MAPPING PROCESSES TO PROCESSORS FOR
SPACE BASED ROBOT SYSTEMS

Thomas E. Wheatley

National Institute of Standards and Technology

Gaithersburg, MD

ABSTRACT

The NASA/NBS Standard Reference Model for Telero-
bot Control System Architecture (NASREM) [1] has been
adopted by NASA for use in the Flight Telerobotic Servic-
er, a two-armed telerobotic manipulator which will build
and maintain the Space Station. NASREM provides the par-
adigm that allows standard interfaces to be defined so that
functionally equivalent software and hardware modules
can be interchanged. This paper examines the mapping of
these logical modules onto a functional computer architec-
ture. Interfaces must first be defined which are capable of
supporting the algorithms in the literature. After interface
definition, the specific computer architecture for the imple-
mentation can be determined. An example is shown map-
ping the SERVO level of NASREM onto a set of comput-
ers utilizing the knowledge of the dominant response time
required to aid in the selection process.

INTRODUCTION

The NASA/NBS Standard Reference Model for Telero-
bot Control System Architecture (NASREM) [1] defines a
logical computer architecture for the NASA Space Station
Flight Telerobotic Server. The overall architecture is hier-
archically structured with specific operations performed at
each level. The lowest level is SERVO, where individual
motors are servoed to achieve input commanded positions.
Fiala [2] describes the functionality of the three SERVO
Task Decomposition modules in NASREM (Job Assign-
ment (JA), Planner (PL), and Executor (EX)), and defines
interfaces internal and external to these modules to sup-
port algorithms in the current literature. Kelmar [3] de-
scribes the functionality and interfaces of the World Mod-
el (WM) module for the SERVO level, and Nashman and
Chaconas [4] describe the same for the Sensory Processing
(SP) module. In [5], Wheatley et al. introduce the notion
of a virtual control loop to describe the interaction of
these three modules within any particular level of NAS-
REM and examine the various communication tools avail-
able to the system designer. Michaloski et al. [6] expand
on this idea by exploring the use of the response time of
each virtual control loop as a guiding factor in the map-
ping of processes to processors. Zhang and Paul [7] exam-
ine various servo control schemes in terms of their compu-
tational cost. This paper draws from the above concepts to
demonstrate the stepwise process of mapping the logical
modules of the SERVO level of NASREM onto a func-
tional computer architecure utilizing a hybrid mix of mul-
tiprocessing and multitasking,

DISCUSSION

The assignment of processes to processors is typically
an iterative one. There are four considerations that need to
be examined to determine an allocation that can achieve the
desired results: 1) the amount of data to be exchanged; 2)
the execution time of each process; 3) the communication
paths chosen for the data; and 4) the communication costs
in terms of operating system support of moving the data.
The first one is dictated by the interfaces of the processes
and the specific application at hand, whereas the last three
are determined by the current technology available.

The desired response time is the driving force in deter-
mining the tradeoffs between these four factors. It can be
considered the sum of the execution time and the communi-
cation time [6]. The execution time is defined as the sum of
the execution times of the individual processes. Data trans-
fer internal to a process or I/O is considered part of its exe-
cution time. The communication time is defined as the sum
of the times for operating system communication calls for
moving the data between processes. In [5,6], ten percent of
the response time for a particular control loop is suggested
as a reasonable amount of time for communication. A 200
Hz update rate at the SERVO level would then have a 5
msec response time with 4.5 msec for execution and 0.5
msec for communication.

Although this time interval is very stringent, it is fea-
sible with current technology. Table 1 details some typical
times for common communication calls executed on a 20
MHz 68020 VME-based CPU board using ADA. These
calls transfer "ownership” of the data without physically

Communication Call Time in usec Normalized

1. Subroutine 15 1.0
2. Task Signal 153 102
3. Task Swap 67 45
4. Send Datagram 90 6.0
5. Receive Datagram 68 4.5
1000 Data Transfers Time in usec_ Normalized
1. Direct Word 2027 1.0
2. Explicit Array 3533 1.7
3. Implicit Array 3637 18
4. Direct Word, VME 2784 14
5. Explicit Array, VME 3999 20
6. Implicit Array, VME 5480 27
7. Direct Word, VSB 2585 13
8. Explicit Array, VSB 3779 1.9
9. Implicit Array, VSB 4634 23

Table 1 - Communication Calls and Data Transfer Timing

T s . s ., : Operator
Pnllrl::g";':/cseervo ‘o e e *q S.ST K f fa Control
Other Processors Time_stamp Servo_algorithm Cz Interface
I Staws
N c, R, K's
S, §
£n y bp_algorithm
2. 7. 3% _ Job Assignment :
P i JAQ1) :
: i— Op_status
Level 1 : World R S
Sensory Modeling Zgp 23 Zgo Zq | Algorithm Status
Processing : Sslf;;gn ; fgp f3 K's §,8°| Time_stamp
bozg g g By .<____; 4 Planning E
E P PL(1,s) z
filtered ; Eo E
joint angles, ; : Loceeen - soseeneeceezeeepesd
joint velocities [—> ' Zg %3 Zg Zg | Algorithm
joint torques ' : fgp T4 K's 8,8 Status
wrist forces Pz, 0z '
Pof :
raw Pz ! e Execution
joint angle, é Svmdapceletrcl);qucs : EX(1,s)
torque, and : ynamic s E s
force readings b % Tag
Actuator ?
Interface sensors motor command

Figure 1 - Interfaces for SERVO Level of NASREM

copying it. They are normalized to the subroutine call for
comparison purposes. Table 1 also depicts some typical
times for data transfers of 1000 32-bit words, and normal-
izes these values to the direct on-board data transfer. The
destination in each case was on-board memory. The times
for the array transfers incorporate the array addressing
and/or loop overhead, whereas the direct transfers include
just the loop overhead.

These were timed directly from the ADA code instead
of from the raw bandwidth numbers possible on these com-
munication paths. In this fashion, one obtains a truer pic-
ture of the interaction between the compiler and the hard-
ware. In particular, the explicit array transfer using a "for
loop" compiled into long moves, and the implicit transfer
(equating the two arrays) compiled into a string move of
bytes. The implicit move on-board was similiar in speed to
the explicit move due to the efficiency of the string move
and the absence of on-board arbitration for memory. The
two off-board transfers show the effects of the additional
bus arbitration due to the byte transfers, even though there
was no other bus traffic.

A casual examination of these times highlights the
costs involved by utilizing high-level system calls for a
low-level function [5,6]. At an average of ~80 usec each,
one could use only six high-level calls before exceeding
our target limit of 500 usec. This by itself does not offer

much guidance in the assignment of processes to proces-
sors. We must first examine the interfaces and the specific
application at hand.

Figure 1 depicts the interfaces between the Sensory Pro-
cessing, World Model, and Task Decomposition modules
in the SERVO level of NASREM [1-4]. Here, z denotes
the coordinate system of choice such as joint or Cartesian
space, z denotes the origin of that space, and z4 denotes

the desired final position. The SP and EX modules run at
the desired servo rate, and the JA and PL run at some sub-
multiple of this rate [2.4). The WM contains dynamic
terms and Jacobians which can be computed at the servo
rate, however, most control systems compute these also at
some sub-multiple of the servo rate [2,8,9]. For purposes
of example, we choose to define the response time required
for the non-servo rate functions as five times the servo re-
sponse time, or 25 msec. Based on this, we shall examine
two potential configurations. Configuration 1 attempts to
put all the SERVO level modules onto on¢ processor, and
Configuration 2 separates the non-servo rate functions
(denoted by the dotted lines around JA, PL, and WM)
from the servo rate functions onto two processors.

For Configuration 1, there are two incoming datagrams
from the Primitive (PRIM) and Operator Control Inter-
face (OCI) processors. Copies of these datagrams reside in

both the WM and the JA modules. The burden of this
copying is placed on the sending processors. Examining Ta-
ble 1, the two datagram reads take 136 usec, leaving the da-
ta in on-board memory. For our example of 5 msec, this
leaves 364 usec for the communication time.

It is often desirable to utilize a tasking model to sepa-
rate processes based on either function and/or time [9].
Here, we separate the servo rate processes from the non-
servo rate functions. For a simple two-task system, this
adds 134 usec for two swaps, reducing the remaining time
to 230 usec. For a three task system, the use of task sig-
nals would be required which adds 459 usec to the 136 usec
of the two datagrams. This exceeds our limit of 500 usec
for the communication time. Therefore, Configuration 1 is
limited to a simple two task system with the servo rate
modules running to completion in the foreground and the
non-servo rate modules running in the background. This al-
lows the background task to execute over five servo cycles
in our example, using the remaining time in each 4.5 msec
interval. The limiting factor now becomes the execution
time of each task, and will be discussed later.

Configuration 2 physically separates the two tasks of
Configuration 1 onto two processors. The servo rate pro-
cessor A would have two interfaces to processor B (the
non-servo rate functions) at the WM and PL interfaces. As
in Configuration 1, this takes a total of 136 usec for A,
leaving 364 usec for any internal communications. Since all
the functions within A operate at the same rate, any task-
ing would be based on separation of functions. As the SP
module is fairly simple and must be run first to supply
the EX module with new data, it is an appropiate choice
for a subroutine call by EX [5,6]. Therefore, the limiting
factor for Processor A is the execution time of the servo
control algorithm.

Processor B has a response time of 25 msec, leaving 2.5
msec for communications. The two datagrams to A total
180 usec. Since B is the sending processor, the data transfer
must be accounted for. From [2], we determine the amount
of data to be traded between the WM and EX processes
for a six degree-of-freedom (DOF) arm to be 126 words.
Of these, 24 words are from servo rate functions which are
on A. This leaves 102 words coming from the functions on
B to A. There are an additional 118 words passing across
the interface between PL and EX, for a total of 220 words
from B to A. Using the explicit array transfer time for
the VSB bus from Table 1, this adds 829 usec to the com-
munication time. The two incoming datagrams from PRIM
and OCI processors bring the total to 1.14 msec. This
leaves ample time for tasking among and/or within the
three modules of JA, PL, and WM on processor B.

The use of the VSB bus is preferred here for both the in-
creased speed and the tight coupling of A and B. The VME
transfer takes 878 usec. The VME bus should be viewed as
a global communication path with local bus traffic like
this located on VSB clusters or other private communica-
tion paths. The use of dual-ported memory between these
paths and the main communication path allows the notion
of global memory to be preserved without sacrificing the
bandwidth of the main communication path.

We now have two potential configurations for the pro-

cess allocation based on the defined interfaces and the de-
sired response time. In order to determine which algo-
rithms can run on these or other configurations, we must
examine the execution time. If the execution times of the
individual processes are already known, they are simply
added and compared to our target execution time. Howev-
er, it is often desirable to estimate the execution time of
an algorithm before actually coding it. This is fairly
straightforward to do, especially for compute-bound algo-
rithms such as servo control. To best illustrate the use of
this technique, consider the simple proportional-derivative-
integral (PID) servo control algorithm in [2]

K ©Oy-0)+K, ©y-0)+ K [0;-0)+8,=1,.,
The integral is performed digitally by the following
tOI t (Gd -0)=> sum = sum + AT(Od - 0) , where

AT is the sample period. Here, the values © and © are cal-
culated by the SP module, and supplied to the WM mod-
ule. These are then passed to the EX module. The remain-
ing terms are supplied directly by the PRIM module. An
estimate of the calculations required to achieve this con-
trol algorithm for a six DOF arm are as follows:

10,6 6adds (SP)
2K, ©4-9) 6 multiplies 6 adds (EX)
3K, © d X:)) 6 multiplies 6 adds (EX)
9K, [©y-6) 12multiplies 12 adds (EX)
5) remaining adds 18 adds (EX)

This yields a total of 24 multiplies and 48 adds. Table
2 details the times for various integer and floating-point
operations on the 20 MHz 68020/68881 system, again
timed directly from the ADA code. Using the array opera-
tions on floats from on-board memory, we determine that
the calculations would take 1024 usec. This time takes into
account the reading of the values, the actual operation, and
the storing of the values back to on-board memory. There
is some additional program overhead that is difficult to es-
timate [6], however an additional 5% is a reasonable esti-
mate. There is an additional time of 66 usec to transfer 24
words of /O, bringing the total to 1.14 msec for this sim-
ple PID control, well within our self-imposed limit of
4.5 msec. This then could be implemented with ease on ei-
ther Configuration 1 or 2, with ample room for growth.

Up to this point, the WM has been mostly passive. It
maintains an internal model of the world and is designed
to deal with different coordinate systems as well as dy-

Operation Integer Short Float Float
1. Direct Add 2281 12752 13748
2. Array Add 3680 13927 15396
3. Direct Multiply 4681 14015 14734
4. Array Multiply 5791 14947 16385
5. Direct Sine - - 48996
6. Array Sine - - 50057
All times are in usec for 1000 data operations

Table 2 - Integer and Floating Point Operation Timing

namic modeling [3]. Consider the same PID servo algo-
rithm in Cartesian coordinates

1@ Kp(xgx) + K (kgD +K; Joxgm+ig1=1,,

The x vectors correspond to Cartesian space [2], and are
available from the PRIM module. The transpose of the Ja-
cobian is supplied by the WM module. Following the
methods described above, we see that the computations of
the EX module increase by 36 multiplies and 30 adds in de-
termining the product of the Jacobian and the inner term.
This increases the total time spent in the SP and EX mod-
ules to 2.14 msec. However, the WM module must calcu-
late the transpose of the Jacobian. In [10], Orin and Schrad-
er use the rough estimate of 100-150 multiplications, 60-
80 additions, and 10-12 sine/cosine operations for a 6 DOF
arm. Assuming the upper limit on each of these and adding
program overhead, the 20 MHz 68020/68881 system
would take ~ 4.1 msec to calculate the Jacobian.

This execution time is "spread out” over five servo up-
dates for Configuration 1, along with the time for the JA
and PL modules. The SP and EX modules require 2.14 of
the allotted 4.5 msec execution time, leaving 2.36 msec in
each cycle, or 11.8 msec in total, for the background tasks
of WM, JA, and PL. Therefore, this algorithm could also
be realized on either of the two configurations.

Configuration 1 is self-limiting in that as the execu-
tion time of the servo rate task increases, the remaining
time for the non-servo rate task decreases. This is best
shown by considering an example using the computed
torque control algorithm in Cartesian space [2,8]

J‘(e)Mx(e)[K (g %) + K (kg8 + 54]

* Teent, x(e’e) + 1gravity

The relationship of the terms Mx(e) and T

©) =75

ent. x(e 'e) to

the joint space terms used above is [8]
M,(9) = T'OM(E®) 10

Toent ;80 = Toeny (6.0)- M@ 17 ©) §©)6.

Here, J'l(O) is the transpose of the inverse Jacobian,
M(0) is the matrix of inertia coefficients, Tgra vity(e) is
the vector of gravity loading on each joint, and 7, (6.6)

is the vector of centrifrugal and Coriolis effects. The servo
rate task execution time increases to 3.31 msec for the addi-
tional matrix multplies and adds leaving a total of only
5.95 msec over the five cycles to invert the Jacobian and
calculate all the above dynamic terms for Configuration 1.
Configuration 2, with possibly additional processors for
the WM, would be required to run this control algorithm.

CONCLUSION

A stepwise process has been shown that maps a logical
description of a system architecture onto a functional com-
puter architecture based on a description of the application
at hand and the response times required for that applica-
tion. - The response times are broken into execution and

communication times to partially separate the application
dependent issues from the technology dependent issues.
Coupled with knowledge of the interfaces required and
times of key operations taken from actual code on the tar-
get hardware, the system architect is provided with a pow-
erful set of tools in the iterative procedure of assigning
processes to processors. The use of new algorithms or the
addition of redundancy to the system can be examined be-
fore any of the system is actually built. This technique can
be expanded to characterize an entire system for examining
such issues as processor utilization, bus bandwidth, and dy-
namic process allocation. In this fashion, one can determine
the maximum and minimum number of processors required
for the range of tasks. This allows processors to be turned
on and off to conserve power depending on the complexity
of the task at the given moment.

REFERENCES

{13 Albus, J. S., McCain, H. G., Lumia, R,
"NASA/NBS Standard Reference Model for Tele-
boot Control System Architecture (NASREM),"
NBS Technical Note 1235, July 1987.

[2] Fiala, J., "Manipulator Servo Task Decomposition,”
NIST Technical Note 1255, October 1988.

[3] Kelmar, L., "Manipulator Servo Level World Mod-
eling,” NIST Technical Note 1258, February 1989.

{4] Nashman, M., Chaconas, K., "Visual Perception Pro-
cessing in a Hierarchial Control System - Level 1",
NIST Technical Note 1260, March 1989.

[S] Wheatley, T. E., Michaloski, J. L., Lumia, R.,
"Requirements for Implementing Real-time Func-
tional Control Modules on a Hierarchial Parallel
Pipelined System", Proceedings of the NASA Con-
ference on Space Telerobotics, TBP, January 1989,

[6] Michaloski, J. L., Wheatley, T. E., Lumia, R,
"Exploiting Computational Parallelism with a Hier-
archial Control System", TBP.

[71 Zhang, Y., Paul, R, P, "Robot Manipulator Con-
trol and Computational Cost”, Report to NIST un-
ser Dept. of Commerce Grant No. 60NANB7D0749,
1988.

[81 Khatib, O.,, "A Unified Approach for Motion and
Force Control of Robot Manipulators: The Opera-
tional Space Formulation," IEEE Journal of Robot-
ics and Automation, Vol. RA-3, No. 1, February
1987.

[9] Software Components Group, "pSOS+/68K User’s
Manual”, Version 1.0, September 1988.

[10] Orin, D. E., Schrader, W.W., "Efficient Jacobian De-
termination for Robot Manipulators”, Robotics Re-
search: The First International Symposium, MIT
Press, 1984,

