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ABSTRACT

Intelligent control for autonomous vehicles in a natural, potentially hostile
environment requires a system that integrates artificial intelligence with modem
control theory, and that is implemented on paraliel, possibly special-purpose
hardware. Issues dealing with the requirements of such a system are discussed
in the context of the Multiple Autonomous Undersea Vehicles (MAUYV) pro-

ject. The MAUV control system and its implementation are also presented.

The goal of the MAUV project was to have multiple undersea vehicles
exhibiting intelligent, autonomous, cooperative behavior. The MAUYV control
system is hierarchically structured and incorporates sensing, world modeling,
planning and execution. The levels in the hierarchy include: mission, group,
vehicle task, elemental action, primitive action, and servo. Issues of real-time
planning and dynamic replanning in unstructured environments are discussed.
A multi-level world model that supports real-time planning is also described.
Finaily, timing issues, implementation, and - initial experimental results are
presented.
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1. Introduction

In order 1o achieve real-time intelligent control of multiple autonomous vehicles in com-
plex environments, research issues such as distributed conwol, knowledge-based systems, real-
time planning, world modeling, value-driven reasoning, intelligent sensing, intelligent commun-
ication, gaming, cooperative problem solving, and leaming must be addressed. The types of
activities that must be achieved by these autonomous Syst€ms include aggression, predation,
exploration, stealth, deception, escape, communication and cooperation. These activities are
required in order to thrive in a natural and potentially hostile environment.

" The goal of the NIST Multiple Autonomous Undersea Vehicles (MAUV) project was t0
examine some of these issues in the underwater domain by attempting to achieve intelligent,
autonomous, cooperative behavior in multiple vehicles. Our approach was to develop a control
system architecmre that fully integrates concepts of artificial intelligence with those of modern
control theory. A first cut at algorithms and software to implement this architecture was
developed, and this software was downloaded into computer boards mounted on board the
vehicles. A series of demonstration tests was then planned for two undersea vehicles in Lake
Winnipesaukee in New Hampshire.

After presenting the MAUV vehicles and scenarios, this paper provides a discussion of
issues dealing with intelligent control and then presents a hierarchical control system architec-
ture which addresses these issues. The application of this control architecture to the MAUV
vehicles is then described, along with how planning, execution and world modeling are accom-
plished. Finally, timing issues, implementation, and experimental results are described. Further
details on the project may be found in [2].

1.1. The MAUV Vehicles

. Figure la shows a diagram, and Figure 1b a photograph, of a MAUV vehicle. These
vehicles were designed and constructed by the Marine Systems Engineering Laboratory at the
University of New Hampshire. They are a derivative of the EAVE-EAST vehicle [3] developed
at the same lab. The vehicle is gravity stabilized in pitch and roll, with thrusters that allow it ©

The MAUV project was funded by the Defense Advanced Rescarch Projects Agency (DARPA) Naval
Technology Office.

Identification of commercial equipment in this paper is only for adequate description of our work. It does not imply
recommendation by the National Institute of Standards and Technology, nor that this equipment was necessarily the
best available for the purpose.
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be controlled in X, y, z, and yaw. It is banery powered with the batieries stored in cylindrical
tanks at the bottom of the vehicle. The vehicle carries three acoustic navigation transponders
which are configured as an equilateral triangle. Each transponder operates on 2 different fre-
quency and different tumaround time. They receive acoustic signals from navigation bouys
placed in the water, allowing range and bearing relative to these bouys to be measured. The
vehicle carries a compass, pressure and temperature sensors, and depth and altitude sonars. In
front,. it has an obstacle avoidance sonar consisting of five narrow beam acoustic transmitter-
receivers. These are arranged such that the center sonar beam points straight ahead, two point
ten degrees to the right and left, and two point ten degrees up and down from the center beam.
In addition, the vehicle carries both acoustic and radio telemetry systems. All computer boards
are mounted in card cages inside the flotation tanks at the upper part of the vehicle.

12. Scenarios

The MAUV project planned to conduct a series of demonstrations by two vehicles. These
tests centered around two scenarios — cooperative search and cooperative near-target
maneuvers. The search scenario involves traversing an area either to map it out or to seek tar-
gets. Figure 2 shows a search plan that involves transiting from a base at the island to a search
area and then performing a raster search of the area. The vehicles may be either near the water
surface or near the lake bottom when performing the search. The concept of using two or more
vehicles to search and map shallow areas is shown in Figure 3. In this scenario, the vehicles
were to demonstrate the ability to measure the bottom topology, and to search for and map the
positions of objects on the bottom and in the water. The vehicles were to execute a variety of
search patterns, including several involving separation and rendezvous for exchange of infor-
mation. The vehicles were to compute maneuvering tactics which take into account bottom
toplogy and simulated enemy positions. The vehicles were to demonstrate the use of topologi-
cal maps of the bottom for local navigation, and were to use both visual and acoustic bottom
sensors to update these maps in real time. Obstacle avoidance sonar and bottom altitude sonar
were to give the vehicles the ability to follow bottom topographic features such as ravines and
ridges. The vehicles planned to demonstrate tactics using bottom features for shadowing their
movement from enemy positions.

The near-target mancuvers scenario involves performing triangulation maneuvers near a
target either to localize it or to take pictures of it. Figure 4 shows how target localization
occurs. The two vehicles, either while patrolling or while performing a search, detect a target
in direction beta using passive sonar. (Passive sonar involves detection of noise originating at
the target.) Passive detection gives only direction but no range information. At this point, the
vehicles determine two positions perpendicular to and equidistant from the line beta, and each
vehicle travels to its position. The vehicles can then emit sonar pulses and use triangulation t©
accurately localize the target. In a separate scenario, the vehicles use similar maneuvers to
achieve the triangle configuration, and then one vehicle illuminates the target while the other
vehicle takes pictures. Having a light source some distance away from the camera, and being
able to vary the position of this light source relative to the camera, can often greatly enhance
undersea photography.

A third scenario being considered for the MAUV vehicles was rendezvous and docking.
This might involve using sonar for the two vehicles two rendezvous with one another, and opt-
jcal tracking methods for docking. Both side-by-side and end-to-end docking can be con-
sidered.
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2. Intelligent Control for Autonomous Vehicles

Autonomous vehicles that operate in complex environments require intelligence, Truly

intelligent machines will have complex system architectures in which sensing, acting, Sensory

processing, world modeling, task decomposition, value judgements, and goal selection are
integrated into a system which responds in a timely fashion to stimulation from the environ-
ment. Figure 5 illustrates the basic elements of an intelligent control system:

1.

6.

ACTUATORS -- Within any intelligent system there are actuators which move, exert
forces, and position arms, legs, hands and eyes. For an intelligent vehicle, actuators gen-
erate forces to point sensors, excite tranducers, and steer locomotion. The actuators are
motors, pistons, valves, solenoids and transducers.

SENSORS -- Sensors for an intelligent vehicle may include vision, position, distance,
vibration, acoustic, pressure, and temperature measuring devices. Sensors may be used to
monitor both the state of the extemnal world and the internal state of the vehicle itself.
Sensors provide input to a sensory processing system.

SENSORY PROCESSING -- An intelligent sensory processing system compares observa-
tions with expectations generated by an intemal world model. Sensory processing algo-
rithms perform both temporal and spatial integration, so as to detect events and recognize
features, objects, and relationships in the world. Sensory input data from a variety of sen-
sors over extended periods of time are fused into a consistent unified perception of the
state of the world. Sensory processing algorithms may compute distance, shape, orienta-
tion, surface characteristics, and material properties of objects and regions of space.

TASK DECOMPOSITION -- An intelligent system has processes which decompose high
level goals into low level actions. Task decomposition involves both the planning and
execution of actions, It requires the ability to reason about geometry and dynamics, and
to formulate or select plans based on values such as cost, risk, utility, and goal properties.
Task planning and execution must often be done in the presence of uncertain, incomplete,
and sometimes incorrect information. The execution of tasks must be monitored and
existing plans must be modified whenever the situation requires. Task decomposition is a
hierarchical process requiring a multiplicity of planners that simultaneously generate and
coordinate plans for many different subsystems with different planning horizons and
different degrees of detail at each hierarchical level.

WORLD MODEL -- The world model is the intelligent system’s best estimate of the
state of the world. The world model includes a database in which is stored knowledge
about the world. It provides information about the state of the world to the task decompo-
sition system so that it can make intelligent plans and behavioral choices. It also provides
expectations and predictions to the sensory processing system in order to enhance its abil-
ity to analyze sensory data. The world model is kept up-to-date by the sensory processing
system.

VALUES -- Any intelligent system must have a value system in order to make judge-

- inents as to what is good and bad. The value system must evaluate both the observed

state of the world and the predicted results of hypothesized plans. It must compute cOSts,
risks, and benefits of observed situations and of planned activities. Without a means of
making value judgements, an intelligent task decomposition system has no basis for
choosing one action over another.

GOAL SELECTION -- Goals are selected by a looping interaction between the goal
selection, world model, and value systems. The goal selection system hypothesizes
actions, the world model predicts probable results, and the value system evaluates the
predicted results. The goal selection system then chooses the hypothesized action with the
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highest value as a goal to be pursued. By this process, the goal selection system chooses
goals, generates plans, computes priorities, and assigns resources to tasks so as to maxim-
ize benefit and minimize cost and risk.

8. SYSTEM ARCHITECTURE -- An intelligent machine requires an interconnecting system
architectre that enables the various components to interact and communicate with each
other in an intimate and sophisticated way. A system architecture is what enables the task
decomposition system to direct sensors, to focus sensory processing algorithms on objects
and events worthy of attention, and ignore things that are not important to current goals
and task prioritics. It is what enables the world model to answer queries from task
decomposition modules, and make predictions and receive updates from sensory process-
ing modules. It is what conveys value judgements from the value estimating system to the
goal selection system as to the success of behavior and the desirability of states of the
world.

3. The MAUYV Control System Architecture

The MAUYV control system architecture is hierarchically structured into six levels and is
shown in Figure 6 [1,2). This control system is based on the one developed for the Automated
Manufacturing Research Facility at NIST {10). It is divided into three main components,
shown as columns in Figure 6. These are sensory processing, world modeling, and task decom-
position. The hierarchy is serviced by a communications system and a distributed common
memory. The task decomposition modules perform real-time decomposition of task goals by
means of real-time planning, execution and task monitoring. The sensory processing modules
detect and recognize pattems, events and objects, and filter and integrate sensory information
over space and time, The world modeling modules perform the following functions: (a) they
maintain a central real-time database of information about the state of the world and the inter-
nal state of the system, (b) they update this database with information from sensory processing,
(c) they provide expectations of incoming sensory data, (d) they respond to queries from the
task decomposition component based on information in the database and on evaluations of pos-
sible future states of the world. A

In the task decomposition hierarchy, the highest level, the mission level, converts a com-
manded mission into commands to each of a set of groups of vehicles. These commands
involve tasks that treat a whole group of vehicles as a single unit, The group level converts
group commands into commands to each of the vehicles in the group. These commands
involve large tasks for each vehicle. The vehicle task level converts task commands into ele-
mental moves arkl actions for the vehicle. The e-move (elemental move) level converts elemen-
tal moves and actions into intermediate poses. These are converted into smooth trajectory posi-
tions, velocities, and accelerations by the primitive level. Finally, the servo level converts
these into signals to actuators, transducers, etc.

4. Hierarchical Planning and Execution

Before describing the clements of hierarchical planning and execution, we will provide
our working definition of a plan, and describe the difference between planning and execution.
A plan is made up of actions and events. The events are either events in the world or events in
the intemal state of the system. We represent a plan as a graph (Figure 7). The nodes of the
graph represent actions and the arcs represent events. The purpose of the planner is to obtain a
plan graph. It can either generate it or retrieve it from a database.
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We define execution as the process of carrying out a plan. The purpose of the executor is
therefore to step through the plan graph. When the executor arrives at a node of the plan
graph, it "executes” the action associated with the node. If an action is at the lowest level of
the hierarchy, then executing it involves sending signals to hardware. Otherwise, executing an
action involves sending it to a lower level where it can be decomposed. As the executor sits at
a node of the plan graph, it monitors for events associated with arcs Ieading out of the node.
This monitoring is done at a fast cycle rate. The process of monitoring for an event consists of
querying the world model database for that event. If an event has occurred, the executor fol-
lows the arc corresponding to that event and steps to the next action.

The notion of hierarchical planning is shown in Figure 8. An action is first input to the
top level as a task command. This task is decomposed both spatially and temporally. Spatial
decomposition means dividing a task into logically distinct jobs for distinct subsystems. For
example, the group level will have a different planner for each vehicle in the group. Temporal
decomposition means decomposing a task into a sequence of subtasks. The first step in the
plan is then the input task to the next lower level, and this, in turn, is decomposed both spa-
tially and temporally. At each successively lower level, the actions become more detailed and
fine structured.

Figure 9 shows a single level of this hierarchy in more detail. The input task to this level
first goes to the Planner Manager (PM). The Planner Manager performs spatial decomposition
by assigning jobs to each of the planners PL; . The Planner Manager also coordinates planning
among these planners. The planners, operating in parallel, generate their respective plans. Asso-
ciated with each planner is a separate executor, EX; , which executes the plan. The executors
also operate in parallel

There are two primary reasons for the hierarchical approach -- to achieve real-time plan-
ning and control and to achieve understandability and programmability. At the higher levels of
the hierarchy, actions are large scale and they take a long time to execute. Therefore, the
search space used to generate plans is coarse and covers large space and time. At the lower
levels, actions are smaller scale and they take a short time to execute. The search space is
therefore fine and covers small space and time. As a result, the search spaces at all levels are
small enough so that the search is manageable. Furthermore, all levels run in parallel.

The understandability and programmability comes about because the control system is
decomposed into small modules whose functions can be well understood. Furthermore,
different factors are taken into account at different levels, i.e., mission requirements, group
tasks, vehicle tasks, elemental actions, etc. In this way, when new knowledge is added to the
system, the modules in which this knowledge should reside are more apparent.

5. Levels in the MAUV Control Hierarchy

The MAUYV task decomposition hierarchy is shown in Figures 10 and 11. Each module
in the task decomposition hierarchy receives input commands from one and only one supervi-
sor, and outputs subcommands to a set of subordinate modules at the next level down in the
tree. Outputs from the bottom level consist of drive signals to motors, actuators and transduc-
ers. Each large box in Figure 11 has three levels of small boxes inside it. The top level box
represents the Planner Manager, the middle level set of boxes represent planners, and the
lowest level set of boxes represent the executors, one associated with each planner. The output
of each executor is a subtask command to the next lower level.
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5.1. Mission Level

Missions are typically specified by a list of mission objectives, prioritics, requirements,
and time line constraints. In our implementation, the inputs to the mission level are a command
and a mission value function. The command is a task invelving a mission strategy, e.g.,
SEARCH-AND-DESTROY, SEARCH-AND-REPORT, and MAP. Associated with each com-
mand is a list of subtasks that define the command. The mission value function is a function
used to score the mission, and is composed of the following elements:

1. A value for each vehicle -- used to assess the desirability of plan altematives involving
high risk to individual vehicles, or even the deliberate sacrifice of a vehicle.

2. A value for each subtask - specifies the importance of the successful completion of each
of the subtasks.

3.  An information value for each subtask — specifies the importance of returning information
collected while executing each subtask.

4. A value of stealth for the mission -- specifies the importance of avoiding detection by the
enemy during the mission.

5. The amount of bartery energy available for the mission.
The function of the mission level is to:

1. Subdivide the vehicles into groups. In our scenario, we have only one group, which con-
tains two vehicles.

2. Determine whether any of the subtasks defining the input mission command should be
omitted.

3. Provide a coarse description of routes and tactics for the mission that are sent to the
lower levels.

4. Delermine appropriate priorities to be used by the lower levels in planning the subtasks.
The outputs of the mission level are the group subtasks and priorities. Piorities are values

indicating the importance of the following factors during lower level planning: time used,
energy used, stealth, and vehicle survival.

As indicated in Figure 11, the mission level has a Planner Manager, a planner for each
group, and an executor for each planner. The Planner Manager assigns vehicles to groups, sets
priorities for group actions, and assigns mission objectives to the groups. The planner for each
group schedules the activities of the group and sets the priorities mentioned above.

A flow chart for a mission level planner is shown in Figure 12. The program attempts to
generate an optimal sequence of subtasks as follows. First, a set of promising plan parameters
is chosen. These include a specific sequence of subtasks and an estimate of the time and
energy priorities. Next, the planner uses outcome calculators to determine the result of choos-
ing these plan parameters. For example, the transit outcome calculator determines the projected
risk and the time and energy consumption for each transit leg of the mission. In order to do
this, the outcome calculator plans a coarse route. This route will eventually be passed to the
lower level planners.

The results of the outcome calculators are then scored based on the mission value func-
tion which was input to the mission level. If the score indicates that a cleardy satisfactory set of
plan parameters has been chosen, then these are passed to the lower level. Otherwise, a new
set of plan parameters is chosen and the procedure is repeated. If the time allocated to the
planner to make a decision has terminated, the best set of plan parameters thus far found will
be passed to the lower level.
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Replanning is done at regular intervals throughout the mission by repeating the program
in Figure 12. If replanning results in a different plan from the one currently being executed, it
is installed in place of the current plan. In this way, the world and vehicle situation is Tepeat-
edly evaluated so that the plan generated from the most recent information is always being exe-
cuted. Further details about the mission level may be found in {8].

5.2. Group Level

Group task commands define actions to be performed cooperatively by groups of MAUV
vehicles on multiple targets, The Planner Manager decomposes group tasks into individual
vehicle tasks. This decomposition typically assigns to each vehicle a prioritized list of tasks to
be performed on or relative to one or more other vehicles, objects, or targets. Tactics and vehi-
cle assignments are selected to maximize the effectiveness of the group’s activity. The actions
of each vehicle are coordinated with the other vehicles in the group so as to maximize the
effectiveness of the group in accomplishing the group task goal.

Each vehicle planner schedules group task lists into coordinated sequences of vehicle
tasks. The vehicle planner uses the group level world model map to compute vehicle trajec-
tories and transit times. They also estimate costs, risks, and benefits of various vehicle tactics
(or task sequences).

In our implementation, the inputs to the group level are a command and a set of priori-
ties. The command is a task involving multiple vehicles, ¢.g. TRANSIT, ATTACK,
RASTER-SEARCH. The priorities are values indicating the importance of stealth, destruction,
time, and energy. These priorities are used as weights in the cost function during A* search
[51

In our scenario, there is only one group of vehicles. As indicated in Figure 11, associated
with the group is a Planner Manager, a planner for each of the two vehicles in the group, and
an executor for each planner.

The planner uses A® search during planning. The following factors are used in the cost
function for this search:

1.  Probability of traversal. This is based on known obstacles (such as large land masses)
and known density of clutter (e.g.. a group of small islands in a given path would resuit

in a low probability of traversal).

2. Probability of detection by enemy sonobuoy fields or by enemy ships containing acoustic
SEensors.

3.  Probability of destruction by enemy minefields or enemy ships containing active sonar
SEensors.

4. Energy used.

5. Time used.

6. Deviation penalty from path specified at level above. The input task command to the
group level may specify a path to be followed. This path is taken into account by the
cost function by means of a deviation penalty.

The outputs of the group level are the vehicle tasks and priorities. The output priority
values are the same as the input priorities.




5.3. Vehicle Level

'meinputstothevehiclelevelareacommandandasetofpﬁoﬁtics.'l‘hcoommandis a
task performed by a single vehicle, e.g., GOPATH, WAIT, RASTER-SEARCH, LOCALIZE-
TARGET, RENDEZVOUS. The priorities are the same as the input priorities to the group
level.

The function of the vehicle level is to decompose the input vehicle task into a sequence
of tasks for each subsystem of the vehicle. These subsystem tasks are called elemental moves
or actions (e-moves). We consider three subsystems, the pilot, sensors and communications
subsystems.

As indicated in Figure 11, for each vehicle there is one Planner Manager, three planners
(one for each subsystem), and three executors. The Planner Manager decomposes vehicle tasks
into work elements to be performed by the various vehicle subsystems. It also coordinates,
synchronizes and resolves condlicts between vehicle subsystem plans.

The pilot planner uses the world model database to search for a path between the start
and goal positions indicated by the input vehicle command. A search is used and its cost
function has the same factors as used at the group level.

The communications planner schedules the messages to be sent by deciding if and when
to send each message. Currently, this schedule is extracted form a rule database. In the future,
the schedule will be determined by computing the value of each message, its urgency, the risk
of breaking communications silence, and the power needed to transmit the message.

The sensors planner schedules the activation and deactivation of passive and active
sonars. Currently, this schedule is also extracted form a rule database. In the future, the
schedule will be determined by computing the value of taking sonar soundings, its urgency, the
risk of breaking silence for active sonar, and the power needed to take the sonar soundings.

The outputs of the vehicle level are the e-move tasks.

5.4. E-move Level

The input to the ¢-move level is a command which is an elemental move or action
involving a single subsystem, e.g., GO-STRAIGHT (pilot subsystem), ACTIVATE-ACTIVE-
SENSOR (sensor subsystem), SEND-MESSAGE (communications subsystem).

The function of the e-move level is t0 decompose the input e-move command into a
sequence of low-level commands to the particular subsystem controler. As indicated in Figure
11, a Planner Manager, planner, and executor exists for each subsystem of each vehicle.

The pilot e-move can be defined as a smooth motion of the vehicle designed o achieve
some position, orientation, or "key-frame pose” in space or time. The pilot planner at this
level computes clearance with obstacles sensed by on-board somar sensors and generates
sequences of intermediate poses that define pathways between key-frame poses. A” search is
used to generate these paths. The cost function used during this search uses the following fac-
tors:

1.  Traversability. This is based on known local obstacles. The traversability of a given path
is either 1 (the path is traversable) or O (the path is not traversable).

2. Distance travelled. A shorter path is always preferred. This helps obtain smooth final
paths.

3. Deviation penalty from path specified at level above. As in previous levels, the input

command to the e-move level may specify a path to be followed. This path is taken into
account by the cost function by means of a deviation penalty.
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A communications e-move is a message. The communications planner at this level
encodes messages into strings of symbols, adds redendancy for error detection and correction,
and formats the symbols for transmission.

The sensors e-move is a command to activate or deactivate a passive or active sonar. The
sensors planner at this level decomposes sonar activation commands into a temporal pattern of
sonar pings.

The e-move level is the lowest level currently implemented in the MAUV architecture.
The outputs of this level are low-level commands to the subsystem controllers of the MAUV
vehicles. These controllers were developed by the University of New Hampshire. For the sake
of completeness, we next describe the lowest two levels in the MAUV architecture,

5.5. Primitive Level

The primitive level computes inertial dynamics and generates smooth, dynamically
efficient trajectory positions, velocities and accelerations. Inputs to this level consist of inter-
mediate trajectory poses which define a path that has been checked for obstacles and is
guaranteed free of collisions.

The outputs of this level consist of evenly spaced trajectory points which define a dynam-
ically efficient movement.

5.6. Servo Level

The servo level wransforms coordinates from a vehicle coordinate frame into actuator
coordinates. This level also servos thruster direction and actuator power. There is a planner and
executor at this level for every motor and actuator in the vehicle.

Inputs to this level consist of commanded positions, velocities, thrust, power, orientation,
and rotation rates of the vehicle. Outputs of this level consist of electrical voltages or currents
to motors and actuators,

6. Cooperative Vehicle Behavior

Cooperative behavior between the two MAUV vehicles is achieved as follows. The vehi-
cles start out with identical software, except for the vehicle identifier, which is unique for each
vehicle. This implies that each vehicle has a mission and a group level, and mission and group
level planning is done on both vehicles. If the two vehicles sense the exact same world all the
time (i.e., they receive the same sensor input), then mission and group planning will be ident-
ical between the two vehicles, and they will achieve coordinated behavior, This is because the
two vehicles will generate identical plans for both vehicle 1 and vehicle 2, and each vehicle
will simply execute the appropriate plan for itself.

If, instead of always having identical world model databases, the vehicles have the same
world model information with regand to significant world properties (i.e., properties relevant to
generating and executing mission and group level plans), then mission and group planning will
still be identical between the two vehicles. This is the method we currently use to achieve
cooperative behavior. The significant world properties relevamt to our scenarios are the posi-
tions of large Iand masses such as islands, the positions of sonobouy and mine fields, the posi-
tions of the two vehicles, and the positions of enemy targets and defenses. Islands, sonobouy
fields and mine fields are input at the beginning of the mission and do not change. Therefore
information about these will be identical in the vehicles® world model databases. In order to
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ensure that information about the other significant world properties are the same in both data-
bases, each vehicle, upon detecting a new target or defense, immediately communicates this to
the other vehicle. In addition, each vehicle regularly communicates its position to the other
vehicle.

A problem with this technique of achieving cooperative behavior is that, as the scenarios
become more complex, more information would have to be regularly communicaied between
the vehicles. In addition, if a group had many vehicles in it, regular communication from each
vehicle to all the others would have to occur. An alternative technique which seems more
promising is to designate one vehicle in each group as group leader, and to designate one vehi-
cle as mission leader. The mission leader performs mission planning and communicates the
plans to each group leader. Each group leader does group planning and communicates the
plans to the individual vehicles in the group. In this way, if different vehicles have different
world model databases, they will nevertheless execute cooperative maneuvers determined from
the world model databases of the group and mission leaders. If communication cannot occur
because of stealth requirements or because a vehicle is out of communication range, then each
vehicle still has mission and group level software and can generate its own plans. Of course,
this could lead to non-cooperative maneuvers, Once communication is re-established, the mis-
sion and group leaders can take over. -

7. Real-Time Planning

This section describes the real-time planning system used at the group and vehicle levels
of the hierarchy. The block diagram in Figure 13, which shows this planning system, can be
applied to the group level as well as the vehicle level. An input task command first goes to
the Planner Manager, which contains two modules. The first, the Job Assignment Module,
divides the input task into several jobs and sends each to a different planner. The different
planners then work on these jobs in parallel. The second module, The Plan Coordination
Module, coordinates planning among the various planners. Currently, this coordination is
accomplished by generating constraints to be met by all the planners. For example, if each
planner corresponds to a separate vehicle, this module might generate constraints consisting of
a position where all the vehicles are to rendezvous and a time when this is to occur. Each indi-
vidual planner would attempt to meet the constraints. If one of them could not, it would report
back to the Plan Coordination Module which would then generate a new set of constraints. In
the future, the Plan Coordination Module will also coordinate communication among the
planners. Some constraints can be determined only by the planners at plan time, and these
would have to be communicated to the other planners. For example, one vehicle planner might
want as part of its plan one of two actions depending on what another vehicle planner gen-
erates.

After a planner has finished generating a plan in the form of a plan graph, the executor
associated with the planner steps through the graph.

Each planner contains several modules (Figure 13). The Cyclic Replanning Module
accepts an input command (or job) from the Planner Manager and, at regular cycle times, gen-
erates a new plan. The primary way in which our system performs replanning is by generating
new plans regularly. The traditional way of doing replanning is to post some simple conditions
on the world which, when met, causes replanning to occur. Our approach, however, is based
on the notion that the best way to know whether the world has changed in such a way as to
require a new plan is to actually run the algorithm that generates the plan, and then to see
whether the plan has changed. The advantage of doing it this way rather than posting some
simple conditions is that there could be a complex interaction of events in the world that would
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require a new plan, and this complex interaction is exactly what the planning algorithm. looks
for and evaluates.

One issue that must be considered is real-time planning and how it is handled by the
planner, As stated above, we view a plan as being composed of actions and world events. Exe-
cution of the plan by the executor occurs by monitoring for world events and stepping to the
appropriate action based on which world events have occurred. Let ¢, be an arbitrary point in
time and let E be the set of events in the world occurring at ¢,. We define real-time planning
as the process of generating plans quickly enough so that there is always an action a given 10
the executor such that
1. action a is part of a plan p, and
2. plan p represents an "appropriate” response by the system to evenis E at time ¢;.

Let ¢, be as defined above and let ¢, be the furthermost point in time at which an action must
be executed in order to appropriately respond to the world events E. Then the planning reac-
tion time is defined as the time interval 7, .

Fortunately, the planning reaction time is different at different levels of the hierarchy. At
the higher levels, the world representation is coarse, planned actions occur over large time
scales, and workd events are coarsely represented. Therefore the planning reaction time of the
system can be relatively slow. At the lower levels, the world representation is detailed, planned
actions occur over small time scales, and world events are represented in detail. Therefore the
planning reaction time must be fast.

The cyclic replanning time at each level is determined by the planning reaction time. The
cyclic replanning times at the higher levels are longer than at the lower levels. At the end ofa
cyclic replanning time interval, the next action to be taken must be determined by the planner,
for the executor must always have an action to carry out. However, these time intervals will
often not be enough for the planners to generate new full plans. Therefore, the planner will
pass on to the executor whatever is its best plan at the end of the cycle time, even though the
planner may not have finished planning to completion. In our implementation, where A" search
is used, the best plan at any point in time is the path in the search tree from the root to the leaf
node with lowest cost.

When the Cyclic Replanning Module has generated a new plan, the plan is passed to the
Plan Update Module (Figure 13), which updates the Plan Graph.

If a subtask (i.e., an action) of the current plan is sent by the executor to the level below
and the subtask cannot be achieved, then a signal is returned to the current level and the plan
is modified by the Subtask Failure Replanning Module (Figure 13). Associated with each sub-
task command sent to the level below is a set of failure constraints. If these constraints cannot
be met, then the subtask fails. Examples of failure constraints are (1) achieving the subtask
within a time window, (2) achieving a goal (e.g., amiving at a given point in space), and 3
not deviating more than a certain amount from a given path.

The Subtask Failure Replanning Module has thus far been implemented only at the e-
move level to handle imminent collision between the vehicle and the lake bottom. The module
generates a plan in which the vehicle slowly moves upward, collecting sensory information,
until it has determined that there is room to continue forward.

Both the Cyclic Replanning and the Subtask Failure Replanning Modules tap into the
Plan Schema Database to generate plans. Plan schemas are used to define the input task com-
mands and will be described next.
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7.1. Plan Schemas

A plan schema is used to define a subtask command. It provides all possible sequences of
actions that define the command. In order to determine the best sequence in a given situdtion, it
allows the application of a cost function and provides the ability to perform a search which is
driven by the plan schema. As shown in Figure 14, the plan schema is represented as a graph.
The nodes of the graph represent actions and the arcs represent events in the world or internal
events in the system. The plan schema is converted into a specific plan by an interpreter which
steps through the plan schema graph and outputs a plan graph. When the interpreter reaches a
node in the plan schema graph, it adds the action associated with the node to the output plan.
It then queries the world model about the world events associated with the arcs leading out of
the node, The queries relate to a hypothetical future world formed by starting with the current
model of the world and simulating all the hypothetical actions in the output plan. The inter-
preter follows the arc whose world event is true, and then processes the next node in the plan
schema.

The node of the plan schema is divided into two components, the alternative action com-
ponent and the context subroutine component. The alternative action component contains a
function that generates all possible alterative actions that can be considered when the node is
reached. These altemative actions represent the possible operators that can be applied to the
state space at a given point in the state space search. In Figure 14, for example, the GO-
STRAIGHT node comtains a function that retums all permissible directions for a GO-
STRAIGHT action. Since the state space in this case is a three-dimensional grid, all GO-
STRAIGHT actions, when executed, will lead to some adjacent point on the grid.

The context subroutine component of a plan schema node contains a subroutine that sets
the context (i.e., sets certain variables) for the alternative action component. This context is
also assumed for all future nodes of the plan schema that will be traversed by the interpreter.
These future nodes also have their own context subroutine components which may modify the
assumed context.

The plan schema contains two types of arcs. The first type is a world event arc. This arc
contains a predicate that queries the world model about a hypothetical future world. A function
is then applied to the result of this query, and the predicate retumns true or false depending on
the value of the function. In Figure 14, for example, the arc out of the GO-STRAIGHT node
labeled "@POINT P" is a predicate that queries a hypothetical future world, resulting from the
hypothetical execution of a set of GO-STRAIGHTS, about whether the vehicle is at point P. If
it is, then the interpreter will step to the HOVER node.

The kind of predicate just described is a plan rime predicate. Also associated with each
world event arc is an execution time predicate. This is the predicate that is actually placed in
the plan graph, and this predicate will query the most current world model at execution time.

The second type of arc in the plan schema is the else arc. This arc also contains plan
time and execution time predicates. The plan time predicate returns true if the node that it leads
out of has been processed and the predicates of all other arcs leading out of the node return
false. In Figure 14, for example, there is an else arc and a world event arc leading out of the
GO-STRAIGHT node. If the node has been processed and the predicate of the world event arc
(i.e., whether the vehicle is at point P) returns false, then the predicate of the else arc will
return true and the node will be revisited. The execution time predicate of the else arc retums
true if the node that it leads out of in the plan graph has successfully completed execution and
the predicates of other arcs leading out of the node retumn false.
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8. World Modeling

The world modeling component serves to accumulate and store information obtained from
sensQry processing, and to make this information available to the planners and executors. The
executors query the world model about the current state of the world so that they can monitor
the execution of plans. The planners query the world model about the current state of the world
and about hypothetical future states of the world. The world model also provides expectations
and predictions to sensory processing.

The world model database is updated from sensory data obtained from the following sen-
sors:

Obstacle avoidance sonars - provide range to obstacles ahead of the vehicle.

Flux-gate compass -- provides vehicle orientation.

Navigation sonars -- provides vehicle x,y position.

Aldtude sonar -- provides altimde of vehicle above bottom.

Depth sonar -- provides depth of vehicle beneath surface of water (vehicle z position).
Pressure sensor -- provides depth of vehicle beneath surface of water (vehicle z position).
Defense and target locating sonar -- provides x,y positions of defenses and targets.

In this section, we focus on representing and maintaining the bottom terrain map, with an
emphasis on confidence-based mapping in an underwater environment from a sequence of data
acquired by six sonar sensors (five forward-looking obstacle avoidance sonars and one
downward-looking depth sonar). As the vehicle moves, the information gained from the sonars

is used to build an understanding of the environment. Each sonar reading is modeled as a cone,
and the positions of the sonar sensors are assumed to be known.

The world model has two types of data for its mapping scheme: a set of global maps,
each of which contains data for the vehicle’s operational domain, and region-of-interest maps,
which only store a localized area around the vehicle's current location. The global maps
include underwater terrain elevation data and several overlay feature maps which include data
on soil, vegetation, ridges, ravines, landmarks, obstacles, defense points, and transponders. The
local maps include terrain elevation and its statistical features.

The region quadtree [9] is used to represent temain elevation in the global maps. The
advantages of using a quadtree are that large uniform areas in the map can be described com-
pactty by a small number of large quadrants and that information retrieval is fast since the
number of levels in the quadtree is related logarithmically to the resolution of the tree. In addi-
tion to the quadtrees used 10 represent elevation, point and line storing quadtrees have been
implemented to provide locations of known objects and topographic features of the lake bottom
used in high-level planning. Because the local maps are updated every time new sensor data
are obtained; we represent them them as grid structures, which can be very efficiently updated.

Nk w N~

8.1. Global Maps

The environment for the MAUV project is Lake Winnipesaukee in New Hampshire. A
priori data from a survey of the lake bottom were collected and converted to quadiree format.
Figure 15 shows the a priori data for the MAUV mission area.

A scparate sensor quadtree is used to store higher resolution depth values collected from
the sonar sensors during vehicle runs. Both downward- and forward-looking sonars are used in
refining the sensor map. A third quadtree stores a depth confidence value for each node in the
tree. The confidence map supports the function of distinguishing spurious sonar readings
caused by debris or signal inconsistencies from actual obstacles that must be detected and
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avoided. The region quadtree is particularly efficient for sensor and confidence map represen-
tation, since unexplored portions of those maps are empty. Such areas can be represenied by a
small number of nodes in the tree.

Point and line storing quadirees [9] provide locations of known objects and topographic
features of the lake bottom. These simplify tasks such as locating the nearest other vehicle to a
given location or plotting a course along linear topographic features like ravines or underwater

pipelines.

8.2. Local Maps

Different levels of the control hierarchy require different local map resolutions. Also
different types of data may be needed at each level. Generally, the resolution of the map at
each level is about an order of magnitude less than the level below. All local maps are imple-
mented as array data structures and only the lowest level (highest resolution) local map updates
the global quadtrees. Figure 16 shows the mapping hierarchy for a generalized data set. Arrays
are used for their fast, constant access and update time and for ease of implementation. Local
maps are generated from the global quadtree database, first by extracting a priori map data for
the region, then overlaying the data stored in the sensor and confidence quadtrees, which are
presumed to be more accurate than the lake survey information. In fusing the three sets of
data, all three quadtrees are traversed over the local map region. Because the updating algo-
rithm only stores data in the sensor quadiree if the confidence measure is above the level
assigned to the a priori data, any node for which there are sensor data uses the sensed value.
The local map uses a priori knowledge only if insufficient sensor data have been collected for
that node. Confidence quadtree values are also copied into the local map.

In the current implementation, the mission level map divides the area into a coarse grid
of approximately 25 x 25 pixels, each pixel storing the average depth of the corresponding
area. The next two levels in the hierarchy, the group and vehicle levels respectively, share the
same local map for this data set. Each pixel of the local map stores the minimum and max-
imum known depths over a 4 x 4 meter area. It serves the purpose of providing information
for high level navigation tasks, such as determining the probability that an area is traversable
by one or more vehicles. This map is updated as new information is added to the lowest level
map, the e-move map. The e-move local map has the highest resolution (each grid square
represents a 0.5 x 0.5 meter area), and is used in determining the traversability of a path
between two specified points. The world model retums a probability that the path is travers-
able based on the information in this map. For example, the output may be a percentage of
pixels for which the vehicle clears the lake bottom over the hypothesized path. In the simplest
case, the world model can provide a probability of 1 if all of the pixels are traversable, or 0 if
any are obstructed. Typically, the e-move pilot planner will query the world model for the
traversability of several paths, using A* search to choose the best path. The e-move map is
also the level updated directly by sensor readings; its modifications are propagated up through
the nrapping hierarchy.

8.3. The Updating Algorithms

At the beginning of a mission, the MAUV control system initializes the global and local
maps, reading available a priori knowledge from a secondary storage device. The sensor quad-
tree is initially composed of a single, empty node, though it could also contain sensor data
stored from previous missions if available. Likewise, the confidence quadtree is initialized as a
single node containing a base confidence value, unless there is confidence data from a previous
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mission. In general, the world model starts up in a state of total dependence on. a_priori
knowledge, gradually becoming more reliant on the current sensor map as data are collected.

In updating the map from downward-looking sonar data, the algorithm first computes an
approximate neighborhood size of pixels to be updated around the current vehicle location
which depends on the width of the sonar beam and the distance to the lake bottom. Given that
the beam width is fixed and the range is retumed by the sensor, a closed-form trigonometric
solution can be performed using a lookup table. Although the 2-D projection would be best
represented as a circular region, for our purposes, a square neighborhood is sufficiently accu-
rate and more efficient to update. The depth stored at each pixel of the neighborhood in the
local map is compared to the observed sonar reading. If the two values are not within an
acceptable margin of error, the conflicting data cause the pixel’s confidence o be lowered. If
the two depth values are in agreement, the confidence value is incremented unless it has
already reached the maximum allowed. Whenever a pixel's confidence value drops below the
predefined threshold, it takes on the new depth reading and is assigned a base confidence value
(Figure 17). For the depth sonar, all information is classifiable as either conflicting or agreeing
with the knowledge already in the model. None of the data are irrelevant in this case.

The obstacle avoidance (forward-looking) sonar mapping algorithm is more complicated.
Here the projection of the cone into the two-dimensional plane approximates a triangular
region. The cone itself is appmxjmatcdbthOplanarsurfaoesrcpresenﬁngthetopmdbouom
surfaces of the cone. Due to the relatively coarse resolution used in the obstacle avoidance
algorithm (0.5m® per pixel) and the naow width of a sonar beam, this does not introduce
significant error into the calculations. As with the depth sonar algorithm, each pixel in the 2-D
projection is examined and updated if its confidence value drops below the threshold.
Forward-looking sonar readings provide two types of information: a given pixel may be clear,
or it may be obstructed by an obstacle. When the vehicle detects an obstacle, the mapping
algorithm adds the information to the local map by raising the modeled bottom of the lake at
that location (i.e. making it shallower, see Figure 18).

It is also an essential function of the world model to be able to remove hypothesized obs-
tacles in the local map as well as add them. For each pixel in the triangular projection, if the
three dimensional distance (measured along the cone trajectory) from the sonar source to the
current pixel being examined is less than the range retuned by the sensor, the pixel is assumed
to be clear. No obstacle was detected there, so the depth at that location in the local map
should reflect this information. Its value should be greater than or equal to the depth of the
bottom surface of the sonar cone at that location, since any object obstructing the beam would
presumably cause the sensor t0 retumn the range to that object. If the local map value is shal-
lower than the beam, it conflicts with the new sensor data and the confidence value is decre-
mented. If this results in a confidence lower than the threshold, the pixel is reassigned the
depth value of the bottom surface of the cone and a new base confidence value. Note however
that a local map value in agreement with sonar information does not necessarily increase its
confidence. The sonar beam may be projected in front of the vehicle when it is near the sur-
face, and a clear reading near the surface would not ield any information about the depth of
the lake bottom if we already have some a priori knowledge that the lake is approximately N
meters decp. In this case it would be considered irrelevant data.

The same is not true for pixels in the projection whose distance from the sonar source is
greatermanorequaltoﬂwrangeretumdbythesensor. These pixels correspond to detected
obstacles and the depth values in the local map are compared to the top surface of the cone.
Herethelocalmapdatashoﬂdbeatleastasshallowastlmtopsmfaceofﬂlebeamtobein
agreement with the sensor reading. If the map data does agree, it represents confirmation of an
existing obstacle and the confidence value should be incremented. It should be noted that this



Figure 17.

Three stages of a map update from depth sonar: (A) Incoming sonar
data conflicts with the world model. (B) Confidence values for the
corresponding world model pixels are decremented (depth is not
modified yet). (C) After repeated conflicting readings, confidence
drops below the threshold, the depth 1is updated, and a new
confidence assigned.



Figure 18.

Updates from obstacle avoidance sonars remove false obstacles in
the world model by increasing depth values in the map.

Obstacles
are added by decreasing the depth, in effect, raising the bottom
of the lake modsl.
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confirmation only supports the hypothesis that there is an obstacle at the depth it was detected;
no conclusions can be drawn as to the true height of the object or whether it extends all the
way to the lake bottom.

In a similar manner, if the model continually disagrees with the sensor reading, the
confidence is decremented until the depth value is reassigned to the depth of the top surface of
the cone, making the model shallower. Its confidence is again initialized to a base value.
Further details about the world model may be found in [6,7].

9. Timing

An important issue for real-time control is timing of processes. In discussing the timing
in the MAUYV system, we consider the following factors at each level of the hierarchy: execu-
tor cycle period, input command update interval, replanning interval, and planning horizon.

The input command update interval is the rate at which new commands are input into a
given level from the level above. The replanning interval is how ofien the planners at a given
level do cyclic replanning. The planning horizon is the amount of time into the future covered
by a plan at a given level. The executor cycle period at each level is the rate at which the exe-
cutor checks to see whether a new output command is to be sent to the level below. This cycle
period is relatively fast. Table 1 shows these values for each level of the hierarchy.

Table 1: Timing values
Mission Level | Replanning Interval ~30 min
Planning Horizon “2hr
Group Level Input Command Update Interval “30 min
Replanning Interval “5 min
Planning Horizon ~50 min
Vehicle Level Input Command Update Interval ~5 min
Replanning Interval "1 min
Planning Horizon ~ 10 min
E-move Level Input Command Update Interval ~1 min
Replanning Interval "10 sec
Planning Horizon ~2 min
Primitive Level | Input Command Update Interval ~10 sec
Replanning Interval “2 sec
Planning Horizon ~20 sec
Servo Level Input Command Update Interval 2 sec
Replanning Interval 600 msec
Planning Horizon 4 sec
QOutput Command Update Interval | 600 msec

The executor cycle period at each level is the same -- 600 msec. This is the rate at
which new sensor data are collected. Therefore, the executor need not cycle faster than this
since it will not determine that there can be a new output command unless new information
about the world is known. The input command update interval increases by about a factor of
five as we go up the hierarchy. The time values given in the table above represent approximate
average times. For example, the rate at which new input commands can be received can be as
fast as 600 msec (the executor cycle period) at any level. However, we do not expect this to



happen very often.

The replanning interval at a given level is the same as the output command update inter-
val at that level. In this way, the planners attempt to replan before each next command is deter-
mined.

The planning horizon at a given level is about twice the input command update interval at
that level. Each planner therefore generates a plan that represents a decomposition of the
currerit input command as well as the next input command.

10. Implementation

The control system was implemented on the computing systems shown in Figure 19, In
each vehicle, a VME bus supports high bandwidth communication between sensory processing,
world modeling, planning, and execution modules at each level of the hierarchy. These
modules are partitioned among three separate single board Ironics computers so as t0 maximize
the use of parallel computation. A two megabyte common memory board is used for communi-
cation between processes, and an 800 megabyte optical disk is used for mass storage. The
real-time multi-processor, multi-tasking operating system used is pSOS.

Also shown in Figure 19 is the software development and simulation environment. A
variety of computers, including Sun workstations, a VAX 11/785, a micro-VAX, IRIS graphics
systems, PCs, Duals, and Ironics development systems are tied into the development environ-
ment for code development and simulation. Once the software has been translated to run on the
Ironics Unix-based development system, it can be compiled to run under pSOS and down-
loaded into the 68020 target hardware for real-time execution.

11. Experimental Results

This section describes some intial experimental results on lake tests performed with one
of the MAUV vehicles. These tests were performed during October 1987, Due to lack of con-
tinued funding, the MAUV project was terminated in December 1987. We were therefore
unable to perform all of the demonstration scenarios described in the Introduction.

The lake tests were performed at Lake Winnipesaukee and were run using code at the
servo, primitive, and e-move levels. The first experiment involved local obstacle avoidance.
Figure 20 shows the path executed by the vehicle during a test run in which an obstacle was
manually entered into the world model map at point C, and the vehicle was commanded to go
from point A to point B. The control system succesfully planned and executed a path around
the obstacle at point C.

‘The second experiment involved following along a predefined path. Figure 21 shows a
raster-scan path from point A to point B. The vehicle determined its x,y position from acous-
tic navigation transponders which receive signals from navigation bouys placed in the water.
The dctual path executed by the vehicle during this run is shown in Figure 22. One of the
obvious problems brought out by this run is that the vehicle tends to overshoot when it makes
tums. This is a problem with the current low level control, which allows position control but
not velocity control. Because the velocity is at maximum value when it takes a tum, it will
always overshoot. Also, there is considerable error in the position measuring transponders,
which largely accounts for the ragged appearance of the pathways.

The third experiment involved updating the internal model of the lake bottom with alti-
tude information obtained from the downward looking depth sonar. Figure 23 shows three
graphs. The top and middle graphs display the x and y positions, respectively, of the vehicle
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path. The bottom graph shows the lake depth values obtained from the world model along this
path after the world model is updated from the information in the depth sonar.

12. Conclusion

The achievement of real-time intelligent control for autonomous vehicles will require a
system that integrates artificial intelligence with modem control theory, and that can be imple-
mented on parallel, possibly special-purpose hardware. This paper has presented the basic com-
ponents of such a system, and has presented a hierarchical control system architecture that can
serve to integrate the various components. A first cut at the algorithms and software for many
of these components has been developed and is presented here. However, many of these algo-
rithms need to be improved to handle more complex scenarios.

A major problem is the achievement of real-time performance. Although the multi-
processor computing system described here can serve as a good basis for achieving real-time
performance, we believe that it must be augmented with special-purpose hardware such as
real-time sensory processing devices (e.g., PIPE [4]) and massively parallel devices (c.g.,
neural networks). Generally, such special-purpose hardware would accomplish the functions of
one or two modules in the hierarchical control system architecture, and can thus fit very
elegantly into a system that implements this architecture.

Another major problem of intelligent control is that of learning. Leaming and the ability
to generalize are very important for autonomous systems that must operate efficiently in a wide
variety of situations in a complex real-world environment. We feel that neural network systems
offer promising approaches to this problem. Again, these systems can fit very nicely into our
hierarchical control system architecture.
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