IEEE International Conference on Systems Engineering,
Pittsburgh, PA., Aug. 1990.

Configuration and Performance Evaluation
of a Real-Time Robot Control System: The Skeleton Approach

Thomas Wheatley and John M ichaloski

National Institute of Standards and Technology
Gaithersburg, MD

ABSTRACT

The use of a skeleton system to model a multi-processor 10-
bot control architecture offers the system designer a powerful
tool to configure and evaluate system parameters such as pro-
cess allocation, process cycle fimes, and communication links.
The interactions between the system hardware, operating sys-
tem, and compiler can be tested independently of the applica-
tion code. This paper describes the skeleton approach as applied
to the NASREM robot control architecture. The skeleton ap-
proach creates the shell of a functioning real-time control sys-
tem utilizing the actual hardware and operating system code
without using actual application code. This is done by replacing
the processing part of the application code with time delays. Pa-
rameterization of time delays, communication paths, message
buffer lengths, and process allocation provides for rapid proto-
typing of alternative system architectures. Actual system per-
formance is measured to provide realistic data on computation
and communication loads. The skeleton reporting facility pro-
vides quantitative assessments of system activity. To illustrate
the use of this technique, the servo level of the NASREM hier-
archy will be modeled using a 5.0 msec cycle time on a multi-
processor system, and compared with the actual system.

INTRODUCTION

The NASA/NBS Standard Reference Model for Telerobot
Control System Architecture (NASREM) (1] defines a logical
computer architecture for the NASA Space Station Flight Tele-
robotic Server. The overall architecture is hierarchically struc-
tured with specific operations performed at each level. In 21,
Michaloski et al. discuss some fundamental software design
principles applicable to NASREM and other real-time control
systems, and introduce the concept of a generic commanication
and contro! process (GCCP) as the basic software building
block within the system. This paper introduces the concept ofa
distributed processing unit (DPU) as the basic hardware build-
ing block, and describes how a system architecture can be eval-
uated using these two building blocks in what is deemed the
skeleton approach.

The purpose of the skeleton approach is to provide a quick
and accurate appraisal of a system architecture. The skeleton re-
porting facility provides quantitative answers to system config-
uration functionality. Performance measurcs returned by the
skeleton reporting facility currently include the computation
and communication loads, the excess capacity measured as idle
time, and GCCP input buffer counts. Fatal flaws like process
lockout are monitored and reported to the operator.

Within the skeleton system, all major system architecture
descriptors are interactively available for operator modification.

Automatic regeneration of the skeleton architecture is produced
by interactive changes to the descriptors that define the system
architecture. Given the quantitative specifics and interactive na-
ture of the skeleton system, a system designer can rapidly pro-
totype and evaluate different architectural configurations.The
system designer can reallocate processes, change exccution
times, relocate data buffers or alter communication links, all by
changing a few descriptors.

Normally, small architectural changes can undermine func-
tionality but the skeleton approach removes the mystery of such
modifications. Testing these changes on a large system is diffi-
cult due to the confounding presence of application code.The
skeleton system allows the system designer to focus on the sys-
tem and not the effects of the application code on the sysiem.
Latent system problems such as processor lockout or OS proto-
col flaws can be tested and comected. A high degree of confi-
dence in the basic system architecture and real-time hardware
and operating system environment can then be realized before
the complexity of the application is added.

BACKGROUND

The complicated nature of robot control suggests a disci-
plined design architecture 0 manage the complexity. NASREM
is a robot control architecture emphasizing the use of hierarchi-
cal decomposition into generic control levels, NASREM offers
a consistent control methodology that lowers information den-
sity through the use of generic components and repeated super-
structures. Each level uses a fundamental communication and
control paradigm that features cyclic execution bounded by a
response time [2, 3]. Figure 1 illustrates the time-bounded, in-
put, compute, output cyclic process of the GCCP. The impor-
tance of the GCCP paradigm is that by stricdy adhering to a few
design principles, it provides for guaranteed metrics of perfor-
mance [2].

input output  idle
compute ——
comm compute comm
time time time
k_.___— Response Time — 23l

Figure 1. GCCP concept of a cyclic process

The skeleton approach produces 2 realistic analysis of a sys-
sem architecture by using the actual hardware and operating
system environment. The skeleton approach is concerned with
analyzing the timing, utilization and interaction of processes in
a hardware environment as opposed to functional correctness of
any one process. Performance measures are then produced by




SERVO VSB PRIM VSB
__E‘ _[‘__Ij_ BusLink Bus Link Ethernet
' AR 1 ] — 1
e SERVO e PRIMITIVE VISION Host | - | Host
g S i i il T T l
ROBOT VME VISION VME VME

Figure 3 Laboratory Multi-Processor Architecture

employing a skeleton (or basic elements) emulation of the com-
pute and communication GCCP steps. For processing, the skel-
eton emulation is concemed with “how long” computation
takes independent of processor speed. For communication, the
skeleton emulation is concerned with “how much” and *‘where
to” data transmission, rather than the actual data. The frequency
of communication is mandated o occur every cycle by the
GCCP paradigm. The length and final destination of transmis-
sion defines the skeleton communication activity.

The skeleton approach emulates both GCCP computational
processing and GCCP communication with straightforward
substitution concepts. The computational emulation is achieved
by replacing the actual code of the GCCP compute step with
time delays. The communication emulation is achieved by mov-
ing dummy buffers of specified length across designated trans-
port links every cycle. Given this generic emulation model ofa
GCCP, it is repeated throughout the system and will be termed
a Skeleton Communication and Control Process (SCCP). To
build an actual skeleton system, it is the responsibility of the
system designer to distribute the SCCPs across the hardware ar-

chitecture and supply such SCCP parameters as cycle tming

values, buffer lengths, and destinations.

The skeleton approach uses the generic SCCP as the funda-
mental software building block to describe the skeleton soft-
ware environment. In order to model the accompanying skele-
ton hardware environment, the concept of a distributed process-
ing unit (DPU) is introduced. Figure 2 describes a DPU as the
union of a CPU and memory, connected by one ton communi-
cation Jinks to other DPUs.

|

CPU MEM

——
et —

Figure 2. DPU with four Communication Links

A DPU without any CPU is simply a common memory
board. Figure 3 illustrates the DPU concept as applied 10 our
laboratory system. The hardware environment consists of
CPUs, common memory boards, VME major bus system, VSB
sub-bus system, multiple backplanes, and Ethernet connections
to host computers.

A skeleton architecture must satisfy three configuration
definitions: a software SCCP configuration, 2 hardware DPU
configuration, and a SCCP-onto-DPU configuration mapping.

The SCCP software parameters are specified by supplying a
process cycle time, buffer lengths, and Iinkages. A typical
SCCP buffer mapping would contain command, status, and pa-
rameter buffers. Additionally, several SCCP synchronization

primitives are available. These include basic nme cycle syn-
chronization, blocked execution awaiting external event, and a
awaiting new data synchronization.

The hardware configuration must define the backplanes,
CPU’s, memory boards, bus connections and physical locations
of all hardware. The CPU description includes each CPU by ID,
physical system location within the several possible back-
planes, mailbox address, and memory address within the sys-
tem. Memory boards are described by ID, size, and address with

1o the different communication links. Each backplane
has a table describing installed CPUs and common memory
boards. Communication paths are specified as either main or
sub-bus linkages.

The final SCCP-onto-DPU configuration specifics the parti-
tioning of processes across the multiple processors in the sys-
tem. Each DPU is self-configuring given this global definition
of the system architecture.

USER SESSION

A typical skeleton system session consists of several phases:
configuration definition and recompilation, downloading, exe-
cution, evaluation, and reconfiguration. Once the initial config-
uration has been defined and the skeleton code downloaded, it-
erative reconfiguration and subsequent evaluation can be
achieved within the run-time environment.

The fisst phase includes analysis of possible configurations
and definition of an initial skeleton architecture. Typically,
most sessions will involve only the software parameters to de-
fine new GCCPs and their allocation. The skeleton code is then
downloaded to the target CPUs. Assuming each CPU can deter-
mine its ID from dipswitches or geographical addressing, the
code is identical for all boards. One of the target boards or the
host computer serves as the human interface, where the skeleton
system variables can be modified.

The iterative execution, evaluation, and reconfiguration se-
guence begins with each CPU determining its system and
GCCP parameters, initializing buffers, and waiting for a start
signal from the operator. Any additional monitoring equipment
is also enabled at this time.

Upon receipt of the start signal, each CPU executes the GC-
CPs in the proper sequence for a pre-determined number of
times. During each GCCP execution cycle, a running sum is

‘kept on the elapsed communication, computation and idle
times, and the number of times any new datz has arrived for
each input buffer of the GCCP. Data collection time was kept to
a minimum to avoid compromising the overall timing results.

At the end of the run, the total percentage of communication
and computation times are calculated for each GCCP and DPU,




7-WM From Primitive Level
Gravity
WM 4-TD
-8-
| Nullspace Job Assignment
_P!ﬂ_;i_inz—_.
9-WM |
- Jacobian | C EXcmd D
6,6
h
-3- WM . 4-TD
Fwd Kinematics Executor
-2.SP
Joint 1
Feedback Sensor RRC
1- 5-
dats 1 Communications ”
Tegend : RRC - Robot Research Arm
g SP - Sensor Processing
E GCCP TD - Task Decomposition
WM - World Model
C > Buffer
i K-1607 Coniroller EX - Executor )
__+ g:::lk" JA/PL - Job Assignment/Planning
Figure$ Servo Level Processes and Buffers

and presented back to the operator. Based upon this results, the
system designer then realiocates processes, changes time de-
lays, buffer sizes or locations, of whatever is deemed necessary
for the task at hand. The modified skeleton system variables are
broadcast to the target CPUs, and the next execution cycle start-
ed. No recompilation, linking, or redownloading of programs is
necessary due to the parameterization of the system variables,
resulting in rapid turn-around time for testing new System con-
figurations or application code.

EXAMPLE

To verify the use of this technique to evaluate system con-
figurations, it must be shown that it can correctly model an ex-
isting system, The SERVO level of our system was chosen as
an initial test case, since it is both well documented and under-
stood, and sufficiently complex to exercise most of the features
built into the skeleton system. First, the hardware DPU config-
uration for the overall skeleton architecture must be defined.

The hardware DPU configuration is described in a straight-
forward ascending manner. The physical parameters and toca-
tion of individual DPUs are described first, followed by param-
eters for each individual backplane, and finally parameters to
describe collections of backplanes for the overall system.

The SERVO level is currently implemented on four DPUs
residing on acommon VSB backplane. Figure 3 depicts our cur-
rent laboratory system spread across two VME backplanes con-
nected by bus links, a host computer connecied by bus link, and
additional hosts connected by Ethernet. The hardware descrip-
tion for DPU 4 is in Figure 4, its VSB backplane (SERVYO) de-
scribed in Figure 5, and its VME backplane (ROBOT) in Figure
6. The common memory board for the SERVO level is de-
scribed in Figure 7. Each description contains cross-references
10 one another to allow other DPUs access to information about
itself and its neighbors. Similar descriptions are required for the
remaining components of the design.

BOARD 4 : BOARD :=

fepu_id =>4, -~ I Mbyte, 20 Mhz CPU
loc_vsb =>1, -- SERVO VSB backplane
loc_vme =1, -- ROBOT VME backplane
node_id =>0, - Not used

dip_switches => 16RFF90#, -- used to determine CPUID
ext_vme_addr => address'ref (1680120_0000%),
ext_vsh_addr => address'ref {16#0000_0000F),
rem_mail_box => address' ref (16R0000_82404)) ;

Figure 4 DPU 4 Physical Description

VSB_I : VSB_BACK_PLANE =
{back_plane_id => 1, -- SERVO VSB backplane
cpus_on_it =>(12,3400), --DPUsbylDon it
mems_on_il => (10,0000)) ; -~ Memory on itbyID
Figure 5 SERVO VSB Backplane Description

VME 1 : VME_BACK_PLANE :=

{back_plane_id =51, .- ROBOT VME backplane
cpus_on_it =>» (1,2,3.4,5,6.0.0,0.0). --DPUsbyIDonit
mems_o! => (120000));  —MemoryonitbylD

n_il
Figure 6 ROBOT VME Backplane Description
MEM_1 : COM_MEMORY :=
(mem_id => 1,
vme_addr

-- SERVO common memory

=5 address' ref (16#0820_0000¥),
vsb_addr => address’ref (16#1000_0000#),
mem_size => 16¥0010_0000#) );

Figure 7 SERVQO Common Memory Board Description

Executor : GENERIC PROCESS :=

(time_delay =» 3500, --delaytime in usec
buffer_wait =>0, - »=1 =waif
ext_evenf_sync =>0, - =1, wait

num_buf_in =>3, - loop index for buf in

buf in =>(3.5.6.7.80), -- array of input buffers
num_buf _our => 1, -- loop index for buf_out

buf out => (4.0,00.00)); -- array of oulput buffers

Figure 9 Executor GCCP Parameters




DPUID Time in msec Modeled Time ~ Processes % compute % communicate % wait

1 5.0 50
2 4.0 50
3 4.6 50
4 244 23.8

1.5 90.3 9.0 0.0
24 734 213 49
36 86.0 9.0 50
789 96.5 34 0.0

Table 1 - Processor allocation and SERVOQ evaluation results

After the hardware DPU configuration is defined, a software
GCCP configuration for the application is built. Fiala et. al. [4]
describes the implementation of a Jacobian-Tranposc algorithm
in detail for the SERVO level. Figure 8 illustrates the connec-
tivity of the nine GCCPs used in constructing the skeleton sys-
tem for modeling this algorithm at the SERVO level. Figure 9
describes the GOCP parameters for the Executor process.

The final GOCP-onto-DPU configuration specifies the par-
titioning of processes across the multiple processors in the sys-
tem. The nine GCCPs of the SERVO level are spread across
four DPUs in the actual system to achieve a 5 mscc update rate
to the robot controller.

The SCCP processor allocation and the resuiting percentag-
es of the DPU utilization are given in Table 1. The percentages
show a well-tuned SERVO architecture, with the percentage
wait result reflecting the fact that the system was running at ap-
proximately maximum capacity. Any increase in algorithm
complexity or robot update rate may require additional or faster
DPU’s.

We experimented with the skeleton system capability to de-
tect design flaws. The critical path cycle time of SERVO was
. reduced to 2.5 msec, while maintaining the same hardwatre ar-
chitecture and process allocation. As expected, the skeleton sys-
tem detected a pipeline jam resulting in a process lockout.

DISCUSSION

The use of a skeleton system to create the shell of a function-
ing control system has been demonstrated. A multiprocessor ap-
plication was successfully modeled and results were verified
with those of the actual running system. The parameterization
of time delays, communication paths, message buffer lengths,
and process allocation provided for rapid turn-around time for
modelling new applications or system architectures. Given this
iterative approach to building a system, one can readily assess
various system configurations. Experience with the skeleton
system has led to some general observations.

Data collection can be memory intensive and the data col-
lection times may affect performance measures. For most pro-
cesses, the data collection time had no effect on performance.
However, a minor effect on the results was observed when mod-
eling GCCPs of short duration. An external data collection sys-
tem similar to LTRAMS [5] may be required o collect large
amounts of data or reduce the collection time.

Consistency of timers across processor is troublesome. A
32-bit,1 psec resolution timer was built to measure the individ-
ual GCCP computation, communication, and wait times. The
timer was available to all DPUs to guaranteg consistency across
various DPUs.

Mismatched execution frequencies in pipelined processes
can cause data dropout or cycle skipping. This was evident in

the first use of the skeleton system since it expected a fixed
number of data buffess to be available before proceeding to the
data collection phase. A termination condition parameter was
added to prematurely stop the process and allow the operator ©
evaluate the results.

Current enhancements underway include the use of a task-
ing model to allow single-processor concurrent modeling as op-
posed to the strictly procedural method currently used, a cali-
‘bration technique for CPUs with different clock speeds, an im-
proved method of data collection, and an operator interface for
graphic visualization of the performance measures and im-
proved user reconfiguration control, Future work will include
the development of an automated process allocation and sched-
uler to aid in the initial selection of the GCCP t0 DPU alloca-
tion. Given a system definition comprising of a set of GCCPs,
times, and data interfaces, a System Architecture Management
System (SAMS) could be built from the combination of the
skeleton system and the automated process scheduler. A func-
tion of SAMS would then be the automated program generation
of the system using the actual application code.

REFERENCES

(1] Albus, J. S., McCain, H. G., Lumia, R., "NASA/NBS
Standard Reference Model for Telerobot Control System
Architecture (NASREM)," NBS Technical Note 1235,
July 1987,

" [2] Michaloski,J.L., Wheatley, T.E., “Design Principles for
a Real-Time Robot Control System,” to be presented at
the IEEE International Conference on Systems Engineer-
ing, Pittsburgh, PA., Aug. 1990."

[3] Fiala,J.C.“Noteon NASREM Implementation™ NISTIR
89-4215, National Institute of Standards and Technolo-
gy, Gaithersburg, Md., December 1989.

{4] Fiala, J., Wavering, A., *Implementation of a J acobian-
Transpose Algorithm”, NISTIR 90-4286, National Insti-
tute of Standards and Techaology, Gaithersburg, Md.,
January 1990.

{5] Mink, A., Draper, J., Roberts, 3., Carpenter, R., "Hard-
ware Assisted Multiprocessor Performance Measure-
ments”, Proc. of the 12th IFIP WG 7.3 International
Symposium on Computer Performance: Performance 87,
Brussels, Belgium, Dec. 1987, pp. 151-168,




