44], and are compatible with experimentally observed
data representations in the tectum, superior colliculus, and
primary visual cortex (V l ) [31].

At level 2, the world model can represent map overlays
for linear entities consisting of clusters, or strings, of point
entities. In the visual system, linear entities may consist of
connected edges (brightness, color, or depth), vertices, image
flow vectors, and trajectories of points in spacehime. Attributes
such as 3-D position, orientation, velocity, and rotation are
represented in a frame for each linear entity. Entity frames
include transform parameters to and from inertial egosphere
coordinates. These representations are compatible with exper-
imentally observed data representations in the secondary visual
cortex (V2) [54].

At level 3, the world model can represent map overlays for
surface entities computed from sets of linear entities clustered
or swept into bounded surfaces or maps, such as terrain
maps, B-spline surfaces, or general functions of two variables.
Surface entities frames contain transfon parameters to and
from object coordinates. In the case of vision, entity attributes
may describe surface color, texture, surface position and
orientation, velocity, size, rate of growth in size, shape, and
surface discontinuities or boundaries. Level 3 is thus roughly
analogous to Marr’s “2 1/2-D sketch”, and is compatible with
known representation of data in visual cortical areas V3 and
v4.

At level 4, the world model can represent map overlays
for object entities computed from sets of surfaces clustered or
swept so as to define 3-D volumes, or objects. Object entity
frames contain transform parameters to and from object coor-
dinates. Object entity frames may also represent object type,
position, translation, rotation, geometrical dimensions, surface
properties, occluding objects, contours, axes of symmetry,
volumes, etc. These are analogous to Marr’s “3-D model”
representation, and compatible with data representations in
occipital -temporal and occipital -parietal visual areas.

At level 5, the world model can represent map overlays
for group entities consisting of sets of objects clustered into
groups or packs. This i s hypothesized to correspond to data
representations in visual association areas of parietal and tem-
poral cortex. Group entity frames contain transform parameters
to and from world coordinates. Group entity frames may
also represent group species, center o f mass, density, motion,
map position, geometrical dimensions, shape, spatial axes of
symmetry, volumes, etc.

At level 6, the world model can represent map overlays
for sets of group entities clustered into groups of groups, or
group’ entities. At level 7, the world model can represent map
overlays for sets of group’ entities clustered into group’ (or
world) entities, and so on. At each higher level, world map
resolution decreases and range increases by about an order of
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magnitude per level. Level 5-an event may span a few minutes and consist of
The highest level entity in the world model is the world listening to a conversation, a song, or visual observation of

itself, i.e., the environment as a whole. T h e environment entity group activity in an extended social exchange.
frame contains attribute state-variables that describe the state Level &an event may span an hour and include many
of the environment, such as temperature, wind, precipitation, auditory, tactile, and visual observations.
illumination, visibility, the state of hostilities or peace, the Level 7-an event may span a day and include a summary
current level o f danger or security, the disposition of the gods, of sensory observations over an entire day’s activities.
etc.

J. Events

Definition: An event is a state, condition, or situation that
exists at a point in time, or occurs over an interval in time.

Events may be represented in the world model by frames
with attributes such as the point, or interval, in time and
space when the event occurred, or is expected to occur. Event
frames attributes may indicate start and end time, duration,
type, relationship to other events, etc.

An example of an event frame is:

EVENT NAME
kind

type
modality

time

interval

position

links

value

name of event

class or species

generic or specific

visual. auditory, tactile. etc.

when event detected

period over which event took place

map location where event occurred

subevents; parent event

good-bad, benefit -cost, etc.

State-variables in the event frame may have confidence
levels, degrees of support and plausibility, and measures
of dimensional uncertainty similar to those in spatial entity
frames. Confidence state-variables may indicate the degree
of certainty that an event actually occurred, or was correctly
recognized.

The event frame database i s hierarchical. At each level o f
the sensory processing hierarchy, the recognition of a pattern,
or string, of level(i) events makes up a single level(if1) event.

Hypothesis: T h e hierarchical levels of the event frame
database can be placed in one-to-one correspondence with
the hierarchical levels of task decomposition and sensory
processing.

For example at: Level 1-an event may span a few millisec -
onds. A typical level(1) acoustic event might be the recognition
of a tone, hiss, click, or a phase comparison indicating the
direction of arrival of a sound. A typical visual event might
be a change in pixel intensity, or a measurement of brightness
gradient at a pixel.

Level 2-an event may span a few tenths of a second. A
typical level(2) acoustic event might be the recognition of a
phoneme or a chord. A visual event might be a measurement of
image flow or a trajectory segment of a visual point or feature.

Level 3-an event may span a few seconds, and consist of
the recognition of a word, a short phrase, or a visual gesture,
or motion of a visual surface.

Level &an event may span a few tens of seconds, and
consist of the recognition of a message, a melody, or a visual
observation of object motion, or task activity.

XIV. SENSORY PROCESSING

Definirion: Sensory processing is the mechanism of per-
ception.

Theorem: Perception is the establishment and maintenance
of correspondence between the internal world model and the
external real world.

Corollary: The function of sensory processing is to extract
information about entities, events, states, and relationships in
the external world, so as keep the world model accurate and
up to date.

A. Measurement of Surfaces

World model maps are updated by sensory measurement
of points, edges, and surfaces. Such information is usually
derived from vision or touch sensors, although some intelligent
systems may derive i t from sonar, radar, or laser sensors.

The most direct method of measuring points, edges, and
surfaces is through touch. Many creatures, from insects to
mammals, have antennae or whiskers that are used to measure
the position of points and orientation of surfaces in the
environment. Virtually al l creatures have tactile sensors in the
skin, particularly in the digits, lips, and tongue. Proprioceptive
sensors indicate the position of the feeler or tactile sensor
relative to the self when contact is made with an external sur-
face. This, combined with knowledge of the kinematic position
of the feeler endpoint, provides the information necessary to
compute the position on the egosphere of each point contacted.
A series of felt points defines edges and surfaces on the
egosphere.

Another primitive measure of surface orientation and depth
is available from image flow (i.e., motion of an image on the
retina of the eye). Image flow may be caused either by motion
of objects in the world, or by motion of the eye through
the world. The image flow of stationary objects caused by
translation of the eye is inversely proportional to the distance
from the eye to the point being observed. Thus, i f eye rotation
is zero, and the translational velocity of the eye i s known, the
focus of expansion is fixed, and image flow lines are defined
by great circle arcs on the velocity egosphere that emanate
from the focus of expansion and pass through the pixel in
question [45]. Under these conditions, range to any stationary
point in the world can be computed directly from image Bow
by the simple formula

u sin A
dAldtR =- (1)

where R is the range to the point, v is translational velocity
vector of the eye, A is the angle between the velocity vector
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and the pixel covering the point. dA/dt is the image flow rate
at the pixel covering the point

When eye rotation i s zero and t~is known, the flow rate
dA/dt can be computed locally for each pixel from temporal
and spatial derivatives of image brightness along flow lines
on the velocity egosphere. dA/dt can also be computed from
temporal crosscorrelation of brightness from adjacent pixels
along flow lines.

When the eye fixates on a point,.dA/dt is equal to the
rotation rate o f the eye. Under this condition, the distance to
the fixation point can be computed from (l),and the distance
to other points may be computed from image flow relative to
the fixation point.

If eye rotation is nonzero but known, the range to any
stationary point in the world may be computed by a closed
form formula of the form

where x and z are the image coordinates of a pixel, T
is the translational velocity vector of the camera in camera
coordinates, W is the rotational velocity vector of the camera
in camera coordinates, andIis the pixel brightness intensity.
Th is type of function can be implemented locally and in
parallel by a neural net for each image pixel 1461.

Knowledge of eye velocity, both translational and rotational,
may be computed by the vestibular system, the locomotion
system, and/or high levels of the vision system. Knowledge of,
rotational eye motion may either be used in the computation
of range by (2), or can be used to transform sensor egosphere
images into velocity egosphere coordinates where (1) applies.
This can be accomplished mechanically by the vestibulo -
ocular reflex, or electronically (or neuronally) by scrolling the
input image through an angle determined by a function of data
variables from the vestibular system and the ocular muscle
stretch receptors. Virtual transformation of image coordinates
can be accomplished using coordinate transform parameters
located in each map pixel frame.

Depth from image flow enables creatures of nature, from fish
and insects to birds and mammals, to maneuver rapidly through
natural environments filled with complex obstacles without
collision. Moving objects can be segmented from stationary by
their failure to match world model predictions for stationary
objects. Near objects can be segmented from distant by their
differential flow rates.

Distance to surfaces may also be computed from stereo-
vision. The angular disparity between images in two eyes
separated by a known distance can be used to compute range.
Depth from stereo is more complex than depth from image
flow in that i t requires identification of corresponding points
in images from different eyes. Hence i t cannot be computed
locally. However, stereo is simpler than image flow in that i t

does not require eye translation and is not confounded by eye
rotation or by moving objects in the world. The computation
of distance from a combination of both motion and stereo is
more robust, and hence psychophysically more vivid to the
observer, than from either motion or stereo alone.

Distance to surfaces may also be computed from sonar
or radar by measuring the time delay between emitting ra-
diation and receiving an echo. Difficulties arise from poor
angular resolution and from a variety of sensitivity, scattering,
and multipath problems. Creatures such as bats and marine
mammals use multispectral signals such as chirps and clicks
to minimize confusion from these effects. Phased arrays and
synthetic apertures may also be used to improve the resolution
of radar or sonar systems.
All of the previous methods for perceiving surfaces are

primitive in the sense that they compute depth directly from
sensory input without recognizing entities or understanding
anything about the scene. Depth measurements from primitive
processes can immediately generate maps that can be used di-
rectly by the lower levels of the behavior generation hierarchy
to avoid obstacles and approach surfaces.

Surface attributes such as position and orientation may also
be computed from shading, shadows, and texture gradients.
These methods typically depend on higher levels of visual
perception such as geometric reasoning, recognition of objects,
detection of events and states, and the understanding of scenes.

B. Recognition and Detection

Definition: Recognition is the establishment of a one-to-one
match, or correspondence, between a real world entity and a
world model entity.

The process of recognition may proceed top-down, or
bottom-up, or both simultaneously. For each entity in the world
model, there exists a frame filled with information that can be
used to predict attributes of corresponding entities observed
in the world. The top-down process of recognition begins
by hypothesizing a world model entity and comparing its
predicted attributes with those of the observed entity. When
the similarities and differences between predictions from the
world model and observations from sensory processing are
integrated over a space-time window that covers an entity, a
matching, or crosscorrelation value is computed between the
entity and the model. I f the correlation value rises above a
selected threshold, the entity i s said to be recognized. If not,
the hypothesized entity is rejected and another tried.

The bottom-up process of recognition consists o f applying
filters and masks to incoming sensory data, and computing
image properties and attributes. These may then be stored
in the world model, or compared with the properties and
attributes of entities already in the world model. Both top-
down and bottom-up processes proceed until a match is
found, or the list of world model entities is exhausted. Many
perceptual matching processes may operate in parallel at
multiple hierarchical levels .simultaneously.
Ifa SP module recognizes a specific entity, the WM at that

level updates the attributes in the frame of that specific WM
entity with information from the sensory system.
If the SP module fails to recognize a specific entity, but

instead achieves a match between the sensory input and a
generic world model entity, a new specific WM entity will be
created with a frame that initially inherits the features of the
generic entity. Slots in the specific entity frame can then be
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updated with information from the sensory input.
I f the SP module fails to recognize either a specific or a

generic entity, the WM may create an “unidentified” entity
with an empty frame. Th i s may then be filled with information
gathered from the sensory input.

When an unidentified entity occurs in the world model,
the behavior generation system may (depending on other
priorities) select a new goal to cidentify the unidentified
entity>. This may initiate an exploration task that positions
and focuses the sensor systems on the unidentified entity, and
possibly even probes and manipulates it, until a world model
frame is constructed that adequately describes the entity. The
sophistication and complexity of the exploration task depends
on task knowledge about exploring things. Such knowledge
may be very advanced and include sophisticated tools and
procedures, or very primitive. Entities may, of course, simply
remain labeled as “unidentified,” or unexplained.

Event detection is analogous to entity recognition. Observed
states of the real world are compared with states predicted by
the world model. Similarities and differences are integrated
over an event space-time window, and a matching, or cross-
correlation value i s computed between the observed event and
the model event. When the crosscorrelation value rises above
a given threshold, the event i s detected.

C. The Context of Perception

If, as suggested in Fig. 5, there exists in the world model
at every hierarchical level a short term memory in which is
stored a temporal history consisting of a series of past values
of time dependent entity and event attributes and states, i t can
be assumed that at any point in time, an intelligent system
has a record in its short term memory of how i t reached its
current state. Figs. 5 and 6 also imply that, for every planner
in each behavior generating BG module at each level, there
exists a plan, and that each executor is currently executing the
first step in its respective plan. Finally, it can be assumed that
the knowledge in al l these plans and temporal histories, and
all the task, entity, and event frames referenced by them, is
available in the world model.

Thus it can be assumed that an intelligent system almost
always knows where i t is on a world map, knows how it got
there, where i t is going, what it i s doing, and has a current list
of entities of attention, each of which has a frame of attributes
(or state variables) that describe the recent past, and provide
a basis for predicting future states. Th is includes a prediction
of what objects wil l be visible, where and how object surfaces
wil l appear, and which surface boundaries, vertices, and points
wil l be observed in the image produced by the sensor system.
I t also means that the position and motion of the eyes, ears,
and tactile sensors relative to surfaces and objects in the world
are known, and this knowledge is available to be used by the
sensory processing system for constructing maps and overlays,
recognizing entities, and detecting events.

Were the aforementioned not the case, the intelligent system
would exist in a situation analogous to a person who suddenly
awakens at an unknown point in space and time. In such cases,
i t typically is necessary even for humans to perform a series

Threshold
Itvcl

[klenlon
Threshold

Fig. 15. Each sensory processing SP module consists of the following. 1)
A set of comparators that compare sensory observations with world model
predictions, 2) a set of temporal integrators that integrate similarities and
differences, 3) a set of spatial integrators that fuse information from different
sensory data streams, and 4) a set of threshold detectors that recognize entities
and detect events.

of tasks designed to “regain their bearings”, i.e., to bring their
world model into correspondence with the state of the external
world, and to initialize plans, entity frames, and system state
variables.

I t is, of course, possible for an intelligent creature to
function in a totally unknown environment, but not well,
and not for long. Not well, because every intelligent creature
makes much good use of the historical information that
forms the context o f its current task. Without information
about where it is, and what i s going on, even the most
intelligent creature is severely handicapped. Not for long,
because the sensory processing system continuously updates
the world model with new information about the current
situation and its recent historical development, so that, within
a few seconds, a functionally adequate map and a usable set
o f entity state variables can usually be acquired from the
immediately surrounding environment.

D. Sensory Processing SP Modules

At each level of the proposed architecture, there are a
number of computational nodes. Each of these contains an
SP module, and each SP module consists of four sublevels,
as shown in Fig. 15.

Sublevel 14omparison: Each comparison submodule
matches an observed sensory variable with a world model
prediction of that variable. Th is comparison typically involves
an arithmetic operation, such as multiplication or subtraction,
which yields a measure of similarity and difference between
an observed variable and a predicted variable. Similarities
indicate the degree to which the WM predictions are correct,
.and hence are a measure of the correspondence between
the world model and reality. Differences indicate a lack of
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correspondence between world model predictions and sensory
observations. Differences imply that either the sensor data
or world model is incorrect. Difference images from the
comparator go three places:

1) They are returned directly to the WM for real -time local
pixel attribute updates. This produces a tight feedback
loop whereby the world model predicted image becomes
an array of Kalman filter state-estimators. Difference
images are thus error signals by which each pixel of the
predicted image can be trained to correspond to current
sensory input.

2) They are also transmitted upward to the integration
sublevels where they are integrated over time and space
in order to recognize and detect global entity attributes.
This integration constitutes a summation, or chunking, of
sensory data into entities. At each level, lower order en-
tities are “chunked” into higher order entities, i.e., points
are chunked into lines, lines into surfaces, surfaces into
objects, objects into groups, etc.

3) They are transmitted to the VJ module at the same level
where statistical parameters are computed in order to
assign confidence and believability factors to pixel entity
attribute estimates.

Sublevel 2-Temporal integration: Temporal integration
submodules integrate similarities and differences between
predictions and observations over intervals of time. Temporal
integration submodules operating just on sensory data can
produce a summary, such as a total, or average, of sensory
information over a given time window. Temporal integrator
submodules operating on the similarity and difference values
computed by comparison submodules may produce temporal
crosscorrelation and covariance functions between the model
and the observed data. These correlation and covariance
functions are measures of how well the dynamic properties
of the world model entity match those of the real world entity.
The boundaries of the temporal integration window may be
derived from world model prediction of event durations, or
form behavior generation parameters such as sensor fixation
periods.

Sublevel 3Spat ia f integration: Spatial integrator submod-
ules integrate similarities and differences between predictions
and observations over regions of space. This produces spatial
crosscorrelation or convolution functions between the model
and the observed data. Spatial integration summarizes sensory
information from multiple sources at a single point in time.
I t determines whether the geometric properties of a world
model entity match those of a real world entity. For example,
the product o f an edge operator and an input image may be
integrated over the area of the operator to obtain the correlation
between the image and the edge operator at a point. The
limits of the spatial integration window may be determined
by world model predictions of entity size. In some cases, the
order of temporal and spatial integration may be reversed, or
interleaved.

Sublevel 4-RecognitionlDetection threshold: When the
spatiotemporal correlation function exceeds some threshold,
object recognition (or event detection) occurs. For example,

SpallalITempen1
Inlcgrmllon. Correlatfon

Real World

Fig. 16. Interaction between world model and sensory processing. Differ-
ence images are generator by comparing predicted images with observed
images. Feedback of differences produces a Kalman best estimate for each
data variable in the world model. Spatial and lcmporal integration produce
crosscorrelation functions between the estimated attributes in the world model
and the real-world attributes measured in the observed image. When the
correlation exceeds threshold, entity recognition occurs.

if the spatiotemporal summation over the area of an edge
operator exceeds threshold, an edge is said to be detected at
the center of the area.

Fig. 16 illustrates the nature of the SP-WM interactions
between an intelligent vision system and the world model at
one level. On the left of Fig. 16, the world of reality is viewed
through the window of an egosphere such as exists in the
primary visual cortex. On the right is a world model consisting
of: 1) a symbolic entity frame in which entity attributes are
stored, and 2) an iconic predicted image that i s registered in
real-time with the observed sensory image. In the center of Fig.
16, is a comparator where the expected image i s subtracted
from (or otherwise compared with) the observed image.

T h e level(i) predicted image is initialized by the equivalent
of a graphics engine operating on symbolic data from frames
of entities hypothesized at level(i +1). T h e predicted image is
updated by differences between itself and the observed sensory
input. By this process, the predicted image becomes the world
model’s “best estimate prediction” of the incoming sensory
image, and a high speed loop is closed between the WM and
SP modules at level(i).

When recognition occurs in level (i),the world model
level(i + 1) hypothesis is confirmed and both level(i) and
level(i + 1) symbolic parameters that produced the match
are updated in the symbolic database. Th is closes a slower,
more global, loop between WM and SP modules through the
symbolic entity frames of the world model. Many examples
of this type of looping interaction can be found in the model
matching and model-based recognition literature [47]. Similar
closed loop filtering concepts have been used for years for
signal detection, and for dynamic systems modeling in aircraft
flight control systems. Recently they have been applied to
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high speed visually guided driving of an autonomous ground
vehicle [48].

The behavioral performance o f intelligent biological crea-
tures suggests that mechanisms similar to those shown in
Figs. 15 and 16 exist in the brain. In biological or neural
network implementations, SP modules may contain thousands,
even millions, of comparison submodules, temporal and spatial
integrators, and threshold submodules. The neuroanatomy of
the mammalian visual system suggests how maps with many
different overlays, as well as lists of symbolic attributes, could
be processed in parallel in real-time. In such structures i t i s
possible for multiple world model hypotheses to be compared
with sensory observations at multiple hierarchical levels, a l l
simultaneously.

E. World Model Update

Attributes in the world model predicted image may be
updated by a formula of the form

5(t + 1) = 2(t) + AY(t) +Bu(~)+ K(t) [~( t )- i( t ) ]

(3)

where 2(t) is the best estimate vector of world model i-order
entity attributes at time t, A is a matrix that computes the
expected rate of change of e(t) given the current best estimate
of thei+lorder entity attribute vector y(t), B is a matrix that
computes the expected rate of change of 2(t) due to external
input u(t), and K(t) is a confidence factor vector for updating
k(t). The value of K(t) may be computed by a formula of
the form

where KB(jlt) is the confidence in the sensory observation of
the j th real world attribute z(j l t) at time t, 0 5 K,(jl t) 5 1
Km(jlt) i s the confidence in the world model prediction of
the j th attribute at time t 0 5 Km(j,t) 5 1.

The confidence factors (K, and K,) in formula (4) may
depend on the statistics of the correspondence between the
world model entity and the real world entity (e.g. the number
of data samples, the mean and variance of [z(t) - ?(t)], etc.).
A high degree of correlation between s(t) and [ 2(t)] in both
temporal and spatial domains indicates that entities or events
have been correctly recognized, and states and attributes of
entities and events in the world model correspond to those
in the real world environment. World model data elements
that match observed sensory data elements are reinforced by
increasing the confidence, or believability factor, Km(j, t) for
the entity or state at location j in the world model attribute
lists. World model entities and states that fail to match sensory
observations have their confidence factors K,,,(j. t) reduced.
The confidence factor K,(j, t) may be derived from the signal-
to-noise ratio of the jth sensory data stream.

The numerical value of the confidence factors may be
computed by a variety of statistical methods such Baysian or
Dempster -Shafer statistics.

F. The Mechanisms of Attention

Theorem: Sensory processing is an active process that i s
directed by goals and priorities generated in the behavior
generating system.

In each node of the intelligent system hierarchy, the behav-
ior generating BG modules request information needed tor the
current task from sensory processing SP modules. By means
of such requests, the BG modules control the processing of
sensory information and focus the attention of the WM and
SP modules on the entities and regions of space that are
important to success in achieving behavioral goals. Requests
by BG modules for specific types of information cause SP
modules to select particular sensory processing masks and
filters to apply to the incoming sensory data. Requests from
BG modules enable the WM to select which world model
data to use for predictions, and which prediction algorithm to
apply to the world model data. BG requests also define which
correlation and differencing operators to use, and which spatial
and temporal integration windows and detection thresholds to

Behavior generating BG modules in the attention subsystem
also actively point the eyes and ears, and direct the tactile
sensors of antennae, fingers, tongue, lips, and teeth toward
objects of attention. BG modules in the vision subsystem
control the motion of the eyes, adjust the iris and focus,
and actively point the fovea to probe the environment for
the visual information needed to pursue behavioral goals [49],
[50]. Similarly, BG modules in the auditory subsystem actively
direct the ears and tune audio filters to mask background noises
and discriminate in favor of the acoustic signals of importance
to behavioral goals.

Because of the active nature of the attention subsystem,
sensor resolution and sensitivity i s not uniformly distributed,
but highly focused. For example, receptive fields of optic nerve
fibers from the eye are several thousand times more densely
packed in the fovea than near the periphery of the visual field.
Receptive fields of touch sensors are also several thousand
times more densely packed in the finger tips and on the lips
and tongue, than on other parts of the body such as the torso.

T h e active control of sensors with nonuniform resolution
has profound impact on the communication bandwidth, com-
puting power, and memory capacity required by the sensory
processing system. For example, there are roughly 500 000
fibers in the the optic nerve from a single human eye. These
fibers are distributed such that about 100 000 are concentrated
in the kl.0 degree foveal region with resolution of about
0.007 degrees. About 100 000 cover the surrounding t 3 degree
region with resolution of about 0.02 degrees. 1OOOOO more
cover the surrounding 210 degree region with resolution of
0.07 degrees. 100000 more cover the surrounding 30 degree
region with a resolution of about 0.2 degrees. 100000 more
cover the remaining 280 degree region with resolution of
about 0.7 degree [S l ] . T h e total number of pixels is thus
about 500 000 pixels, or somewhat less than that contained
in two standard commercial TV images. Without nonuniform
resolution, covering the entire visual field with the resolution
of the fovea would require the number of pixels in about 6 000

apply.
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standard TV images. Thus, for a vision sensory processing
system with any given computing capacity, active control and
nonuniform resolution in the retina can produce more than
three orders of magnitude improvement in image processing
capability.

SP modules in the attention subsystem process data from
low-resolution wide-angle sensors to detect regions of interest,
such as entities that move, or regions that have discontinuities
(edges and lines), or have high curvature (corners and inter-
sections). T h e attention BG modules then actively maneuver
the eyes, fingers, and mouth so as to bring the high resolution
portions of the sensory systems to bear precisely on these
points of attention. T h e result gives the subjective effect of
high resolution everywhere in the sensory field. For example,
wherever the eye looks, i t sees with high resolution, for the
fovea is always centered on the item of current interest.

The act of perception involves both sequential and parallel
operations. For example, the fovea of the eye is typically
scanned sequentially over points of attention in the visual field
[52]. Touch sensors in the fingers are actively scanned over
surfaces of objects, and the ears may be pointed toward sources
of sound. While this sequential scanning is going on, parallel
recognition processes hypothesize and compare entities at all
levels simultaneously.

G. The Sensory Processing Hierarchy

I t has long been recognized that sensory processing occurs
in a hierarchy of processing modules, and that perception
proceeds by “chunking”, i.e., by recognizing patterns, groups,
strings, or clusters of points at one level as a single feature,
or point in a higher level, more abstract space. I t also has
been observed that this chunking process proceeds by about
an order of magnitude per level, both spatially and temporally
[17], (181. Thus, at each level in the proposed architecture, SP
modules integrate, or chunk, information over space and time
by about an order of magnitude.

Fig. 17 describes the nature o f the interactions hypothesized
to take place between the sensory processing and world
modeling modules at the first four levels, as the recognition
process proceeds. The functional properties of the SP modules
are coupled to, and determined by, the predictions of the
WM modules in their respective processing nodes. The WM
predictions are, in turn, effected by states of the BG modules.

Hypothesis: There exist both iconic (maps) and symbolic
(entity frames) at a l l levels of the SP/WM hierarchy of the
mammalian vision system.

Fig. 18 illustrates the concept stated in this hypothesis.
Visual input to the retina consists of photometric brightness
and color intensities measured by rods and cones. Brightness
intensities are denoted by I (k , AZ, EL, t), whereI is the
brightness intensity measured at time t by the pixel at sensor
egosphere azimuth A Z and elevation EL of eye (or camera)
k. Retinal intensity signalsImay vary over time intervals on
the order of a millisecond or less.

Image preprocessing is performed on the retina by hori-
zontal, bipolar, amacrine, and ganglion cells. Center -surround
receptive fields (“on-center” and “off-center”) detect both
spatial and temporal derivatives at each point in the visual
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Fig. 17. The nature of the interactions that take place between the world
model and sensory processing modules. At each level, predicted entities are
compared with bo observed. Differences are returned as errors directly to
the world model to update the model. Correlations are forwarded upward to
be integrated over time and space windows provided by the world model.
Correlations that exceed threshold are d recognized as entities.

field. Outputs from the retina carried by ganglion cell axons
become input to sensory processing level 1 as shown in Fig.
18. Level 1 inputs correspond to events of a few milliseconds
duration.

I t is hypothesized that in the mammalian brain, the level 1
vision processing module consists of the neurons in the lateral
geniculate bodies, the superior colliculus, and the primary
visual cortex (Vl). Optic nerve inputs from the two eyes are
overlaid such that the visual fields from left and right eyes
are in registration. Data from stretch sensors in the ocular
muscles provides information to the superior colliculus about
eye convergence, and pan, tilt, and roll of the retina relative to
the head. This allows image map points in retinal coordinates
to be transformed into image map points in head coordinates
(or vice versa) so that visual and acoustic position data can
be registered and fused [41], [42]. In V1, registration of
corresponding pixels from two separate eyes on single neurons
also provides the basis for range from stereo to be computed
for each pixel [31j.

At level 1, observed point entities are compared with pre-
dicted point entities. Similarities and differences are integrated
into linear entities. Strings of level 1 input events are integrated
into level 1 output events spanning a few tens of milliseconds.
Level 1 outputs become level 2 inputs.

The level 2 vision processing module is hypothesized to
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Fig. 18. Hypothesized correspondence between levels in the proposed model
and neuranatomical structures in the mammalian vision system. At each level,
the WM module contains both iconic and symbolic representations. At each
level, the SP module compares the observed image with a predicted image.
At each level, both iconic and symbolic world models are updated, and
map overlays are computed. LGN is the lateral geniculate nuclei, OT is
the occipital -temporal, OP is the occipital -parietal. and SC is the superior
colliculus.

consist of neurons in the secondary visual cortex (V2). At
level 2, observed linear entities are compared with predicted
linear entities. Similarities and differences are integrated into
surface entities. Some individual neurons indicate edges and
lines at particular orientations. Other neurons indicate edge
points, curves, trajectories, vertices, and boundaries.

Input to the world model from the vestibular system indi-
cates the direction of gravity and the rotation of the head. Th is
allows the level 2 world model to transform head egosphere
representations into inertial egosphere coordinates where the
world is perceived to be stationary despite rotation of the
sensors.

Acceleration data from the vestibular system, combined with
velocity data from the locomotion system, provide the basis
for estimating both rotary and linear eye velocity, and hence
image flow direction. This allows the level 2 world model
to transform head egosphere representations into velocity
egosphere coordinates where depth from image flow can be
computed. Center-surround receptive fields along image flow
lines can be subtracted from each other to derive spatial
derivatives in the flow direction. At each point where the
spatial derivative in the flow direction is nonzero, spatial and
temporal derivatives can be combined with knowledge of eye
velocity to compute the image flow rate dA/dt [45]. Range
to each pixel can then be computed directly, and in parallel,
from local image data using formula (1) or (2).

The previous egosphere transformations do not necessarily
imply that neurons are physically arranged in inertial or
velocity egosphere coordinates on the visual cortex. If that

were true, i t would require that the retinal image be scrolled
over the cortex, and there is little evidence for this, at least
in V1 and V2. Instead, i t i s conjectured that the neurons
that make up both observed and predicted iconic images
exist on the visual cortex in retinotopic, or sensor egosphere,
coordinates. The velocity and inertial egosphere coordinates
for each pixel are defined by parameters in the symbolic entity
frame of each pixel. The inertial, velocity (and perhaps head)
egospheres may thus be “virtual” egospheres. The position
of any pixel on any egosphere can be computed by using the
transformation parameters in the map pixel frame as an indirect
address offset. This allows velocity and inertial egosphere
computations to be performed on neural patterns that are
physically represented in sensor egosphere coordinates.

The possibility of image scrolling cannot be ruled out,
however, particularly at higher levels. I t has been observed
that both spatial and temporal retinotopic specificity decreases
about two orders of magnitude from V1 to V4 [54]. Th is i s
consistent with scrolling.

Strings of level 2 input events are integrated into level 3
input events spanning a few hundreds of milliseconds.

The level 3 vision processing module is hypothesized to
reside in areas V3 and V4 of the visual cortex. Observed
surface entities are compared with predicted surface entities.
Similarities and differences are integrated to recognize object
entities. Cells that detect texture and motion of regions in
specific directions provide indication of surface boundaries and
depth discontinuities. Correlations and differences between
world model predictions and sensory observations of surfaces
give rise to meaningful image segmentation and recognition of
surfaces. World model knowledge of lighting and texture allow
computation of surface orientation, discontinuities, boundaries,
and physical properties.

Strings of level 3 input events are integrated into level 4 in-
put events spanning a few seconds. (This does not necessarily
imply that i t takes seconds to recognize surfaces, but that both
patterns of motion that occupy a few seconds, and surfaces,
are recognized at level 3. For example, the recognition of a
gesture, or dance step, might occur at this level.)

World model knowledge of the position of the self relative
to surfaces enables level 3 to compute offset variables for each
pixel that transform i t from inertial egosphere coordinates into
object coordinates.

The level 4 vision processing module is hypothesized to
reside in the posterior inferior temporal and ventral intrapari -
etal regions of visual cortex. At level 4, observed objects are
compared with predicted objects. Correlations and differences
between world model predictions and sensory observations of
objects allows shape, size, and orientation, as well as location,
velocity, rotation, and size-changes of objects to be recognized
and measured.

World model input from the locomotion and navigation
systems allow level 4 to transform object coordinates into
world coordinates. Strings of level 4 input events are grouped
into level 5 input events spanning a few tens of seconds.

Level 5 vision is hypothesized to reside in the visual
association areas of the parietal and temporal cortex. At level
5, observed groups of objects are compared with predicted
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groups. Correlations are integrated into group2 entities. Strings
of level 5 input events are detected as level 5 output events
spanning a few minutes. For example, in the anterior inferior
temporal region parlicular groupings of objects such as eyes,
nose, and mouth are recognized as faces. Groups of fingers can
be recognized as hands, etc. In the parietal association areas,
map positions, orientations, rotations o f groups of objects are
detected. At level 5, the world model map has larger span and
lower resolution than level 4.

At level 6, clusters of group’ entities are recognized as
group3 entities, and strings of level 6 input events are grouped
into level 6 output events spanning a few tens of minutes.
The world model map at level 7 has larger span and lower
resolution than at level 6.

At level 7, strings of level 7 input events are grouped into
level 7 output events spanning a few hours.

I t must be noted that the neuroanatomy of the mammalian
vision system is much more convoluted than suggested by
Fig. 18. Van Essen [53] has compiled a list of 84 identified
or suspected pathways connecting 19 visual areas. Visual
processing is accomplished in at least two separate subsystems
that are not differentiated in Fig. 18. The subsystem that
includes the temporal cortex emphasizes the recognition of
entities and their attributes such as shape, color, orientation,
and grouping of features. The subsystem that includes the
parietal cortex emphasizes spatial and teqporal relationships
such as map positions, timing of events, velocity, and direction
of motion [54]. I t should also be noted that analogous figures
could be drawn for other sensory modalities such as hearing
and touch.

H. Gestalt Effects

When an observed entity is recognized at a particular
hierarchical level, its entry into the world model provides
predictive support to the level below. The recognition output
also flows upward where i t narrows the search at the level
above. For example, a linear feature recognized and entered
into the world model at level 2, can be used to generate
expected points at level 1. It can also be used to prune the
search tree at level 3 to entities that contain that particular
type of linear feature. Similarly, surface features at level
3 can generate specific expected linear features at level 2,
and limit the search at level 4 to objects that contain such
surfaces, etc. T h e recognition of an entity at any level thus
provides to both lower and higher levels information that i s
useful in selecting processing algorithms and setting spatial
and temporal integration windows to integrate lower level
features into higher level chunks.

If the correlation function at any level falls below threshold,
the current world model entity or event at that level wil l be
rejected, and others tried. When an entity or event is rejected,
the rejection also propagates both upward and downward,
broadening the search space at both higher and lower levels.

At each level, the SP and W M modules are coupled so as
to form a feedback loop that has the properties of a relaxation
process, or phase-lock loop. WM predictions are compared

with SP observations, and the correlations and differences
are fed back to modify subsequent WM predictions. WM
predictions can thus be “servoed” into correspondence with
the SP observations. Such looping interactions will either
converge to a tight correspondence between predictions and
observations, or wil l diverge to produce a definitive set of
irreconcilable differences.

Perception is complete only when the correlation functions
at all levels exceed threshold simultaneously. I t is the nature
of closed loop processes for lock-on to occur with a positive
“snap”. This is especially pronounced in systems with many
coupled loops that lock on in quick succession. The result is
a gestalt “aha” effect that is characteristic of many human
perceptions.

I.Flywheeling, Hysteresis, and Illusion

Once recognition occurs, the looping process between SP
and WM acts as a tracking filter. This enables world model
predictions to track real world entities through noise, data
dropouts, and occlusions.

In the system described previously, recognition wil l occur
when the first hypothesized entity exceeds threshold. Once
recognition occurs, the search process is suppressed, and
the thresholds for all competing recognition hypotheses are
effectively raised. This creates a hysteresis effect that tends to
keep the WM predictions locked onto sensory input during the
tracking mode. I t may also produce undesirable side effects,
such as a tendency to perceive only what is expected, and a
tendency to ignore what does not fit preconceived models of
the world.

In cases where sensory data is ambiguous, there is more
than one model that can match a particular observed object.
The first model that matches will be recognized, and other
models will be suppressed. This explains the effects produced
by ambiguous figures such as the Necker cube.

Once an entity has been recognized, the world model
projects its predicted appearance so that i t can be compared
with the sensory input. I f this predicted information is added
to, or substituted for, sensory input, perception at higher levels
wil l be based on a mix of sensory observations and world
model predictions. By this mechanism, the world model may
fillin sensory data that is missing, and provide information that
may be left out of the sensory data. For example, i t is well
known that the audio system routinely “flywheels” through
interruptions in speech data, and fills-in over noise bursts.

This merging of world model predictions with sensory
observations may account for many familiar optical illusions
such as subjective contours and the Ponzo illusion. In patho-
logical cases, i t may also account for visions and voices, and
an inability to distinguish between reality and imagination.
Merging of world model prediction with sensory observation
i s what Grossberg calls “adaptive resonance” [SI.

xv. VALUE JUDGMENTS

Value judgments provide the criteria for making intelligent
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choices. Value judgments evaluate the costs, risks, and benefits
of plans and actions, and the desirability, attractiveness, and
uncertainty o f objects and events. Value judgment modules
produce evaluations that can be represented as value state-
variables. These can be assigned to the attribute lists in entity
frames of objects, persons, events, situations, and regions of
space. They can also be assigned to the attribute lists o f plans
and actions in task frames. Value state -variables can label
entities, tasks, and plans as good or bad, costly or inexpensive,
as important or trivial, as attractive or repulsive, as reliable
or uncertain. Value state-variables can also be used by the
behavior generation modules both for planning and executing
actions. They provide the criteria for decisions about which
coarse of action to take [56].

Definition: Emotions are biological value state-variables
that provide estimates of good and bad.

Emotion value state-variables can be assigned to the at-
tribute lists o f entities, events, tasks, and regions of space so
as to label these as good or bad, as attractive or repulsive,
etc. Emotion value state-variables provide criteria for making
decisions about how to behave in a variety of situations. For
example, objects or regions labeled with fear can be avoided,
objects labeled with love can be pursued and protected,
those labeled with hate can be attacked, etc. Emotional value
judgments can also label tasks as costly or inexpensive, risky
or safe.

Definition: Priorities are value state-variables that provide
estimates o f importance.

Priorities can be assigned to task frames so that BG planners
and executors can decide what to do first, how much effort
to spend, how much risk is prudent, and how much cost i s
acceptable, for each task.

Definition: Drives are value state-variables that provide
estimates of need.

Drives can be assigned to the self frame, to indicate internal
system needs and requirements. In biological systems, drives
indicate levels of hunger, thirst, and sexual arousal. I n me-
chanical systems, drives might indicate how much fuel is left,
how much pressure is in a boiler, how many expendables have
been consumed, or how much battery charge is remaining.

A. The Limbic System

In animal brains, value judgment functions are computed
by the limbic system. Value state-variables produced by the
limbic system include emotions, drives, and priorities. In
animals and humans, electrical or chemical stimulation of
specific limbic regions (i.e., value judgment modules) has been
shown to produce pleasure and pain as well as more complex
emotional feelings such as fear, anger, joy, contentment, and
despair. Fear is computed in the posterior hypothalamus.
Anger and rage are computed in the amygdala. The insula
computes feelings of contentment, and the septal regions
produce joy and elation. The perifornical nucleus of the
hypothalamus computes punishing pain, the septum pleasure,
and the pituitary computes the body's priority level of arousal
in response to danger and stress [57].

The drives of hunger and thirst are computed in the limbic

system's medial and lateral hypothalamus. The level of sexual
arousal is computed by the anterior hypothalamus. The control
of body rhythms, such as sleep-awake cycles, are computed
by the pineal gland. The hippocampus produces signals that
indicate what is important and should be remembered, or whaL
is unimportant and can safely be forgotten. Signals from the
hippocampus consolidate (i.e., make permanent) the storage of
sensory experiences in long term memory. Destruction of the
hippocampus prevents memory consolidation [58].

In lower animals, the limbic system is dominated by the
sense of smell and taste. Odor and taste provides a very simple
and straight forward evaluation of many objects. For example,
depending on how something smells, one should either eat
it, fight it, mate with it, or ignore it. In higher animals, the
limbic system has evolved to become the seat of much more
sophisticated value judgments, including human emotions and
appetites. Yet even in humans, the limbic system retains its
primitive function of evaluating odor and taste, and there
remains a close connection between the sense of smell and
emotional feelings.

Input and output fiber systems connect the limbic system
to sources of highly processed sensory data as well as to
high level goal selection centers. Connections with the frontal
cortex suggests that the value judgment modules are inti -
mately involved with long range planning and geometrical
reasoning. Connections with the thalamus suggests that the
limbic value judgment modules have access to high level
perceptions about objects, events, relationships, and situations;
for example, the recognition of success in goal achievement,
the perception of praise or hostility, or the recognition of
gestures of dominance or submission. Connections with the
reticular formation suggests that the limbic VJ modules are
also involved in computing confidence factors derived from
the degree of correlation between predicted and observed
sensory input. A high degree of correlation produces emotional
feelings of confidence. Low correlation between predictions
and observations generates feelings of fear and uncertainty.

The limbic system is an integral and substantial part of
the brain. In humans, the limbic system consists of about 53
emotion, priority, and drive submodules linked together by 35
major nerve bundles [57].

B. Value State-Variables

I t has long been recognized by psychologists that emotions
play a central role in behavior. Fear leads to flight, hate to
rage and attack. Joy produces smiles and dancing. Despair
produces withdrawal and despondent demeanor. All creatures
tend to repeat what makes them feel good, and avoid what
they dislike. All attempt to prolong, intensify, or repeat those
activities that give pleasure or make the self feel confident,
joyful, or happy. All t r y to terminate, diminish, or avoid those
activities that cause pain, or arouse fear, or revulsion.

I t is common experience that emotions provide an eval -
uation of the state of the world as perceived by the sensory
system. Emotions tel l us what is good or bad, what is attractive
or repulsive, what is beautiful or ugly, what is loved or hated,
what provokes laughter or anger, what smells sweet or rotten,
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what feels pleasurable, and what hurts.
I t is also widely known that emotions affect memory.

Emotionally traumatic experiences are remembered in vivid
detail for years, while emotionally nonstimulating everyday
sights and sounds are forgotten within minutes after they are
experienced.

Emotions are popularly believed to be something apart
from intelligence-irrational, beyond reason or mathematical
analysis. The theory presented here maintains the opposite.
In this model, emotion is a critical component of biological
intelligence, necessary for evaluating sensory input, selecting
goals, directing behavior, and controlling learning.

I t is widely believed that machines cannot experience emo-
tion, or that it would be dangerous, or even morally wrong to
attempt to endow machines with emotions. However, unless
machines have the capacity to make value judgments (i.e., to
evaluate costs, risks, and benefits, to decide which course of
action, and what expected results, are good, and which are bad)
machines can never be intelligent or autonomous. What is the
basis for deciding to do one thing and not another, even to
turn right rather than left, if there is no mechanism for making
value judgments? Without value judgments to support decision
making, nothing can be intelligent, be i t biological or artificial.

Some examples of value state-variables are listed below,
along with suggestions of how they might be computed. This
list is by no means complete.

Good is a high level positive value state-variable. It may be
assigned to the entity frame of any event, object, or person.
I t can be computed as a weighted sum, or spatiotemporal
integration, of al l other positive value state-variables assigned
to the same entity frame.

Bad is a high level negative value state-variable. i t can be
computed as a weighted sum, or spatiotemporal integration,
of a l l other negative value state-variables assigned to an entity
frame.

Pleasure: Physical pleasure i s a mid-level internal positive
value state-variable that can be assigned to objects, events,
or specific regions of the body. In the latter case, pleasure
may be computed indirectly as a function of neuronal sensory
inputs from specific regions of the body. Emotional pleasure
is a high level internal positive value state-variable that can be
computed as a function of highly processed information about
situations in the world.

Pain: Physical pain is a low level internal negative value
state-variable that can be assigned to specific regions of the
body. I t may be computed directly as a function of inputs from
pain sensors in specific regions of the body. Emotional pain is
a high level internal negative value state-variable that may be
computed indirectly from highly processed information about
situations in the world.

Success-observed is a positive value state-variable that
represents the degree to which task goals are met, plus the
amount of benefit derived therefrom.

Success-expected is a value state-variable that indicates the
degree of expected success (or the estimated probability of
success). I t may be stored in a task frame, or computed
during planning on the basis of world model predictions. When
compared with success-observed i t provides a base-line for

measuring whether goals were met on, behind, or ahead of
schedule; at, over, or under estimated costs; and with resulting
benefits equal to, less than, or greater than those expected.

Hope is a positive value state-variable produced when
the world model predicts a future success in achieving a
good situation or event. When high hope is assigned to a
task frame, the BG module may intensify behavior directed
toward completing the task and achieving the anticipated good
situation or event.

Frustrulion is a negative value state-variable that indicates
an inability to achieve a goal. I t may cause a BG module to
abandon an ongoing task, and switch to an alternate behavior.
The level of frustration may depend on the priority attached to
the goal, and on the length of time spent in trying to achieve it.

Love is a positive value state-variable produced as a function
of the perceived attractiveness and desirability o f an object or
person. When assigned to the frame of an object or person,
i t tends to produce behavior designed to approach, protect, or
possess the loved object or person.

Hate is a negative value state-variable produced as a func-
tion of pain, anger, or humiliation. When assigned to the frame
of an object or person, hate tends to produce behavior designed
to attack, harm, or destroy the hated object or person.

Comfort is a positive value state-variable produced by the
absence of (or relief from) stress, pain, or fear. Comfort can be
assigned to the frame of an object, person, or region of space
that is safe, sheltering, or protective. When under stress or in
pain, an intelligent system may seek out places or persons with
entity frames that contain a large comfort value.

Fear is a negative value state-variable produced when the
sensory processing system recognizes, or the world model
predicts, a bad or dangerous situation or event. Fear may be
assigned to the attribute list of an entity, such as an object,
person, situation, event, or region of space. Fear tends to
produce behavior designed to avoid the feared situation, event,
or region, or flee from the feared object or person.

Joy is a positive value state-variable produced by the
recognition of an unexpectedly good situation or event. I t is
assigned to the self-object frame.

Despair is a negative value state-variable produced by world
model predictions of unavoidable, or unending, bad situations
or events. Despair may be caused by the inability of the
behavior generation planners to discover an acceptable plan
for avoiding bad situations or events.

Happiness is a positive value state-variable produced by
sensory processing observations and world model predictions
of good situations and events. Happiness can be computed as
a function of a number of positive (rewarding) and negative
(punishing) value state-variables.

Confidence is an estimate of probability of correctness. A
confidence state-variable may be assigned to the frame of any
entity in the world model. I t may also be assigned to the self
frame, to indicate the level of confidence that a creature has in
its own capabilities to deal with a situation. A high value of
confidence may cause the BG hierarchy to behave confidently
or aggressively.

Uncertainv is a lack of confidence. Uncertainty assigned
to the frame of an external object may cause attention to be
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directed toward that object in order to gather more informa -
tion about it. Uncertainty assigned to the self-object frame
may cause the behavior generating hierarchy to be timid or
tentative.

I t is possible to assign a real nonnegative numerical scalar
value to each value state-variable. This defines the degree, or
amount, of that value state-variable. For example, a positive
real value assigned to “good” defines how good; i.e., if

e := “good” and 0 5 e 5 10

then, e = 10 is the “best” evaluation possible.
Some value state-variables can be grouped as conjugate

pairs. For example, good-bad, pleasure -pain, success -fail, love-
hate, etc. For conjugate pairs, a positive real value means the
amount of the good value, and a negative real value means
the amount of the bad value.

For example, if

e := “good-bad’’ and - 10 5 e 5 +I0

then e = 5 is good e = 6 is better e = 10 is best e = -4
is bad e = -7 is worse e = -10 is worst e = 0 is neither
good nor bad.

Similarly, in the case of pleasure-pain, the larger the positive
value, the better i t feels. The larger the negative value, the
worse it hurts. For example, if

e := “pleasure -pain’’

then e = 5 is pleasurable e = 10 is ecstasy e = -5 is painful
e = -10 is agony e = 0 is neither pleasurable nor painful.

The positive and negative elements of the conjugate pair
may be computed separately, and then combined.

C. VJ Modules

Value state-variables are computed by value judgment func-
tions residing in VJ modules. Inputs to VJ modules describe
entities, events, situations, and states. VJ value judgment
functions compute measures of cost, risk, and benefit. VJ
outputs are value state-variables.

Theorem: The VJ value judgment mechanism can be de-
fined as a mathematical or logical function of the form

E = V(S)

where E is an output vector of value state-variables, V
is a value judgment function that computes E given S, S
is an input state vector defining conditions in the world
model, including the self. The components of S are entity
attributes describing states of tasks, objects, events, or regions
of space. These may be derived either from processed sensory
information, or from the world model.

The value judgment function V in the VJ module computes
a numerical scalar value (i.e., an evaluation) for each compo-
nent of E as a function of the input state vector s, E is a time
dependent vector. The components of E may be assigned to
attributes in the world model frame of various entities, events,
or states.

I f time dependency is included, the function E(t +
dt) =V(S(t)) may be computed by a set o f equations of
the form

e ( j , t + dt) = (IC d/dt + 1) s(i, t )w ( i , j ) (7)

where e( j , t) i s the value of the j t h value state-variable in the
vector E at time t s(i, t) is the value of the ith input variable
at time t w ( i , j ) is a coefficient, or weight, that defines the
contribution of s(i)to e(j) .

Each individual may have a different set of “values”, i.e., a
different weight matrix in its value judgment function V.

The factor (kdldt + 1) indicates that a value judgment is
typically dependent on the temporal derivative of its input
variables as well as on their steady-state values. If IC > 1, then
the rate of change of the input factors becomes more important
than their absolute values. For k > 0, need reduction and
escape from pain are rewarding. The more rapid the escape,
the more intense, but short-lived, the reward.

Formula (8) suggests how a V J function might compute
the value state-variable “happiness”:

i

happiness = (k d/dt + l)(success -expectation

+ hope-frustration

+ love-hate

+ comfort -fear

+ joy-despair)

where success, hope, love, comfort, joy are all positive value
state-variables that contribute to happiness, and expectation,
frustration, hate, fear, and despair are al l negative value
state -variables that tend to reduce or diminish happiness.
In this example, the plus and minus signs result from $1
weights assigned to the positive -value state-variables, and
-1 weights assigned to the negative -value state-variables. Of
course, different brains may assign different values to these
weights.

Expectation is listed in formula (8) as a negative state-
variable because the positive contribution of success is di-
minished if success-observed does not meet or exceed suc-
cess-expected. This suggests that happiness could be increased
if expectations were lower. However, when k > 0, the hope
reduction that accompanies expectation downgrading may be
just as punishing as the disappointments that result from
unrealistic expectations, at least in the short term. Therefore,
lowering expectations is a good strategy for increasing hap-
piness only if expectations are lowered very slowly, or are
already low to begin with.

Fig. 19 shows an example of how a VJ module might
compute pleasure -pain. Skin and muscle are known to contain
arrays of pain sensors that detect tissue damage. Specific
receptors for pleasure are not known to exist, but pleasure
state -variables can easily be computed from intermediate state -
variables that are computed directly from skin sensors.

The VJ module in Fig. 19 computes “pleasure -pain’’ as
a function o f the intermediate state-variables of “softness”,
“warmth”, and “gentle stroking of the skin”. These interme -
diate state-variables are computed by low level SP modules.



S O 4 IEEE TRANSACt7ONS ON SYSTEMS, MAN. AND CYBERNETICS. VOL. 21. NO. 3. MAYNUNE I991

SENSORY
SENSORS PROCESSING

VALUE WORLD
JUDCEMEhT MODEL

v -
VJ

I

Fig. 19. How a VJ value judgment module might evaluate tactile and thermal
sensory input. i n fhis example, pleasure-pain is computed by a VJ module
as a function of “warmth,” “softness,” and “gentle stroking” state -variables
recognized by an SP module, plus inputs directly from pain sensors in the
skin. Pleasure-pain value state-variables are assigned to pixel frames of the
world model map of the skin area.

“warmth” i s computed from temperature sensors in the skin.
“softness” is computed as a function of “pressure” and “defor-
mation” (i.e., stretch) sensors. “gentle stroking of the skin” is
computed by a spatiotemporal analysis of skin pressure and
deformation sensor arrays that is analogous to image flow
processing of visual information from the eyes. Pain sensors
go directly from the skin area to the VJ module.

In the processing of data from sensors in the skin, all of
the computations preserve the topological mapping of the
skin area. Warmth is associated with the area in which the
temperature sensors are elevated. Softness is associated with
the area where pressure and deformation are in the correct
ratio. Gentle stroking is associated with the area in which the
proper spatiotemporal patterns of pressure and deformation are
observed. Pain is associated with the area where pain sensors
are located. Finally, pleasure-pain is associated with the area
from which the pleasure-pain factors originate. A pleasure -pain
state-variable can thus be assigned to the knowledge frames
of the skin pixels that l ie within that area.

D. Value State- Variable Map Overlays

When objects or regions of space are projected on a world
map or egosphere, the value state -variables in the frames
of those objects or regions can be represented as overlays
on the projected regions. When this is done, value state -
variables such as comfort, fear, love, hate, danger, and safe
wil l appear overlaid on specific objects or regions of space.
BG modules can then perform path planning algorithms that
steer away from objects or regions overlaid with fear, or
danger, and steer toward or remain close to those overlaid with
attractiveness, or comfort. Behavior generation may generate
attack commands for target objects or persons overlaid with
hate. Protect, or care-for, commands may be generated for
target objects overlaid with love.

Projection of uncertainty, believability, and importance
value state-variables on the egosphere enables BG modules to
perform the computations necessary for manipulating sensors
and focusing attention.

Confidence, uncertainty, and hope state-variables may also
be used to modify the effect of other value judgments. For
example, if a task goal frame has a high hope variable but
low confidence variable, behavior may be directed toward the
hoped-for goal, but cautiously. On the other hand, if both hope
and confidence are high, pursuit of the goal may be much
more aggressive.

The real-time computation of value state-variables for vary-
ing task and world model conditions provides the basis for
complex situation dependent behavior [56].

XVI. NEURAL COMPUTATION

Theorem: All of the processes described previously for
the BG, WM, SP, and VJ modules, whether implicit or
explicit, can be implemented in neural net or connectionist
architectures, and hence could be implemented in a biological
neuronal substrate.

Modeling of the neurophysiology and anatomy of the brain
by a variety of mathematical and computational mechanisms
has been discussed in a number of publications [16], [27], [34],
[35] ,[SI,[59]-[64]. Many of the submodules in the BG, WM,
SP, and VJ modules can be implemented by functions of the
form P=N(S). This type o f computation can be accomplished
directly by a typical layer of neurons that might make up a
section of cortex or a subcortical nucleus.

To a first approximation, any single neuron, such as illus-
trated in Fig. 20, can compute a linear single valued function
of the form

N

p(k) = h(S) = C s ( i ) w ( i , k )
i=l

where p(k) is the output of the kth neuron; S =
(s( l ) , s(2), . . . s(i),. .. , s (N) ) i s an ordered set of input
variables carried by input fibers defining an input vector;
W = (w(1, k), w(2, IC), . . . w(i, k), . .. w(N, k) is an ordered
set of synaptic weights connecting the N input fibers to the
kth neuron; and h(S) is the internal product between the input
vector and the synaptic weight vector.

A set of neurons of the type illustrated in Fig. 20 can
therefore compute the vector function

P = H(S)

where P = (p(l),p(2), .. .p(k), .. .p(L)) is an ordered set
of output variables carried by output fibers defining an output
vector.

Axon and dendrite interconnections between layers, and
within layers, can produce structures of the form illustrated
in Fig. 4. State driven switching functions produce structures
such as illustrated in Figs. 2 and 3. I t has been shown how such
structures can produce behavior that i s sensory -interactive,
goal-directed, and value driven.

The physical mechanisms of computation in a neuronal
computing module are produced by the effect of chemical acti -
vation on synaptic sites. These are analog parameters with time
constants governed by diffusion and enzyme activity rates.
Computational time constants can vary from milliseconds to
minutes, or even hours or days, depending on the chemicals
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Fig. 20. A neuron computes the scalar value p(k) as the inner product
of the input vector 9(1),9(2), ...,s(i), . . . , s(N) and the weight vector
w(l,k), w(2, k), .. . w(i,k), ... , w(N, k).

is computed by a pair of functions

4 7 ) = F(S(t))

carrying the messages, the enzymes controlling the decay time
constants, the diffusion rates, and the physical locations of
neurological sites of synaptic activity.

The time dependent functional relationship between input
fiber firing vector S(t) and the output cell firing vector P(t)
can be captured by making the neural net computing module
time dependent .

P(t+ dt) = H(S(t)).

The physical arrangement of input fibers in Fig. 20 can also
produce many types of nonlinear interactions between input
variables. I t can, in fact, be shown that a computational
module consisting of neurons of the type illustrated in Fig.
20 can compute any single valued arithmetic, vector, or
logical function, I F ~ Nrule, or memory retrieval operation
that can be represented in the form P(t + dt) = H(S(t)).
By interconnecting P(t + dt) = H(S(t)) computational
modules in various ways, a number o f additional important
mathematical operations can be computed, including finite
state automata, spatial and temporal differentiation and inte-
gration, tapped delay lines, spatial and temporal auto- and
crosscorrelation, coordinate transformation, image scrolling
and warping, pattern recognition, content addressable memory,
and sampled-data, state-space feedback control. [59]-[63].

In a two layer neural net such as a Perceptron, or a brain
model such as CMAC [27], [34], [35], the nonlinear function

P(t+ dt) = H(S(t))

P(t + dt) = G(A( T)) (13)

where S(t) represents a vector of firing rates s(i, t) on a set
of input fibers at time t, A(7) represents a vector of firing
rates a(j, 7) of a set of association cells at time T = t + dt/2,
P(t + dt) represents a vector o f firing rates p(k, t + dt) on a
set o f output fibers at time t + dt, F is the function that maps
S into A, and G is the function that maps A into P.

The function F is generally considered to be fixed, serving
the function of an address decoder (or recoder) that transforms
the input vector S into an association cell vector A. T h e
firing rate of each association cell a(j, t) thus depends on the
input vector S and the details of the interconnecting matrix
of intemeurones between the input fibers and association cells
that define the function F. Recoding from S to A can enlarge
the number of patterns that can be recognized by increasing
the dimensionality of the pattern space, and can permit the
storage of nonlinear functions and the use of nonlinear decision
surfaces by circumscribing the neighborhood of generalization.
[W, P S I .

The function G depends on the values of a set of synaptic
weights w(j, IC) that connect the association cells to the output
cells. T h e value computed by each output neuron p(k,t) at
time t is

where u(j,k)=synaptic weight from a(j) to p(lc).
T h e weights w(j, k) may be modified during the learning

process so as to modify the function G, and hence the function
H.

Additional layers between input and output can produce
indirect addressing and list processing functions, including tree
search and relaxation processes [16], [61]. Thus, virtually a l l of
the computational functions required of an intelligent system
can be produced by neuronal circuitry of the type known to
exist in the brains of intelligent creatures.

XVII. LEARNING

I t i s not within the scope of this paper to review of the
field of learning. However, no theory of intelligence can be
complete without addressing this phenomenon. Learning is
one of several processes by which world knowledge and task
knowledge become embedded in the computing modules o f
an intelligent system. In biological systems, knowledge is also
provided by genetic and growth mechanisms. In artificial sys-
tems, knowledge is most often provided through the processes
of hardware engineering and software programming.

In the notation of (13), learning is the process of modifying
the G function. This in turn, modifies the P = H(S)
functions that reside in BG, WM, SP, and VJ modules. Thus
through learning, the behavior generation system can acquire
new behavioral skills, the world model can be updated, the
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sensory processing system can refine its ability to interpret
sensory input, and new parameters can be instilled in the value
judgment system.

The change in strength of synaptic weights w(j, k) wrought
by the learning process may be described by a formula of the
form

where dw(j, k, t) is the change in the synaptic weight w(j, k, t)
between t and t+ dt; g(t) is the learning gain at time t; a(j, t)
is the firing rate of association cell j at time t; and p(k, t) is
the firing rate of output neuron k at time t.
Ifg(t) is positive, the effect wil l be to reward or strengthen

active synaptic weights. If g(t) i s negative, the effect will be
to punish, or weaken active synaptic weights.

After each learning experience, the new strength of synaptic
weights is given by

w(j, k, t + dt) = w(j, IC, t) + dw(j, k, t).

A. Mechanisms of Learning

Observations from psychology and neural net research sug-
gests that there are at least three major types of learning:
repetition, reinforcement, and specific error correction learn -
ing.

1) Repetition: Repetition learning occurs due to repetition
alone, without any feedback from the results of action. For
this type of learning, the gain function g is a small positive
constant. This implies that learning takes place solely on the
basis of coincidence between presynaptic and postsynaptic
activity. Coincident activity strengthens synaptic connections
and increases the probability that the same output activity will
be repeated the next time the same input is experienced.

Repetition learning was first hypothesized by Hebb, and is
sometimes called Hebbian learning. Hebb hypothesized that
repetition learning would cause assemblies of cells to form
associations between coincident events, thereby producing
conditioning. Hebbian learning has been simulated in neu-
ral nets, with some positive results. However, much more
powerful learning effects can be obtained with reinforcement
learning.

back from the results of action. In reinforcement learning, the
learning gain factor g(t) varies with time such that it conveys
information as to whether the evaluation computed by the VJ
module was good (rewarding), or bad (punishing). g(t) is thus
computed by a VJ function of the form

2) Reinforcement: Reinforcement learning incorporates feed-

g(t + dt) = V(S(t))

where S( t) is a time dependent state vector defining the object,
event, or region of space being evaluated.

For task learning

where R(t) is the actual task results at time t, &(t) is the
desired task results at time t, R(t) - Rd(t) is the difference
between the actual results and the desired results.

Task learning may modify weights in BG modules that
define parameters in subtasks, or the weights that define
decision functions in BG state-tables, or the value of state-
variables in the task frame, such as task priority, expected
cost, risk, or benefit. Task learning may thus modify both
the probability that a particular task will be selected under
certain conditions, and the way that the task is decomposed
and executed when it is selected.

Attribute learning modifies weights that define state-
variables in the attribute list of entity or event frames in the
world model. Attribute learning was described earlier by (3)
and (4).

For attribute learning

g(t + dt) = Ks(z,t) [ l- Km(j r t)]V(attributej) (19)

where K3(i, t) i s the degree of confidence in the sensory
observation of the ith real world attribute at time t (See
formula (4)); K,,,(j, t) is the degree of confidence in the
prediction of the j th world model attribute at time t; and
V(attributej) is the importance of the jth world model
attribute.

In general, rewarding reinforcement causes neurons with
active synaptic inputs to increase the value or probability of
their output the next time the same situation arises, or through
generalization to increase the value or probability of their
output the next time almost-the-same situation arises. Every
time the rewarding situation occurs, the same synapses are
strengthened, and the output (or its probability of occurring)
is increased further.

For neurons in the goal selection portion of the BG modules,
the rewarding reinforcement causes rewarding goals to be
selected more often. Following learning, the probabilities
are increased of EX submodules selecting next-states that
were rewarded during learning. Similarly, the probabilities are
increased of PL and JA submodules selecting plans that were
successful, and hence rewarding, in the past.

For neurons in the WM modules, rewarding results follow-
ing an action causes reward expectations to be stored in the
frame of the task being executed. This leads to reward values
being increased on nodes in planning graphs leading up to the
rewarding results. Costbenefit values placed in the frames of
objects, events, and tasks associated with the rewarding results
are also increased. As a result, the more rewarding the result
of behavior, the more the behavior tends to be repeated.

Reward reinforcement learning in the BG system is a
form of positive feedback. The more rewarding the task,
the greater the probability that i t will be selected again.
The more it is selected, the more reward is produced and
the more the tendency to select it is increased. This can
drive the goal selection system into saturation, producing
effects like addiction, unless some other process such as
fatigue, boredom, or satiety produce a commensurate amount
of negative g(t) that i s distributed over the population of
weights being modified.

Punishing reinforcement, or error correcting, learning occurs
when g(t) i s negative, i.e., punishing. In biological brains,
error correction weakens synaptic weights that are active
immediately prior to punishing evaluations from the emotional
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system. This causes the neurons activated by those synapses
to decrease their output the next time the same situation arises.
Every time the situation occurs and the punishing evaluation
is given, the same synapses are weakened and the output (or
its probability of occurring) i s reduced.

For neurons in the goal selection portion of the BG modules,
error correction tends to cause punishing tasks to be avoided.
I t decreases the probability of EX submodules selecting a
punishing next state. I t decreases the probability of PL and
JA submodules selecting a punishing plan.

For neurons in the WM modules, punishment observed
to follow an action causes punishment state variables to be
inserted into the attribute list of the tasks, objects, events,
or regions of space associated with the punishing feedback.
Thus, punishment can be expected the next time the same
action is performed on the same object, or the same event
i s encountered, or the same region of space is entered. Pun-
ishment expectations (i.e.. fear) can be placed in the nodes
of planning graphs leading to punishing task results. Thus, the
more punishing the task, the more the task tends to be avoided.

Error correction learning is a form of negative feedback.
With each training experience, the amount o f error is reduced,
and hence the amount of punishment. Error correction is
therefore self limiting and tends to converge toward a stable
result. I t produces no tendencies toward addiction.

I t does, however, reduce the net value of the synaptic
weight pool. Without some other process such as excitement,
or satisfaction, to generate a commensurate amount of reward
reinforcement, there could result a reduction in stimulus to
action, or lethargy.

3) Specific Error Correction Learning: In specific error cor-
rection, sometimes called teacher learning, not only i s the
overall behavioral result g(t) known, but the correct or desired
response pd(k,t) of each output neuron is provided by a
teacher. Thus, the precise error (p(k) -pd(k)) for each neuron
is known. This correction can then be applied specifically to
the weights of each neuron in an amount proportional to the
direction and magnitude of the error of that neuron. This can
be described by

where pd(lc,t) i s the desired firing rate of neuron k at t and

Teacher learning tends to converge rapidly to stable precise
results because it has knowledge of the desired firing rate for
each neuron. Teacher learning is always error correcting. The
teacher provides the correct response, and anything different
is an error. Therefore, g(t) must always be negative to correct
the error. A positive g(t) would only tend to increase the error.

If the value of g(t) is set to -1, the result is one-shot
learning. One-shot learning is learning that takes only one
training cycle to achieve perfect storage and recall. One-shot
teacher learning i s often used for world model map and entity
attribute updates. The SP module produces an observed value
for each pixel, and this becomes the desired value to be
stored in a world model map. A SP module may also produce
observed values for entity attributes. These become desired
values to be stored in the world model entity frame.

-1 5 g(t) < 0.

Teacher learning may also be used for task ski l l learning
in cases where a high level BG module can act as a teacher
to a lower level BG module, i.e., by providing desired output
responses to specific command and feedback inputs.

I t should be noted that, even though teacher learning may
be one-shot, task ski l l learning by teacher may require many
training cycles, because there may be very many ways that a
task can be perturbed from its ideal performance trajectory.
The proper response to all of these must be learned before the
task ski l l i s fully mastered. Also, the teacher may not have
full access to al l the sensory input going to the BG module
that is being taught. Thus, the task teacher may not always
be fully informed, and therefore may not always generate the
correct desired responses.

Since teacher learning is punishing, i t must be accompanied
by some reward reinforcement to prevent eventually driving
synaptic weights to zero. There is some evidence, that both
reward reinforcement, and teacher learning, take place simul-
taneously in the cerebellum. Reward signals are thought to
be carried by diffuse noradrenergic fibers that affect many
thousands of neurons in the same way, while error correction
signals are believed to be carried by climbing fibers each of
which specifically targets a single neuron or a very small
groups of neurons [27].

I t should be noted, however, that much of the evidence for
neuronal learning is ambiguous, and the exact mechanisms of
learning in the brain are stil l uncertain. The very existence
of learning in particular regions of the brain (including the
cerebellum) is stil l controversial [65]. In fact, most of the
interesting questions remain unanswered about how and where
learning occurs in the neural substrate, and how learning
produces a l l the effects and capabilities observed in the brain.

There are also many related questions as to the relationships
between learning, instinct, imprinting, and the evolution of
behavior in individuals and species.

XVIII. CONCLUSION

The theory of intelligence presented here is only an outline.
I t is far from complete. Most of the theorems have not
been proven. Much of what has been presented is hypothesis
and argument from analogy. The references cited in the
bibliography are by no means a comprehensive review of
the subject, or even a set of representative pointers into the
literature. They simply support specific points. A complete
list of references relevant to a theory of intelligence would fill
a volume of many hundreds of pages. Many important issues
remain uncertain and many aspects of intelligent behavior are
unexplained.

Yet, despite its incomplete character and hypothetical nature,
the proffered theory explains a lot. I t is both rich and self
consistent, but more important, i t brings together concepts
from a wide variety of disciplines into a single conceptual
framework. There is no question of the need for a unifying
theory. T h e amount of research currently underway is huge,
and progress is rapid in many individual areas. Unfortunately,
positive results in isolated fields of research have not coalesced
into commensurate progress toward a general understanding of
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the nature of intelligence itself, or even toward improved abil -
ities to build intelligent machine systems. Intelligent systems
research is seriously impeded because of the lack of a widely
accepted theoretical framework. Even a common definition of
terms would represent a major step forward.

The model presented here only suggests how the neural
substrate could generate the phenomena of intelligence, and
how computer systems might be designed so as to produce
intelligent behavior in machines. No claim is made that the
proposed architecture fully explains how intelligence actually
is generated in the brain. Natural intelligence is almost cer-
tainly generated in a great variety of ways, by a large number
of mechanisms. Only a few of the possibilities have been
suggested here.

The theory is expressed almost entirely in terms of explicit
representations of the functionality of BG, WM, SP, and VJ
modules. This almost certainly is not the way the brains of
lower forms, such as insects, generate intelligent behavior.
In simple brains, the functionality of planning, representing
space, modeling and perceiving entities and events is almost
surely represented implicitly, embedded in the specific con-
nectivity of neuronal circuitry, and controlled by instinct.

In more sophisticated brains, however, functionality most
likely is represented explicitly. For example, spatial informa-
tion is quite probably represented in world and egosphere
map overlays, and map pixels may indezci have frames.
One of the principal characteristics of the brain is that the
neural substrate is arranged in layers that have the topological
properties of maps. Output from one layer of neurons selects,
or addresses, sets of neurons in the next. This is a form a
indirect addressing that can easily give rise to list structures,
list processing systems, and object-oriented data structures.
Symbolic information about entities, events, and tasks may
very well be represented in neuronal list structures with the
properties of frames. In some instances, planning probably is
accomplished by searching game graphs, or by invoking rules
of the form IF (S)/THEN (P).

Implicit representations have an advantage of simplicity,
but at the expense of flexibility. Implicit representations have
difficulty in producing adaptive behavior, because learning
and generalization take place only over local neighborhoods
in state-space. On the other hand, explicit representations
are complex, but with the complexity comes flexibility and
generality. Explicitly represented information is easily modi-
fied, and generalization can take place over entire classes of
entities. Class properties can be inherited by subclasses, entity
attributes can be modified by one-shot learning, and small
changes in task or world knowledge can produce radically al-
tered behavior. With explicit representations of knowledge and
functionality, behavior can become adaptive, even creative.

T h i s paper attempts to outline an architectural framework
that can describe both natural and artificial implementations of
intelligent systems. Hopefully, this framework wi l l stimulate
researchers to test its hypotheses, and correct its assumptions
and logic where and when they are shown to be wrong. The
near te rm goal should be to develop a theoretical model with
sufficient mathematical rigor to support an engineering science
of intelligent machine systems. The long term goal should be

a full understanding of the nature of intelligence and behavior
in both artificial and natural systems.

ACKNOWLEDGMENT

The author wishes to thank Alex Meystel, Robert Rosenfeld,
John Simpson, Martin Herman, Ron Lumia, and Rick Quintero
for their numerous helpful comments, and Cheryl Hutchins for
her help in preparation of this manuscript. Funding to support
this research has been derived from DARPA, NIST, NASA,
Army, Navy, Air Force, and Bureau of Mines sources.

REFERENCES

[I]L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, D.
R., “Hearsay41 speech understanding system: Integrating knowledge to
resolve uncertainty,” Computer Survey, vol. 23, pp. 213-253. June 1980.

[2] 1. E. Laird, A. Newell, and P. Rosenbloom, “SOAR: An architecture for
general intelligence,” Artificial hfell., vol. 33. pp. 1-64, 1987.

[3] Honeywell, Inc., “Intelligent Task Automation Interim Tech. Rep. 11-4”,
Dec. 1987.

[4] J. Lowerie et al., “Autonomous land vehicle,” Annu. Rep., ETL-0413,
Martin Marietta Denver Aerospace, July 1986.

[5] D. Smith and M. Broadwell, “Plan coordination in support of expert
systems integration,” in Knowledge -Based Plunning Workshop Proc.,
Austin, TX, k c . 1987.

[6] 1. R. Greenwood, G. Stachnick, H. S. Kaye, “A procedural reasoning
system for army maneuver planning,” in Knowledge -Based Planning
Workshop Proc., Austin. TX, Dec. 1987.

[7] A. 1. Barbera. J. S. Albus, M. L. Fitzgerald, and L. S. Haynes, “RCS:
The NBS real-time control system,” inProc. Robors 8 Conj Exposition,
Detroit, MI. June 1984.

(81 R. Brooks, “A robust layered control system for a mobile robot,” I€€€
J. Robotics Automat., vol. RA-2, Mar. 1986.

[9] G. N. Saridis, “Foundations of the theory of intelligent controls,” in
Proc. IEEE Workshop on Intelligent Contr.. 1985.

[ lo ] A. Meystel, “Intelligent control in robotics,” J.Robotic Sysr., 1988.
[ll]J. A. Simpson, R. J. Hocken, and J. S. Albus, “The Automated

manufacturing research facility of the National Bureau of Standards,”
J. Manufact. Sysr., vol. 1, no. 1, 1983.

112) J. S. Albus, C. McLean. A. J. Barbera, and M. L. Fitzgerald, “An
architecture for real-time sensory-interactive control of mbots in a
manufacturing environment,” presented at the 4th IFAC/IFIP Symp. on
Inform. Contr. Problems in Manufacturing Technology, Gaithersburg,
MD, Oct. 1982.

[13] J. S. Albus, “System description and design architecture for multiple
autonomous undersea vehicles,” Nat. Inst. Standards and Tech., Tech.
Rep. 1251, Gaithersburg, MD, Sept. 1988.

[14] 1. S. Albus, H. G. McCain, and R. Lumia. “NASANBS standard
reference model for telerobot control system architecture (NASREM)”
Nat. Inst. Standards and Tech., Tech. Rep. 1235, Gaithersburg. MD.
1989.

[151 B. Hayes-Roth, “A blackboard architecture for contro1,”Artificial Intell.,

I161 1. S. Albus, Brains, Behavior, and Roborics. Peterbourough, NH:
pp. 252-321, 1985.

L .

BYTYMcGraw -Hill, 1981.
(171 G. A. Miller, “The magical number seven, plus or minus two: Some

limits on our capacity for processing information,” Psych. Rev., vol. 63,

[18] A. Meystel. “Theoretical foundations of planning and navigation for
autonomous robots.” Inr. J. Inrelligenf Sysf.. vol. 2, pp. 75-128, 1987

[191 M. Minsky, “A framework for representing knowledge,” in The Psychol -
ogy of Computer Vrrion, P. Whston, Ed. New York McGraw-Hill,

[20] E. D. Sacerdoti, A Strucrure for Plans and Behavior. New York:
Elsevier, 1977.

[21] R. C. Schank and R. P. Abelson. ScriptsPlans Goals andhfersranding
Hillsdale. NJ: Lawrence Erlbaum. 1977.

1221 D. M. Lyons and M. A. Arbib, “Formal model of distributed computation
sensory based robot control,’’ l€EEJ. Robotics andAutomat. Rev., 1988.

[U] D. W. Payton. “Internalized plans: A representation for action re-
sources,” Robofics and Aufonomous Sysf., vol. 6, pp. 89-103, 1990.

(241 A. Sathi and M. Fox, “Constraint -directed negotiation of resource
reallocations.” CMU-RI-TR-89-12, Carnegie Mellon Robotics Institute
Tech. Rep.. Mar., 1989

pp. 71-97, 1956.

1975, pp. 211-277.



ALBUS: 0 U ” E FOR A THEORY OF INEWGENCE

[251 V. B. Brooks. TheNeuralEusis ofMofor Confrol. Oxford. UK Oxford. .
Univ. Press, 1986.

1261 J. Pianet, The Oriains of Intelliaence in Children. New York: Int.. .
Univekities Press. -1952.-

[27] J. S. Albus, “A theory of cerebellar function,” Math. Biosci, vol. 10,
pp. 25-61, 1971.

128) P. D. MacLcan. A Triune Concepf of rhe arain and Behavior. Toronto,
ON: Univ. Toronto Prcss, 1973.

(291 A. Schopenhauer, “The World As Will and Idea”, 1883, in The Phi-
losophy of Schopnhuuer, hin Edman, Ed. Ithaca, NY: New York
Random House. 1928.

1301 J. J. Gibson. The Ecological Approach ro Vim1 Percepfion. Ithaca,
NY: Cornel1 Univ. Press, 1966.

[31) D. H. Hubel and T. N. Wiesel. “Ferrier lecture: Functional architecture
of macaque monkey visual cortex,” Proc. Roy. SOC. Lond. E. vol. 198,

(321 H. Samet, “The quadtree and related hierarchical data structures,”

1331 P. Kinerva, Spurse Disnibured Memory. Cambridge, MA: MIT Press,

1977, pp. 1-59.

Compufer Surveys. pp. 162 1984.

1988...

J. S. Albus, “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),” Trans. ASME, Sept. 1975.
-, “Data storage in the cerebellar model articulation controller
(CMAC),” Tram. ASME, Sept. 1975.
M. Bradey, ”Computational approaches to image understanding,” ACM
Comput. Surveys, vol. 14, Mar. 1982.
T. Binford, “Inferring surfaces from images,” Artificiul InrelL, vol. 17.
pp. 205-244, 1981.
D. Man and H. K. Nishihara. “Representation and recognition of the
spatial organization of three-dimensional shapes,” in Prm. Roy. Soc.
Lond B, vol. 200, pp. 269-294, 1978.
R. F. Riesenfeld, “Applications of B-spline approximation lo geometric
problems of computer aided design,” Ph.D. dissertation. Syracuse Univ.
1973. available at Univ. Utah, UTEC -CSc-73-126.
J.I.Koenderink. “The structure o f images,” Eiolog. Cybern., vol. 50,
1984.
J. C. Pearson, J. Gelfand, W. Sullivan, R. Peterson, and C. Spence.
“A neural network approach to sensory fusion,” in Proc. SPlE Sensor
Fusion Coni, Orlando, FL, 1988.
D. L Sparks and M. Jay, “The role of the primate superior colliculus
in sensorimotor integration,“ in Vuion, Bruin, and Cooperative Compu-
tutwn, Arbib and Hanson, Eds. Cambridge, MA: MlT Press, 1987.
R. A. Andersen and D. Zipser, “The role of the posterior parietal
cortex in mrdinate transformations for visual-motor integration,” Can
J. PhyswL PharmacoL, vol. 66, pp. 488-501, 1988.
D. Man, Vuion. San Francisco,CA: Freeman, 1982.
J. S. Albus and T. H. Hong, “Motion, Depth, and Image Flow”, in Pmc.
IEEE Robotics and Automation, Cincinnati, OH, 1990 (in process).
D. Raviv and J. S. Albus. “Closed-form massively -parallel range-from-
image flow algorithm,” NlSTIR 4450, National Inst. of Standards &
Technology, Gaithersburg, MD, 1990.
E. Kent and J. S. Albus, “Servoed world models as interfaces between
robot control systems and sensory data,” Robotica, vol. 2, pp. 17-25,
1984.
E. D. Diclunanns and T. H. Christians, “Relative 3D-state estimation for
autonomous visual guidance of road vehicles,” Inrelfigenf Autonomous
Sysf.. vol. 2, Amsterdam. The Netherlands, Dcc. 11-14, 1989.
R. Bajcsy, “Passive pcrception vs. active perception” in Proc. IEEE
Workshop on Compurer Vubn, Ann Arbor, MI. 1986.
K Chaconas and M. Nashman, “Visual perception processing in a
hierarchical control system: Level 1,” Nat. Inst. Standards Technol.
Tech. Note 1260, June 1989.

(S I ] Y. L. Grand, Form and Space Won, Table 21, Ind. Univ. Press,

[52] A. L. Yarbus, Eye Movemenfs and Vrion. New York: Plenum, 1967
1531 D. C. Van Essen, “Functional organization of primate visual cortex.”

Cerebral Correr, vol. 3, A. Peters and E. G. Jones, Eds. New York:
Plenum, 1985, pp. 259-329.

[54] J. H. R. Maunsell and W. T. Newsome, “Visual processing in monkey
extrastriate cortex.” Ann. Rev. Neumsci., vol. 10, pp. 363-401. 1987.

[55] S. Grossberg, Studies of Mind andBrain. Amsterdam: Reidel, 1982.
(56) G. E. Pugh, The Eiological Origin ofHuman Values. New York: Basic

Books, 1977.
1571 A. C. Guyton. Organ Physwloo, Srrucrure and Function of the Nervous

System, second ed. Philadelphia, PA: Saunden, 1976.
(581 W. B. Scoville and B. Milner, “Loss of recent memory after bilateral

hippocampal lesions,” J. Neumphysiol. Neurosurgery Psychiarry, vol.
20, no. 11, pp. 11-29, 1957.

(591 J. S. Albus, “Mechanisms of planning and problem solving in the brain,”
Marh. Biosci., vol. 45, pp. 247-293, 1979.

(601 S. Grossberg, Ed., Neural Networks and Natural Intelligence. Cam-
bridge, MA: Bradford Books-MIT Press, 1988.

1611 J. S. Albus, “The cerebellum: A substrate for list-processing in the
brain,” in Cybernetics, Arrijiciul Inrelligence andEcology, H. W. Robin-
son and D. E. Knight, &. Washington, DC: Spartan Books, 1972.

[62] J. J. Hopfield. “Neural networks and physical systems with emergent
collective computational abilities.” in Proc. Naf. Acad Sci, vol. 79,
1982, pp. 2554-2558.

(631 B. widrow and R. Winter, “Neural nets for adpative filtering and
adaptive pattern recognition,” Compuf.. vol. 21, no. 3, 1988.

(641 M. Minsky and S,. Papert, An Inhoducrwn ro Compurafionul Geometry.
Cambridge, MA: MlT Press, 1969.

[65] M. Ito, The Cerebellum and Neuronal Control. New York: Raven,
1984, ch. 10.

Bloomington, IN, 1967.

James S. Albus received the B. S. degree i s physics
in 1957 from Wheaton College, Wheaton, IL, the
MS. degree in elearical engineering in 1958 from
Ohio State University, Columbus. and the Ph. D.
degree in electrical engineering from the University
of Maryland. College Park.

He is presently Chief of the Robot Systems
Division, Laboartory for Manufacturing Engincer-
in& National Institute of Standards and Technology,
where he is responsible for robotics and automated
manufacturing systems interface standards research.

H e designed the control system architecture for the Automated Manufacturing
Research Facility. Previously, he worked from 1956 to 1973 for NASA
Goddard Space Flight Center, where he designed electro-optical systems for
more than 15 NASA spacecraft. For a short time, he served as program
manager of the NASA Artificial Intelligence Program.

Dr. Albus has received several awards for his work in control theory,
including the National Institute of Standards and Technology Applied Re-
search Award, the Department of Commerce Gold and Silver Medals, The
lndustrial Research IR-100 award, and the Joseph F. Engelberger Award
(which was presented at the International Robot Symposium in October 1984
by the King of Sweden. He has written two books, Brains, Behuvior, and
Robotics (ByteNcGraw Hill, 1981) and Peoples’ Capitalism: The Econimics
of fhe Robof Revolutions p e w World Books, 1976). He is also the author of
numerous scientific papers, journal articles, and official government studies,
and has had articles published in Scientific American. Omni, Eyre, andFuturist.




