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Abstract

A method is described of representing curved or line-like aegmenta in images using Chebysher poly-
nomials. The advantages of the approximati
pling interval, and the reduction of the data to a conch
implementation is d i s c u d that uses images obtained fmm

1. Introduction
Structured light sensom are often used in robot vision systems to provide fast, but sparae, range

information. They operate by projecting a pattern of light onto a scene, and analyzing the image that
results when the scene is viewed from a camera at a known position relative to the light source. Distona
to illuminated points can then be computed using triangulation.

In practice, the complexity of the projected pattern is a luge factor in defermining the response
time of a structured lightosystem. At the National Bureau of Standards, we have chosen to project a
parallel pair of planes of light, enabling ua to determine the range and orientation of a surface (Albw e t
al., 1982). More complex patterns nation of the correspondence between the projected and
imaged illumination (LeMoigne and Waxman, 1984), and for our purpoeee do not provide sufficient extra
information.tu justify their cost. Simpler patterns, such M single planes or spob of light do not provide
orientation information directly.

The applications for which the ranging system w a ~developed require the ability to servo the robot
in real time in such a way that it approaches an object at a known orientation relative to some surface on
the object. To accomplish this, a camera and light source projector are mounted on the wrist of the robot,
making the range and orientation measurements directly available for servoing. Our aim is to provide
information rapidly enough (Le., at frame rate) to be able to acquire randomly moving objects. This puts
a heavy load on conventional algorithms for image analysis, even when the images are very simple.

To be able to extract the range and surface orientation information, it is necessary to identify the
various lines in the image with the projected planes, and to pair up lines belonging to the m e surface.
This, together with problems due to noise, requires some preprocessing, which must be optimized ifreal-
time response is to be attained.

Until recently, we had been performing generic operations on a11 images, including thresholding,
noise-cleaning, and connected -components analysis. For floodlit images, this is justified, but for structured
light images, most of the computations are wasted, and, in fact, further processing is necessary to identify
the elongated components and to find their skeletons. While some of the processing can be performed by
specialized hardware, the remaining processing is sti l l too time-consuming. As a result, we explored alter-
nate processing strategies, and implemented an algorithm that describes raw data consisting of curve seg-
ments in terms of Chebyshev polynomials.

2. Chebyahev Polynomislo

The typical objects in a structured -light image are (thick) line and curve segments. These segments
are noisy, and are sometimes connected to other segments which result from the illumination of different
surfaces. (For example, a highlight on a surface may intersect several curve segments.) The information
we wish to extract from the image includes the poeitions, extents, and shapes of all elongated components.
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The positions of the curves provide range information, while the shape and extent information can help in
recognizing the illuminated surfaces.

Because of the thickness of the lines (and the physical properties of the light projector), we represent
each line by its skeleton (i.e., the set of midpoints oriented along the line). Due to noise, the points on the
skeleton do not necessarily form a smooth curve. Rather than store and process all the individual points,
we would like to find an expression that describes the shape of the curve. At the same time, we would like
to minimize the effects of noise. This leads us to a leastsquarea technique. We we polynomial approxima-
tions to the curves because they are usually adequate to describe the segments that occur in practical
cases. Chebyshev polynomials have a number of useful properties that make them ideal for this applica-
tion (Ralston and Rabinowitz, (1978)).

a neighborhood of any poly-
nomial approximation of the same degree. dpoints of intervals is better
than that of obher ~ p p ~ ~ ~ ~ t i o d to surface discon-

ich implies stabil-

ured the values of
a function f (2) (in our case, the (q,f (21)) are the coordinates of the midpoints of the curves). We want

e form uopo(z) + ulpl(z) + l * + u,,p,(t), for some n,

First, the Chebyshev polynomials hav

ion4 aad finally, they

given a set {q},;

using the following recurrence relations (Abromowitz and Stegun, 1967)

We note that the pi (2) can be precomputed for a range of N, and referenced at run-time. Alternatively, if
the maximum degree (n) of the polynomial is p ~ ~ ~ 3 ~ ,the orthogonal polynomials can be directly
coded into the application program.

Having found the orthogonal polynomials, we now want to approximate the data by an expression
aopo(z) + olp,(t) + - * + a,,pn(z) for some (usually small) n. (We also, in practice, want to gather
terms in the resulting polynomial to give a mult of the form bo + b,t + * - * + 6,~").

We define

N

(Pa ,pn, 1= ~n ( z ) P ~(2)
t =O

then

N
(Pn ,pn ) = P,YZ

r=O

The (p. ,pn ) do not depend on the data values, but only OR N, the number of samples, and they can thus
also be precomputed and stored for use at run time. The (p. ,pn ) are given by the expression

a



The coefficients 4, are defined by
N

in which the only values that have to be computed from the data are the numerators of the expressions.
This can clearly be done as the data are acquired, giving rise to a very eficient algorithm. An implemen-
tation of this technique is described in the next section.

3. Implementation
The implementation makes use of a limited number of t e r n in the approximations. For the typical

data in our applications, quadratic approximation haa proved suficient. A number of image-pmceming
problems have ta be solved before the algorib$m ean be applied. The mat important of them are the seg-
mentation of the data into smooth curvm and etnsight lines, and the election of skeleton pointa In prin-
ciple, it would be pospible to perform in conjunction with the computation of the approx-
imations, but this waa not done in our im

The line segments in the images a n wudly w e d pixels thick, and may be corrupted by noiae
(Figure 1). The segmentation proeeas gth coded by COIU~M(bottom-
&top in the image). It requins that the d a p their predecessors if they am
to be considered part of the same curve. tion, however. Sometimen a curve
will split into two, or two curvea will the mentation stage by forcing
curves to end at junctions, and s a later &age in proceraing,
smoothness criteria and domain k pieas of curvea Figun 2
shows an example of this situation.

A third possibility is that th g a segment, for example,
when two adjacent surfacea are i m the smooth curvature
of, for example, a cylindrical surfsa. We ume a curvature operator that examines a neighborhood in front
of and behind each point to make a decision about whether or not to split the segment. The decision can
be affected by high-level knowledge of the expected appearance of the image. Figure 3 shows examples of
this process.

The output of the algorithm is a set of coefiicients lor each curve, and an index of the start and end
columns in which the curve w m found. An error term is also computed as an estimate of how well the
data are approximated. Figure 4 shows some examples.

Our first implementation of this procedure splits the computations over two 16-bit proce%sors. The
first of these receives the run-length encoded data and performs the segmentation and skeleton. Itsresults
are passed to a second processor, which taka each segment and computes its Chebyshev approximation.
The masons for splitting up the processing are partly to fit in with the general structure of our sensory
system, and partly to separate those parb of the system that need a floating-point co-processor from thoee
that do not. Including the time needed to take the pictures, the average cycle time of the algorithm ia
about l/lOth of n second, depending on the complexity of the image. The majority of the time is spent in
the segmentation of the image, and we 8te confident that we could improve the time to frame rates by a
combination of careful coding and sparaer sampling. The Chebyshev approximations do not degrade
significantly even when large numbers of the sample points are ignored. These improvements, together
with the pipeline speedup possible using the two processors is expected to attain the necessary speed of
processing.



4. Diecutmion

The approximation method is obviously not applicable only to structured -light images. Any curves
or lines can be approximated in a similar fashion, although cloaed contours are more suited to approxima -
tions based on Fourier coefficients because of their cyclic nature.

The approximations are not without their disadvantages. One problem is that it is hard to decide,
based on the coefficients, whether or not to merge two approximations, and the merging itself is not
straightforward. For example, given a segment near minimum of a parabola, and one further up one
of the legs, it is not clear from the coeficients of thei proximatiow that they belong to the same curve

is true even when the seg-
b, the problem remains of
separate approximations.

One approach is to decide when to merge by comparing the curvaturn and intersection angles of
on each curve, and computing
, su it mquirea a slightly more
not aged to be done at frame

stiona are fed, deal witb this
to extract from the struc-

ion will have a much larger x coeficient th
together. Even after it haa
a new, unified, apptoximti

rate.

problem in a d ~ ~ ~ ~ tmy. The
tured light inrqes. The first at
The second is info
a p p r ~ i r n ~ ~ ~ ~ ~be

The higher levels of out robot smmy

be fmnd without m
bich requires at the

. Of particular interest are
of expected objects and
prediction about a Bur-

a d to compute an updated
om. This is done in OUP sys

An avenue that we have not yet explored is the uw of the prediction mechanism to generate
expected coefficients for a surface fit. This would allow to contribute to the same
approximation, and would greatly simplify matching and

While the information available from the structured -light images includes the three-dimensional
positions of each illuminated point, the approximations are computed in the image plane. This is because
it is necessary to describe the curvea before they can be associated with a particular plane of light and
thus transformed to three dimensions, and because it is expensive to mnvcrt every paint to three dimen-
sions when only a few samples may k required. Also, the ndae cleaning and smoothing performed on the
two-dimensional data in the proceas of constructing the approximations greatly improve the accuracy of
the extracted threedimensional points.

Another useful property of the approximations is that they give a measure of the curvature of the
associated segments (and thus of the u ~ d ~ ~ ~ ~ i ~ g~ ~ ~ ) ,This is I for a preliminary sorting of the
data before attempting to match it with the object models.

6. Conclusions

This paper has presented a bing curvilinear components of images using Chebyshev
polynomials. In particular, it disc entation that uses structured light images for supplying
a robot manipulator with range and orientation information for servoing.

The advantages of the technique are that the roximationa very concisely (and accurately)
describe curved or straight segments, they smooth the and deal with errors in an optimal way, and
they have the potential for frame-rate processing speeds.
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Figure 1. An image showing the kinds of noise that may be present in structured -light images. The dot-
kd lines are the Chebyshev approximations.

Figure 2. An example of the kinds of branching possible and the way in which the segmentation breaks
up the components. The crosses show the endpoints of the Chebyshev approximations.



Figure 8. An example of how segments are split at junctions. The crasses show the endpoints of the Cho
byshev approximations.

0 . 0 0 2 5 ~ ~- 0.05952 + 165.08 error = 0.20 pixels
- 0 .0049~~1- 0.14652 + 181.86 error = 0.46 pixels
0 . 0 6 1 7 ~ ~- 1.3798~+ 164.80 error = 0.27 pixels
0 . 0 5 6 1 ~ ~- 1.28802 + 183.20 error = 0.40 pixels

Figure 4. Some examples of the approximations produced for a series of segments.


