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ABSTRACT

A new type of crane suspension mechanism is described. This mechanism can
provide a significant increase in the payload stiffness to external and inertial loads
compared to the suspension of conventional cranes, thus making cranes more suitable
for robotic applications. An optimization study was conducted to determine the best
choice of the design parameters of this suspension mechanism which maximizes its
stiffness.

The stiffness functions of the robot crane suspension to various types of external
loads common to robot crane applications were determined. Their optimization
properties were studied using theoretical and numerical analysis techniques. It was
found that feasible optimal designs which maximize stiffness are possible, but they are
dependent on the type of the assumed external load and height. In this paper we report
the optimization results for the case of a single external horizontal force.
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HAIFA 31021, ISRAEL.

INTRODUCTION

A new crane suspension mechanism was proposed in [1,2] which results in a
significant increase in the payload stiffness to external and inertial loads compared to
the suspension of conventional cranes, thus making cranes more suitable for robotic
application. The mechanism concept is shown by the schematic drawing of Figure 1. It
consists of an equilateral triangular platform, called the lower platform here, which is
suspended by six wireropes, two at each vertex of the triangle, from an overhead
carriage of the same shape, called the upper platform. The carriage includes a single
winch onto which all six wireropes attach and rope guides which guide the six
wireropes away from the winch in three pairs equidistantly spaced. If desired, it is
possible to adjust the lengths of the individual wireropes with actuators or additional
winches. The carriage can be attached to the overhead, gantry or boom crane depending
on the application.
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The suspended lower platform behaves as if the six wireropes were an extensible
single beam with a spring constant dependent on the magnitude of the suspended
weight and the height of the crane, for a given size of the two platforms and wirerope
type and diameter. This results in a significant improvement in stiffness over a
conventional crane. This enables the load to be accurately positioned and also provides
a stable platform which can be used to exert torques and side forces on objects being
positioned. The suspended lower platform can be used as a stabilized base for the direct
mounting of conventional manipulator arms, or for the support of special substructures
for specific crane applications [3].

The proposed robot crane suspension mechanism takes advantage of the suspended
load to maintain the wireropes in tension and thus with their spatial orientation, oppose

~any horizontal displacement of the payload. The stiffness created by this geometric

orientation is superimposed onto the pendulum stiffness of conventional cranes.

The objective of this work is to determine the optimum combinations of the
dimensions of the upper and lower platforms which maximize this stiffness for practical
values of the total suspended weight, crane height, and diameter of the steel wireropes.

THE STIFFNESS MATRIX

If the rigid body motion displacements of the lower platform are small, it is
possible to linearize the equations of its quasi—static motion to derive the following [2]:

P=[K]du (D

Where the stiffness matrix K is given by :

K, 0 0 0 K, 0
0 K, 0 K, 0 0
0 0 K, 0 0 0
K=
0 K,0 K, 0 0
X, 0 0 0 K, O
0 0 0 0 0 K (2)

P=[(f, f, f, m‘Xl m, ]T is the vector of the external load of force f and
0

moment m, applied to the center of gravity of the lower platform, assumed to be
located at the centroid of the triangle, formed by connecting the three suspension
points.

du = [ du,, du v 8uz, 86, Sy, 8¢ 1T is the vector of the resulting displacements, of
the center of grav1ty
The elements of the stiffness matrix are :

K, = 4k(a? + b? - ab)l/1>+ w/h
K, = 2ka(2a - b)l /13
K, = 6kh?1y13 + w/h



K, = 4ka?h?l/1% + abw/3h
K = 8kab? /13 + 2abw/3h
1=V h2 + 4(a? + b? - ab)/3
h = wl/[6k(1 - 1,)] (3)
‘Where : ’
1, h - are the reference steady state position wirerope length and the height of

the lower platform from the overhead carriage, respectively, after the application of the
weight w with no external load.

1,—is the reference steady state position wirerope length for no weight and no
external load.

k - is the wirerope stiffness assumed to be the same for all six wireropes.

a — is equal to one-half the length of the side of the equilateral triangle formed
by the three suspension points of the lower platform.

b — is equal to one-half of the length of the side of the corresponding upper
platform triangle.

w — is the total suspended weight, (force of gravity).

THE MODIFIED STIFFNESS MATRIX

To get the elements of the stiffness matrix in a more convenient form for our
investigation, we will replace k with AE/l, in equations (3), where A is the metallic

area of the wirerope [5], and E is the Young's modulus of elasticity.
After substitution we get :

K, =2F(a?+b%-ab) +g
K, = Fah(2a - b)
K;= 3FhZ + g
K, = 2Fa’h? + abg/3
K = 4Fa%b? + 2abg/3 @)
Where :
F = 2AE/f32
f=h? + 4(a? + b2 - ab)/3
g=w/h

Now, we have K, =f(w, h, A, E, a, b), the elements of the stiffness matrix

are a function of the total weight, the height after the total weight is suspended, the
metal cross section of the wirerope, Young's modulus of elasticity of the wirerope,
and the one-half side length of the lower and the upper platform triangles respectively.



STIFFNESS FUNCTIONS WHICH ARE IMPORTANT FOR
COMMON ROBOT CRANE LOADING

For robot crane applications the main stiffness functions of interest are the

following:
1. K5 = m, /8¢, which is the stiffness of the system to an external moment about the
vertical axis and is given by equation (4).
2. K=K, =f /du,, which is the stiffness of the system to a single external
horizontal force load.
Solving equation (1) for P=[f,, 0, 0, 0, 0, 01T gives,

f,=K, - K22/K4) du, (5)
Then K =K = (K, - K22/K4).
3. K, = Kg=m, /06, which is the stiffness of the system to a single external moment
about a horizontal axis.
Solving equation (1) for P=[0, 0, 0, m,, 0, 0]T gives,

mx=(K4—K22/K1) o6 (6)
Then K, =Kg= (K, - KZZIKI).

THE OPTIMIZATION PROBLEM

We want to investigate the optimization properties of seven stiffness functions,
K,;=f(w, h, A, E, a, b)), i=1, 2, .7

The optimization problem considered was the following. Assuming that a weight w
has to be delivered to a location of height h, determine the design of the robot crane
suspension which maximizes the stiffness function K.. Itis assumed here that the
lower platform will be suspended by steel wireropes of a given composite Young's
modulus of elasticity E.

As can be seen from equations (4), (5),(6), the stiffnesses K, for i=1, 2,..7
are polynomial functions of A and thus continually increase as A increases.
Consequantly, the only optimization design variables which need to be considered are :
a and b.

The necessary conditions for K; to reach an optimum are :

oK,/0a=0 ;
9K /b =0 (7)

The partial derivatives expressions for i =1, 2,...,7 are given in appendix A.
In order for the stiffness optimum to be maximum at a point (a,b) the following
conditions must be satisfied [4] :

B%- A,Cy <0 and Ay+Cy<0 o ®



Where :
Ay=0%K;/0a% ) ;
Co=3%K; /Ob% (1) 5
B, = 9’K; /da dbl, .

GLOBAL MAXIMUM ANALYSIS

A general optimization search was conducted for —Sh< a < 5h; —-5h <b < 5h. Any
solution of equations (7),within this range which satisfies the neccesary condition (8) is
a relative maximum stiffness solution for the specified values of w and h. The
objective of this search was to identify these maxima within a wide feasible range of a
and b, in order to better understand the behavior of the stiffness functions. The values
of the stiffness functions at the boundaries were not considered during this analysis.

In practice of course both the weight w and the delivery height h will vary. For
this reason a grid of w versus h was created, for w varying from 10,000 to
100,000 Ibf. in steps of 10,000 1bf., and h from 10 to 100 ft. in steps of 10 ft..

The relative maximum search optimization problem was solved for all w, h
combinations defined by that grid, for three diameters of wirerope: D=0.375 in.,
0.5625 in., 0.75 in..

Since this relative maximum optimization search covered the whole range of values
of interest of the optimization variables a b the operating conditions w h and the
design parameter D, it is called the global maximum analysis.

LOCAL MAXIMUM  ANALYSIS

In order to obtain results which could be useful to practical robot crane designs we
investigated the local maximum properties of the stiffness functions for the case where
the size of the upper platform b is fixed. Three different values of b were selected.
Theseare : b=1ft, 3ft, 6ft

The values of w,h and D used for this search were the same used for the global
maximum analysis search.

Thus, we were left with only one optimization variable to search. This variable is:
a, the one — half side length of the lower platform.

The necessary and sufficient conditions for a maximum are :

dK/0a=0; 9%K,/0a’2<0 For i=1.2,..,7 9)

The optimization search was constrained by 2in. <a <36 in.

The boundry values of the stiffness functions were determind and compared with those
obtained from the solution of (9).



RESULTS

Due to the page limit on this paper, only the results of the optimization study of
stiffness function K, =K, = (KI—K22/K4) are reported. This represents the stiffness
of the crane suspension system to a single external horizontal force.

Stiffness function K,

Due to the complexity of the K| function we had to use numerical techniques to
solve equations (7). The global maximum analysis results are:

a*=0.707 h
b*=1.414h (10)

where * indicates solution of equations (7), which satisfies inequalities (8).
The local maximum analysis gave the following results:
From equation (9) we find that

(2a-b) f(w,h,AE,a,b) =0 (11

Where the function f(:) is derived in Appendix B.

Equation (11) indicates that K has always an optimum, either a maximum or a
minimum, at a = b/2. Indeed plotting K_ versus a (see Fig. 2) reveals the presence of
this optimum, in this case a local maximum. By varying the values of w, h, D it is
possible to result in the movement of the maximum towards higher values of a and its
replacement by a minimum at a = b/2 (see Fig. 3). In this case the maximum resulted
from a solution of f(-) = 0.

From Figures 2 and 3 it can be seen that as a approaches zero, K, can take very
high values. The value of K, for the smallest possible a will have to be compared with
that for a, and the largest be declared the local maximum, where a, indicates a solution
of equation (9), which satisfies the inequality condition.

CONCLUSION

The global maximum analysis indicated that the dimensions of the two platforms
must satisfy the relationship a* = 0.707 h, b* = 1.414 h in order to maximize the
stiffness of the proposed suspension mechanism to a single external horizontal force,
without considering boundary conditions.

This relationship would result in unwieldy sized platforms for most crane
application ; therefore the rule developed by the local maximum analysis which
considers boundary conditions should be followed. That is, the value of K|, for the
smallest possible a will have to be compared with that for a. and the largest be declared
the local maximum. Where a, indicates a solution of equation (9), which satisfies the
inequality condition.



Fig. 2 : Stiffness K plot
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APPENDIX A

Using equations (4), (6), we can write the partial derivatives for K, to K.
0K ,/da = 2(a® + b2 - ab)(dF/0a) + 2F(2a ~ b)

oK, /0b = 2(a? + b2 — ab)(3F/ob) + 2F(2b — a)

oK,/da = h[a(2a - b)(dF/da) + F(4a — b)]

0K ,/0b = hfa(2a ~ b)(dF/db) ~ Fa]

dK,/da = 3h%(9F/da)

0K,/db = 3h2(dF/db)

0K ,/da = 2h%a[a(0F/da) + 2F] + bg/3

0K ,/db = 2h%a?(9F/ob) + ag/3

0K/da = 4ab?[a(0F/da) + 2F] + 2bg/3

0K,/0b = 4ba?[b(dF/b) + 2F] + 2ag/3

0K /0a = (3K, /da) — 2(K,/K )(OK,/0a) + (K,/K,)*(9K ,/0a)
0K¢/0b = (9K, /ob) — 2(K,/K,)(3K,/0b) + (K,/K,)*(9K,/ob)
oK ,/0a = (0K,/0a) — 2(K,/K,}(0K,/0a) + (K, /K,)%(9K,/0a)
dK,/db = (9K ,/0b) — 2(K,/K)(3K,/0b) + (K,/K)%(9K,/db)
dF/da = 4AE(b - 2a)/f?

oF/db = 4AE(a - 2b)/f>/2



APPENDIX B

The stiffness function for K, is :
K =K, -K%/K,
The partial derivative with respectto a is:

3K, /0a = 9K /0 + K,[(K,/K2,)@K ,/0a) ~ 2(1/K @K ,/0a)]

o))

@

Substituting dK,/da from appendix A and K, from equation (4) into equation (2) we

get:
oK, /da = (2a -b)[G + L {(:)]
Where :
G = 4AE/f32[1 - 2(a? + b2 — ab)/f]

L=Fha

f(:) = (Ko/K2,)(9K ;/0a) - 2(1/K ,)(OK,/0a)

The necessary condition in order to optimize K is :
dK fda =0
From equation (7) we get two solutions :
2a=b
G+Lf()=0

From equations (8),(9) a must be chosen so that K, will be maximum.
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