
To w e a r inProceedings of theAAAlWorkshop on SpatialReasoning andMuHisensor Fusion, Ocr. I987.

A FRAMEWORK FOR REPRESENTING AND REASONING
ABOUT THREE-DIMENSIONAL OBJECTS FOR VISION'

Ellen Lowenfeld Walker Martin Herman
Computer Science Department Robot Systems Division

Pittsburgh, PA 15213 Gaithersburg, MD 20899
Carnegie -Mellon University National Bureau of Standards

Takeo Kanade
Computer Science Department

Carnegie -Mellon University
Pittsburgh, PA 15213

Abstract

The capabilities for representing and reasoning about three-dimensional objects are essential for .

knowledge -based, 30 photo-interpretation systems that combine domain knowledge with image
processing, as demonstrated by such systems as 30 Mosaic and Acronym. Three-dimensional
representation of objects is necessary for many additional applications such as robot navigation and 30
change detection. Geometric reasoning is especially important, since geometric relationships between
object parts are a rich source of domain knowledge. A practical framework for geometric representation
and reasoning must incorporate projections between a 2D image and a 3D scene, shape and surface
properties of objects, and geometric and topological relationships between objects. In addition, it
should allow easy modification and extension of the system's domain knowledge and be flexible
enough to organize its reasoning efficiently to take advantage of the current available knowledge. We
are developing such a framework, called the 3D FORM (Frame-based Object Recognition and
Modelling) System. This system uses frames to represent objects such as buildings and walls,
geometric features such as lines and planes, and geometric relationships such as parallel lines. Active
procedures attached to the frames dynamically compute values as needed. Since the order of
processing is controlled largely by accessing objects' slots, the system performs both top-down and
bottom-up reasoning, depending on the current available knowledge. The FORM system is being
implemented using the CMU-buitl Framekit tool in Common Lisp [3]. Examples of interpretation using a
simple model of building as rectangular prism are presented.

l This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976, monitored by the Air Force Avionics Laboratory under Contract F33615-84-K-1520.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the U. S. Government.

1

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

1. Introduction

We are developing the 30 FORM (Frame-based Object Recognition and Modelling) System, a
framework for representing and reasoning about three-dimensional objects. This framework
incorporates projections between a 2D image and a 30 scene, representations of shape and surface
properties of objects and geometric and topological relationships between objects, and a geometric
reasoning capability. Such a representation and reasoning capability is essential for knowledge -based,
30 photo-interpretation systems which combine domain knowledge with image processing, as
demonstrated by such systems as 30 Mosaic 14, 51and ACRONYM [2], and for many applications such
as robot navigation, 3D change detection, and simulating the appearance of a scene from arbitrary
viewpoints. The 30 FORM system uses frames to represent objects such as buildings and walls,
geometric features such as lines and planes, and geometric relationships such as parallel lines. Active
procedures attached to the frames dynamically compute values as needed. The order of processing is
controlled largely by accessing objects' slots, so the system performs both top-down and bottom-up
reasoning, depending on the current available knowledge.

..................: m ;

i

;.................I

Figure 1: Portlon of knowledge base for buildings

The 3D FORM system can include knowledge about model and data objects organized into IS-A
and PART hierarchies, along with relationships between object features. and projections used to
convert between model objects and data objects. The knowledge includes both generic object models
and specific instances of objects. Figure 1 shows a portion of the knowledge that might be represented
about a building. A BUILDING is a 30-OBJECT, with a WALL, which is a 2D-OBJECT as one of its parts.
The specific building BLDG1 has parts WALL1 and WALL2 whose geometric features are the primitive
geometric objects PLANE1 and PLANE2, respectively. In addition to its geometric feature, WALL1 has
the photometric feature COLOR1. The knowledge that a building's walls are mutually perpendicular is
represented for BLDGl by the instance PRPWl2 of the PERPENDICULAR -PLANES relationship. The
arguments to PRPW12 are PLANE1 and PLANE2, the geometric features of BLDGl's walls. The
geometric feature PLANE1 is supported by the data object REGlONl, which came from an image whose
projection between 2D and 30 is CAM1.

2

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

In the current implementation, only 30 objects, geometric features, and geometric relationships are
represented. The next section will discuss some of the issues in geometric reasoning for knowledge -
based vision systems and how some existing systems have addressed them. The following sections will
discuss the representations of primitive geometric objects, geometric relationships, and composite
objects in the 3D FORM system. The final section will discuss the application of the representation to
3D data and present examples.

2. Geometric reasoning in knowledge -based vision systems

Domain knowledge has been used by previous vision systems to compensate for the inadequacies
of low level image processing, as well as to generate reasonable assumptions to make it possible to
recover 30 shape from 20 data. Shape, one of the most important cues for object recognition, must be
included in any domain knowledge representation for a vision system. Therefore, a knowledge based
vision system must be able to represent and reason about geometric objects. Geometric reasoning
assists in both data acquisition (bottom-up reasoning) and model matching (top-down reasoning). The
overall control of the system should be flexible enough to allow these two processes to be combined to
achieve the best results based on the current state of the knowledge base. In addition, the system itself
should be domain-independent, with the domain dependent portions collected into a separate
replaceable module so the domain knowledge can be easily modified or extended. Each of the systems
described in this section has met some of these goals, but no system has adequately addressed all of
them.

The 3D Mosaic system [4
polyhedral buildings to acquire
polyhedral boundary geometric
according to a weak model of

, 51' used 30 geometric reasoning in the domain of aerial images of
a scene description from images from multiple points of view. Using a
representation, it hypothesized missing parts of objects in the first view
the urban domain encoded into the program itself. With the domain

models implicit in the system's code and no explicit representation of generic objects. it would be
difficult to modify or extend 30 Mosaic's domain knowledge. For example, it would be a major
programming effort to extend the 30 Mosaic system to make use of the colors of buildings or the
textures of their surfaces. Since it was designed as a model acquisition system, the 30 Mosaic system
was limited to bottom-up reasoning. When new information invalidated one of the hypotheses
generated for missing parts. a complicated network of backpointers was followed to eliminate the effect
of the failed hypothesis.

Unlike the 3D Mosaic system, ACRONYM [2] used explicit representation of generic objects,
representing its geometric objects in a hierarchy of frames. Geometric relationships between objects
were represented as quantified algebraic inequalities, and interpretation was done by an external graph
matching procedure. To perform the matching, ACRONYM needed strong domain models. The graph
matching procedure was primarily topdown, with special low-level objects (ribbons and ellipses) for its
generalized cylinder representation of objects. Since the matching procedure was independent of the
data, ACRONYM could not organize its search to match the most certain or most complete data first and
restrict the search for the remainder of the data. The use of quantifiers removed the constraints one
level from the data, making them more diffiartt to read, modify,and extend.

Mundy and others [I,8, lo] are developing a system which combines algebraic methods for
geometric reasoning with a hierarchical organization of knowledge (both object knowledge and
knowledge about geometric reasoning). Algebraic constraints from the perspective projection are
combined with additional constraints from the model to derive equations describing a family of
interpretations for each object. Inequalities from line labeling (61 are then used to constrain the
solutions to these equations. Since the relationships as well as the objects are represented in a

3

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

concept hierarchy, the geometric reasoning component should be both flexible and extensible. The
disadvantage of using algebraic methods is their inefficiency for handling inequalities, an important
component of real-world geometric relationships.

Although Hwang's thesis [7] used only two-dimensional geometric reasoning, its method for
representing relationships was unique. Each relationship was represented as two procedures attached
to its arguments: one for top-down hypothesizing and the other for bottom-up verification.
Representing the relationships as active components of the object representation allowed both top-
down and bottom-up reasoning, although not at the same time. Only a restricted class of binary
relationships was implemented.

Like ACRONYM and Hwang's system, the 30 FORM system uses frames to represent its objects.
Frames are also used by the system to represent relationships between objects, and have active
procedures (demons) attached to their arguments so that they are hypothesized or computed as
needed. Primitive objects also have demons to compute missing parts of their descriptions from other
parts. For example, a line has a demon to compute its vector from the known points on the line. Since
both object and relatiorlship knowledge are explicitly represented, extending the system to additional
domains involves adding new frames but not modifying the code that manipulates the frames. The
reasoning process is controlled largely by accessing objects, which are computed as needed, so the
representation is equally amenable to top-down and bottom-up processing. In addition, there is no
need for an external ordering mechanism such as a focus of attention. Instead, the dynamically
computed COMPLETENESS value for each object is used to select the most complete object to match
or relationship to evaluate next.

3. Representing primitive geometric objects

Geometric representation in the 30 FORM system has three parts: (1) representing primitive
geometric objects such as points, lines, and planes: (2) representing primitive geometric relationships
between these objects such as parallel lines and perpendicular planes: and (3) combining this
information with a part hierarchy to represent composite objects such as faces and buildings. All objects
and relationships are represented using frames. The slots of the frames are used to store parameters of
the object or relationship. Each slot may have demons associated with it to compute or recompute the
slot when necessary. In addition, some slots have facets, which contain constraints on the values that
can fill those slots. Frames representing generic objects are arranged in an IS-A hierarchy, and each
specific object has an INSTANCE slot pointing back to its generic object. Slots left empty in a particular
instance of an object are inherited from the generic object across the INSTANCE link and by means of
the IS-A hierarchy.

The primitive geometric objects represented in the current system are points, lines, and planes.
For example, the generic line frame shown in Figure 2 has slots for points on the line, the line's vector,
vectors of lines perpendicular to the line, and the error in fitting a line to the points. The slots PT1,
VEC, ERR, and COMPLETENESS have if-needed demons (designated with N in the figure) to
determine the value from other slots as needed. In addition, the slots PT1 and PTS have if-added
demons to propagate the new information to other slots in the frame. For example, when additional
points are added to a line, the line's old vector and error values are invalidated, so they are deleted.
When one of these values is needed later, it is recomputed by fitting a line to the set of points. Often,
the value of an object's slot may be computed in more than one way from other slots of that object.
For example, the vector of a line may be computed either by fitting a line to its points, or by taking the
cross product of its normal vectors. The if-needed demons take into account the available information
in choosing a method to compute their results.

4

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

demons I line 1

I N: get first point in PTS
A add new point to PTS PT1 -point on the line

VEC-unit vector of line

PTS-l i t of pine

NORMS- perpendicular vectors

N: compute from PTS. NORMS * ERR-linefittingonol

CONSTRAINTS - other ~enSbainlP

N: compute from PTS. NORMS, VEC COMPLETENESS -how much known?

N: if-neededderocr
A: if--demon

Figure 2: Representation of a line

In addition to the slots for the parameters of the object, every geometric object has slots to
represent knowledge used in computing its relationships and matching its instances. Currently, we
have defined the following slots for this purpose:

l ERR contains the error in applying the geometric primitive to the given constraints (e.g. the error
in fiing a line to a set of points). .This value is used to constrain matches.

l CONSTRAINTS contains geometric constraints that cannot be represented by filling in any other
slot. These constraints allow relationships to affect later matching. Each value consists of a
function to compute the constraint and a pointer to the relationship that caused it, and is
evaluated when sufficient information is added to the constrained object. For example, if two
lines are supposed to intersect, but neither has any points specified yet, a constraint is placed on
each line consisting of a function to compute the distance between the lines and a pointer back
to the intersection relationship. When one line is further specified, the distance function is
executed. If the distance is small enough, the constraint of intersection has been satisfied and is
removed, and if the distance is too large, an error is returned to the process that changed the
line. If the other line is not yet specified, the original relationship is re-evaluated to put a new
constraint on the other line.

l COMPLETENESS contains a userdefined measure of the information stored in the object. This
value is used for sorting relationship computation and matching operations so the most complete
items are tried first. For example, the completeness of a line is greatest if two or more points are
known, but greater if one point and the vector are known than if only one point or the vector is
known.

4. Representing primitive geometric relationships

Like geometric objects, primitive geometric relationships are also represented by frames. The
system currently considers relationships between pairs of lines, between pairs of planes, between lines
and the planes they lie in, and between points and the lines they lie on. Each frame representing a

5

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

primitive geometric relationship has slots for two or more geometric objects for which lhe relationship is
defined, one or more numeric ranges for parameters of the relationship, a COMPLETENESS slot, and a
COMPUTE slot. In the related-2-lines relationship shown in Figure 3, the slots L1, L2, and INTPT
contain objects, and slots DlST and ANGLE contain parameters of the relationship between the objects.

fdemon8 f related 2 h e r ' parallel lines \
2 DIST>dlhreshN: hypothesize line related to L2 - L1-first line

ANGLE t0' f athresh
LZ- Hcondlim J

N: comDute from L1 and L2

DlST-distance bWn linw

ANGLE-angle bwn linea

COMPLETENESS f DerDendlcular lines)N av .corn@.of Ll, I26 INTPT.

DlSTI0 f dthrerh

I

N de& validity of relationship COMPUTE-result

Figure 3: Relationships between 2 llnes

The COMPLETENESS slot and the COMPUTE slot are computed only when needed. A demon
attached to the completeness slot of each relationship computes the average completeness value of
the geometric object arguments of the relationship. A demon attached to the COMPUTE slot of each
relationship evaluates the relationship. The evaluation function first attempts to fill in any missing slots
by hypothesizing geometric objects or computing numeric ranges. When objects are hypothesized,
only the slot values that are known are filled in. After attempting to hypothesize each missing argument,
the evaluation function adds constraints derived from the relationship to each geometric object. For
example, the perpendicular -lines relationship adds the vector of L1 to the norms of L2, the vector of
L2 to the norms of L l, and the coordinates of INTPT to both lines. If the geometric arguments of the
relationship are not fully specified, as much constraint as possible is applied to the remaining geometric
objects. Finally, the evaluation function computes the true values for the numeric arguments of the
relationship and determines whether they fall within the specified ranges.

The related-241nes relationship has several specializations, also shown in Figure 3. The
parallel -lines relationship is a related -2-lines relationship specialized to have the angle between
the lines near zero and a positive distance between the lines. Similarly, an perpendicular -lines
relationship is a specialization of Intersecting -lines, which in turn is a specialization of related -2-
lines.

5. Representing composite objects

Primitive geometric objects and their relationships are combined with a part hierarchy and other
features to create composite objects. The slots of a composite object fall into three classes: features,
which describe the object as a whole; parts, which are.lower level objects; and constraints, which relate
the features of an object and its parts. For example, Figure 4 shows the representation of a generic wall.
Its parts are two vertical edges, two horizontal edges, and four vertices, and its geometric feature is a

6

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

vertical plane. Among the constraints of the wall are a perpendlcular -planes relationship between
its geometric feature and the ground and perpendlcular -lines relationships between the top edge
and each of the two vertical edges.

Like primitive objects and relationships, all objects have COMPLETENESS and COMPUTE slots.
The completeness of an object is computed by averaging the completeness values of its features and
parts. Accessing an object's COMPUTE slot causes a conjunction of the object's constraints to be
evaluated. As a side effect of computing an object, hypotheses for the object's parts and features may
be derived.

Figure 4: Representations of wall, vertical edge, and edge

5.1. Features

Object features include shape, color, texture, reflectance, and other object characteristics useful for
matching world objects to their sensor representations. Currently, only shape is represented, with the
GEOM-FEATURE slot of each object pointing to its underlying primitive geometric object. The
INSTANCE facet of a feature points to the frame that must be instantiated to fill it in. Its value is used for
type-checking in matching, and to instantiate new hypotheses for features. In Figure 4, for example, the
geometric features of a wall, a vertical edge, and an edge respectively are a vertical plane, a vertical line,
and a line. Each feature has its own primitive frame representation.

5.2. Parts

Objects are organized into a part hierarchy to allow the system to focus on an appropriate level of
detail for the current evaluation (for example, to ignore windows until the walls are completed). Each

7

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

object part is an instance of another object according to its INSTANCE facet. For example,the parts VE1
and VE2 of a wall are instances of vertical edges. The parts of an object participate in the object's
constraint relationships, and objects are matched by recursively matching their parts.

Since an intersection relationship between two objects also refers to the object of intersection, the
object of intersection is part of the parent object as well as both of the intersecting parts. For example,
the vertex at the intersection of the top edge and one vertical edge of a wall is part of the wall, and also
part of the top edge and the vertical edge. To enforce consistency between such equivalent parts, the
EQUlV facet of each part of a parent object contains pointers to equivalent parts of the child objects, and
demons check all equivalent parts whenever a part slot is accessed. If the values of the equivalent parts
cannot be reconciled, an error is signalled to the process that accessed the slot. The EQUIV facet is
defined for each of the vertices of the wall frame shown in Figure 4.

In some objects, there are pairs of parts that have exactly the same INSTANCE values and
relationships, such as the vertical edges VE1 and VE2 of the wall in Figure 4. Each is perpendicular to
the top and bottom edges and parallel to the other vertical edge. These slots are called symmetric , and
are identified by their SYM facets. Until feature knowledge is added by filling in one of these slots, any
data object that matches one will match both and could be assigned to either one. Therefore, matching
must take into consideration all possible combinations of symmetric slots.

5.3. Constraints
Constraints on an object relate its features and its parts, allowing each to be hypothesized or verified

from the other. Each object currently has two sets of constraints: geometric constraints and inclusion
constraints. Geometric constraints relate an object's parts, its geometric feature, and prototype frames.
Figure 4 shows some of the geometric constraints of a wall. Inclusion constraints are polnts-on-llne
or lines-ln-plane relationships between the object's geometric feature and its parts. Each constraint
is a template for a relationship specifying its arguments in one of four ways:

(value slot): Use the value of slot in the current frame.
(geom-feature slot): Use the GEOM-FEATURE of the value of slot in the current frame.

(local vad: Use the value of the local variable var, initializing to NIL if necessary. Local
variables persist throughout the conjunction they are defined in.

expression: Evaluate the expression, usually a prototype frame.
Thus, the first constraint of the wall in Figure 4 specifies that the wall's GEOM-FEATURE is
perpendicular to the ground plane (a prototype frame) intersecting in the line that is the GEOM-
FEATURE of the BOlTOM of the wall.

The evaluation function for an object computes a conjunction of the relationships specified by its
constraints. A side effect of evaluating an object's relationships is to generate hypotheses for missing
parts of the objects and fill in partially specified objects when possible.

6. Applying the representation to 3D wire frame data

A model of a particular domain is created by defining the generic objects found in that domain. In
addition, features and relationships between the objects are defined using the facilities described in
Sections 3-5. The 3D FORM system applies the domain model to real world data to recognize objects
and hypothesize their missing parts. Top-down and bottom-up reasoning are combined to take best
advantage of the available data, controlled by the procedural component of the knowledge

a

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

representation. Given a simple domain model of rectangular prism buildings, the 30 FORM system
interprets a set of 30 edges and vertices (such as the wire frames produced by the stereo and
monocular components of the 30 Mosaic system) as buildings. hypothesizing missing edges, vertices,
and faces as necessary. First, appropriate initial edge, line, vertex, and point frames are created from the
input. The initial frames are then grouped into generic 2D and 30 objects, and the relationships
between them are determined. Finally, the IS-A hierarchy is followed by means of a specialization
procedure to find the most specific possible interpretation for each object and fill in its slots. Once all
input features have been placed into object slots, the top-level objects are computed. The result is a
completed building for each wire frame, including hypotheses for any previously missing parts. New 30
data may be used to verify these hypotheses.

6.1. Acquiring object frames from wire frames

The first step in data interpretation is to create initial object frames from the input points and lines.
For each point, a point frame is instantiated, and the coordinates of the point are added to the new
frame. If the point is a vertex between two lines, a vertex frame is also instantiated, and its GEOM-
FEATURE is set to the point. For each line, a line frame is instantiated and its PTS slot is filled in. In
addition, an edge frame is instantiated with its GEOM-FEATURE set to the line, and the edge's vertices,
if any, are filled in.

Next, the initial object frames are grouped into more complex objects, and the relationships
between them are determined. The dual space (91is used to efficiently find parallel and coincident lines
and planes. Each new line is added to a dual space database. For each pair of parallel or coincident
lines found in the dual space, an appropriate relationship is instantiated. In addition, each pair of lines
intersecting at a vertex is stored according to the dual of the plane spanned by the lines. The dual
space database is then searched to group all sets of coplanar edges into faces, and to determine parallel
relationships between faces. Finally, an intersection relationship is instantiated for each vertex and the
pair of lines it intersects, and for each edge and the pair of planes it intersects. The angle of intersection
for each of these relationships is automatically computed when it is needed or whenever the
relationship itself is computed.

6.2. Specializing objects and relationships
After initial object creation and grouping, all objects are of the most general type, such as 3D-

OBJECT. The next process in data interpretation is to search the IS-A hierarchy to find a more
specialized interpretation for each object. An object can be specialized in one of three ways:

1. Fill in a slot of the o b m with a more specific value

2. Add a relationship constraining a feature of the object

3. Add new parts to the object and/or relationships between its parts (recursively specializing the
object's parts and relationships)

The first method of specialization is the easiest to test for. The values in a frame's slot are matched
with those of its possible specializations. For example, in Figure 3 the Intersecting -llnes relationship
is specialized to a perpendlcular -llnes relationship by filling its angle slot with the value 90".
Specialization by slot value is used for relationships as well as objects.

To test whether objects can be specialized by the second method, a conjunction of the constraints
for each feature of the new type is computed, using the current object's feature values. If this

9

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

conjunction computes successfully for all features of the new type, the object may be specialized.
Thus, in Figure 4, an edge is specialized to a vertical edge by adding a relationship constraining its
GEOM-FEATURE to be parallel to the prototype vertical line.

To specialize an object by the third method, a correspondence between the parts of the candidate
object and the parts of the specialized object is determined so that each part is an instance of the right
object and all constraints are satisfied. For example to specialize a vertical face to a wall, the slots TOP,
BOTTOM, VE1 and VE2 and the relationships between them are added. The correspondence of parts
to slots is done in two phases. First, a list of matches using only local considerations is made, then this
list is pruned by propagating relationship information. The considerations for local matching are:

l For each part, which slots have the right INSTANCE value?

l If a slot is filled in, can the part be successfully matched with the slot's current value?

For example, when specializing the face 2D-OBJECT161 in Figure 5b to a wall, the local matches for
EDGE133 are VE1 and VE2 (see Figure 4), since EDGE133 is a vertical edge. Although EDGE134 (a
horizontal edge) has the right INSTANCE value for both TOP and BOTTOM of the wall, the BOTTOM
slot is already filled with the intersection of the wall plane and the ground plane. Since EDGE134 lies
above the ground, its only possible local match is TOP.

If there is at least one possible match for each part, then relationship information is propagated by
assigning one part to one of its possible slots, and pruning the possibilities for the other parts according
to its relationships. This is done by matching the relationships of the current part with the relationship
templates of its assigned slot. For example, when specializing 2D-OBJECT158 to a roof, after local
matching, any of the edges of 2D-OBJECT158 can match any of the edge slots of the roof. However,
once EDGE134 is assigned to the roof's edge 4, EDGE132, which is perpendicular to it, can no longer
be assigned to the roof's edge 2, which is parallel to edge 4. From the remaining possibilities, a new
assignment is chosen, and the propagation process is repeated until all parts are matched, all slots are
filled, or a part cannot be matched. If there is an unmatched part and all slots were not filled, the
specialization fails. Otherwise, hypotheses for missing parts of the object may be generated by
accessing its COMPUTE slot. Two facets in the PARTS slot of the object are used to store information
in case computing the object fails: the MATCHES -TRIED facet contains matches already tried, and the
LOCAL-MATCH facet contains the original set of local matches for each part.

6.3. Controlling the matching process

Since matching is expensive, it is advantageous to limit the number of pairs of objects to be
matched. One way this is done by the 3D FORM system is to specialize each data object as much as
possible before any matching is attempted. Since only instances of the same generic objects can
possibly match, specializing an object limits its possible matches. A second method of limiting the
number of pairs of objects to match is to consider the relationships between the parts being matched,
eliminating object pairs with conflicting relationships. These two methods of eliminating matches
correspond to the two conditions for local matching used in specialization. However, even after local
matching, multiple possibilities often remain.

Once it is determined that general matching must be done, processing is limited by making sure that
the most likely matches are tried fir$t, and if a match eventually fails, it fails as early as possible, cutting off
the recursion tree near the top. Since empty objects match anything, the more complete an object is,
the less likely it is to match a given object. Therefore, whenever there is a list of possible matches to be
tried, they are sorted by the object's COMPLETENESS values, and the pair with the greatest average
completeness is tried first. In the case of parrs being matched to slots, these heuristics are applied by

10

. .

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

doing the local matches first, then choosing the object with the fewest possibilities, and finally choosing
the possibility with the greatest average completeness.

6.4. Examples: from 3D wire frames to complete 3D objects

This section describes experiments in which 3D wire frames, generated from image edges by hand,
were read into the frame database, specialized, and evaluated, generating hypotheses for missing
edges. In the first example, a new edge was then entered manually, and the system matched it to one
of the hypothesized edges of the object. The initial wire frame for the first experiment consisted of four
edges, three horizontal and one vertical (see Figure 5a). During the initial processing, the three
horizontal edges were combined into one face (2D-OBJECT158), and a second face (2D-OBJECT161)
was created from the intersection of the vertical edge with one of the horizontal edges. Since the faces
intersected at an edge, a 3D-OBJECT was created with both faces as its parts.

EDGE509

VERTEX131
EDGE134

VERTEX131

VERTEX770 VERTEX770

Icl Id)

Flgure 5: (a) initlal wire frame; (b) vlsible faces of completed building;
(c) completed building with new edge; (d) revised buildlng after merging new edge

In the specialization process, the edges were divided into horizontal and vertical edges, and 2D-
OBJECT161 was found to be a wall, since it was a vertical face. Since 2D-OBJECT158 is above the
ground plane, it was found to be the roof, rather than the floor of the building. The parts of each of
these objects were assigned to slots, as discussed in Section 6.2. The final result of specialization was
a building with 2D-OBJECT158 as its roof and 2D-OBJECT161 as its 4th wail. .

11

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

Next, the building was evaluated, providing hypotheses for the missing slots. Figure 5b shows the
visible faces of the completed building. Notice that an extension to the input edge EDGE131 was
hypothesized to complete the rectangular roof.

Finally, a new 30 edge was entered and matched to the existing building hypothesis. The algorithm
used was to take the new data, specialize it as much as possible, and attempt to match the top-level
object to all other instances of the same object until a match was found. The new edge, EDGE276, was
found to match the hypothesized edge, EDGE731. Figure 5c shows the building and the new edge,
and Figure 5d shows the result of merging the new edge with the old using this algorithm.

The second experiment evaluated a more realistic set of wire frames, finding three buildings in the
image, and rejecting one object because it did not fit any models. Figure 6 shows the results of
evaluating these wire frames. The bold lines are the initial wireframes, and the remaining lines were
hypothesized when the buildings were evaluated. Objects 1 and 6 were rejected as buildings, since
each had a non-perpendicular vertex. Objects 3 and 4 were considered to have too little information
with only three edges each. The remaining objects were successfully completed.

/L’-
AT

D0

w-5

Flgure 6: Wlre frames and hypotheses for a group of buildings

References

[l] Barry, M., Cyrluk, D. Kapur, D., and Mundy, J. A multi-level geometric reasoning system for
vision. In Kapur, D. and Mundy, J. L. (ed.). Proceedings of a Workshop on Geometric
Reasoning. Keble College - Oxford University, June, 1986. To appear as a special issue of
Artificial Intelligence.

(21 Brooks, R. A. Symbolic reasoning among 3-0 models and 2-D images. Artificial Intelligence
17:285-348, 1981. Special volume on computer vision.

[3] Carbonell. J. G. and Joseph, R. The FrameKit+ reference manual. 1986. CMU Computer
Science Department internal paper.

12

A Framework for Representing and Reasoning about Three-Dimensional Objects for Vision

[41

(91

Herman, M. Kanade, T. and Kuroe, S. Incremental acquisition of a three-dimensional scene
model from images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(3):331 -
340, 1904.

Herman, M. and Kanade, T. Incremental reconstruction of 3-D scenes from multiple, complex
images. Artificial Intelligence 30:289-341, 1986.

Huffman, D. A. Impossible objects as nonsense sentences. Machine Intelligence. Elsevier,
New York, 1971.

Hwang, V. S. S. Evidence accumulation for spatial reasoning in aerial image understanding. PhD
thesis, University of Maryland, November, 1984.

Kapur, D., Mundy, J., Musser, D, and Narendran, P. Reasoning about three dimensional space.
In 7985I€€€International Conference on Robotics and Automation. IEEE, St. Louis, Missouri,
March, 1985.

Mackworth, A. K. Interpreting pictures of polyhedral scenes. Arfificial Intelligence 4:121-137,
1973.

[lo] Mundy, J. L. lmage understanding research at General Electric. In Proceedings of lmage
Understanding Workshop, pages 83-88. 1985.

13

