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Abstract

A representation is described for supplying a
robot manipulator with information about its
workspace. Information is obtained from sensors
that move with the manipulator. Spatial infor-
mation is stored in an octree, allowing fast
computation of which parts of the workspace are
occupied and which are navigable. Information
about properties and features of objects is
stored in a set of tables or attribute 1ists. This
information is wused to match objects in the
world with stored models and to assign names to
instances of objects and features. Recognized
objects are stored in the same way as unrecognized
objects, so that all operations on the workspace
model are uniform. The two representations are
linked to enable objects to be located in space
by name, by description, or by position, and to
facilitate finding out what object occupies a
particular volume in the workspace.

A1. Introduction

A representation that models a robot's workspace
and the objects in it should represent all in-
formation known about the 1locations of ob-
jects, the volumes they occupy, and the uncer-
tainties in their positions and sizes. It should
be able to integrate information obtained by
sensing the world with that obtained from hy-
potheses and expectations. It should enable uncer—
tainties in positions to be reduwed, and ob-
ject identitjes to be established with in-
creasing certainty as more sensor data is ac-
quired. It should also allow answers to questions
at_aggt free space as well as space that is occu-
pied.

The representation is designed to operate in an
environment in which the robot and sensors move
about. Information about the world is ob-
tained from sensors whose Jlocations are known.
This simplifies some of the problems of 3D recon-

struction from 2D projections. The representa-
tion comprises a spatial representation, describ-
ing what parts of the workspace are occu-
pied, empty, or about which no information is
known, and a representation of the objects and
features in the space. Constraints explicit in
one of the representations simplify descriptions

in the other, and make answering questions
easier using either representation.

The representation has the properties of uniformly
representing expected and unexpected information,
and enabling rapid updating of information as more
data become available. It can be viewed at several
levels of resolution, so that questions that re-
quire only fairly general answers may be answered
rapidly if the answer is clear-cut, but if not,
searches for a solution can be directed to criti-

cal areas which determine the answer. The
representation uses octrees for representing
spatially-indexed information, and tables for

storing information about objects and their
features and properties.

The sensor that is currently of primary interest
is a camera mounted on the wrist of the robot.
Since the position of the camera is Ffixed with
respect to the robot arm, and the robot's position
in space can be cbtained at all times, the posi-
tion of the camera can be computed, and is used in
constructing the workspace representation. As the
robot moves, the sensor cbserves different parts
of the workspace, and must integrate information
over many views to construct a representation of
the whole scene.

The spatial representation is constructed from a
sequence of two-dimensional images. Initially, it
consists of a large cube enclosing the whole
workepace, with known objects or regions, such as
the work surface or a machine tool, already
represented. As pictures are taken, the objects
discovered are projected into the cube as general -
ized cones. The cones describe the possible loca-
tions of the objects that gave rise to each com-
ponent in the inage. When pictures are taken from
different viewpoints of the same region in space,
the cones are intersected to constrain the possi-
ble locations of the cbjects (Figure 1). As data
accumiate, the shapes and locations of objects
approach their true values more and more closely.
The representation always contains all the infor-
mation known about each region of space, and in-

cludes the uncertainties in object positions and
shapes.

At the same time that the spatial representation
i1s constructed, a parallel process extracts
features from the sequence of images and stores



them in tables. The features are used in matching
the cbjects with a database of models, and as
descriptions of wnrecognized objects. When an ob-
ject matches with a model,, a lot of information is
made available by instantiating the model. This
information is used to fill the table, and to re-
fine the spatial representation of the object by
projecting the model into the octree. The two
representations are linked to allow spatial index-
ing of objects, as well as locating features and
objects in space by name or degcription.

2. The Representations

The spatial representation views the workspace as
enclosed by a cube. The contents of the cube are
initially unknown, except for fixed volumes such
as the base of the robot or a machine tool. As
gensor information is obtained, parts of the cube
become known to be empty, or to have objects in
them. Objects can be of any size, and it is not
practicable to represent the whole cube at the
resolution of the smllest possible cbject. As a
result, some structure is placed on the cube, in
the form of an octree (Srihari, 1981, Meagher,
1988) .

2n octree is constructed as follows. Initially,
the region of space to be described ie represented
by a single node in a tree, corresponding to a
cube surrounding the space. This cube is examined,
and if it is homogeneous, the process terminates.
Otherwise, the cube is divided into 8 equal sub-
cubes (octants), which are the children of the
node, and the process is repeated for each octant.
When all (sub-} cubes are homogeneous (according
to some rule}, the octree is complete (Figure 2}.

For the spatial representation, the original node
represents the workspace, and has a standard
orientation and position. When the first picture
is taken, a set of generalized cones is projected
into the cube from a point corresponding to the
optical center of the camera. Each cone arises
from a separate component in the picture. The
space inside the cones reflects the possible loca-
tions of objects in the world, while the space

outside the cones is background. To decide which
octants of the cube to expand involves intersect-
ing the cones with the cube. If an octant inter-
sects a cone, a further check is made to see if it
is totally ocontained in the cone, in which case,
its color is simply changed from ™unknown" to "ob-
ject”, and it is not further subdivided. If it
only partly intersects the cone, it is subdivided,
and the same tests are applied to its children.
The result is a tree representing the current
state of knowledge about the world. Note that la-~
belling a node "object" does not mean that the cb-
ject actually occupies the corresponding volume in
space, but only that the volume lies inside cones
arising from an object visible in all views of the
regicn so far.

The intersection process works as follows. A cone
arising from an object in the image can intersect
with three kinds of terminal nodes in the octree
representing the workspace. If a node in the
workspace octree is labeled "wnknown", its label

is changed to "object", reflecting the possibility
that there is an object in that location. If a
node is labeled "empty" it remains "empty”, be-
cause the region corresponding to the node must
already have been seen from another viewpoint, and
must have been seen to be empty. If a node is la-
beled "object™ it retains its label, because no
new constraints have been found for the node. The
intersection process for cones corresponding to
enpty space in the 2D image is simple. F-ojections
of empty regions change the labels of all nodes
shat tt:ey intersect in the workspace octree to

Computing which nodes in the octree intersect with
a cone is non-trivial. The difficulties arise be-
cause the camera can view the workspace from any
position or orientation, and from inside or out-
side the workspace cube. The approach currently
implemented involves first approximating the boun-
daries of objects in the 2-D images with
straight-line segments. These segments are then
projected as planes into the octree, and the set
of cubes is found that lies inside the volume en-
closed by the planes.

The projection approach is similar to that
described by Martin and Aggarwal (1983). Their
goal was-to describe the volumes of individual ob-
jects, however, rather than whole scenes. Also,
they assumed orthogonal projection rather than
perspective projection, an assumption that reduces
the complexity of the construction process. Martin
and Aggarwal used a representation for the volumes
that appears less suited to the task of represent-
ing the workspace than does the octree. Connolly
{1984) also used a projection technique to con-
struct octrees. In his application range data
were used to construct octree models of objects
from multiple views. Again, only a single object
was modelled in each tree, Connolly £irst con-
structed a quadtree fram the image, and then pro-
jected the quadtree blocks into the octree. It is
not clear that this method provides any speedup in
the projection process, because the quadtree nodes
do not map into octree nodes except in rare in-
stances.

It is not necessary or cost-effective to store
shape information at full resolution in the tree.
If an octant is small enough and contains mostly
object points, it should be considered as being
filled by the object for spatial representation
purposes. This does not cause a loss of informa-
tion because of extra information in the tabular
representation, which is indexed by the nodes in
the tree.

With each node in the tree is associated a set of
pointers. The pointers address information con-
cerning the contents of the node. The objects con-
tained in the region represented by the node may
have names and features associated with them, or
exact geometric descriptions. Such information is
obtained both from sensor data and from object
models. Pointers to these data serve several pur-
poses. They enable finer discriminations of the
space to be made than that set by the resolution
of the octree. In addition, they provide spatial



indexing into the sets of object and feature
descriptions.

‘The object and feature descriptions are organized
as tables, which store all non-spatially-indexed
knowledge. Each entry has slots for object names,
locations, properties, and features. There may be
more than one name for each object in the world,
and more than one instance of each kind of object.
Each name entry has a confidence associated with
it. When this confidence goes below some thres-
hold, the name is removed. If all confidences go
below threshold, the entry in the table is removed
if the object has disappeared from the scens

(e.g., if it is a noise region that no longer ap-
pears in an image). Otherwise, it iz labeled as
"unexpected”.

Two table-based representations are used, ane for
data describing models, and one for scene data and
instantiated model data (hypotheses and recogni-
tions). The major difference hetween the tables
is that the model table holds generic information
in object coordinates, while the scene tahle holds
information about particular instances in world
coordinates. ‘The scene table has confidences in
various matches, and pointers to particular nodes
in the octree and to entries in the model table.
Each object expected to appear in a scene has a
row in the model table, with colums for feature
types and values, to be used in recognizing the
objects. There is also a pointer to the geametric
descriptions of the cbjects, chtained from a CAD
database.

Each feature entry points to a list of the partic-
ular wvalues for that feature (e.g., positions and
angles for corners, in object copordinates). The
table can easily be set up at the beginning of a
task by examining models of all the objects ex-
pected to be seen during execution of the task.

The table constructed for data extracted from the
scene is similar to that for the model data, but
has extra columns for pointers to the octree and
for tentative identifications and their confi-
dences. Each row of the table corresponds to an
object in the world. Objects can be single regions
in space, groups of regions, or hypothesized ob-
jects. The ocolums in the table hold pointers to
particuiar instances of features or instantiated
models.

Each identification is either an index into the
table of models or the label ™unexpected”. Confi-
dences are cbtained from the model matching pro-
cess. 'The entries for pointers to the octree ad-
dress lists of octree nodes in which the objects
appear. ‘The entries for features have the same
form as those for model features, except that
their values are instantiated using information
fraom the scene.

3. Deing the Representations

There are two main aspects to using the represen-
tations. The first is updating it and ensuring
that it contains current information. The second

is answering questions about the world and the ob-
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jects in it.

Updating the tree involves moving objects as they
are picked up by the robot, (and in later versions
of the system, as they move}, and adding new ob-
jects as they appear. Removing an object is sim-
ple. The leaf nodes that represent it are located
in the tree from their addreseses in the tahle en-
try for the abject. Their color is changed from
object to background, and any merging that can be
done as a result is performed. The pointers of all
parents of the nodes are updated to reflect the
disappearance of the dbject, and itg entry in the
table is removed. New objects are added automati-
cally by the process of projecting from components
in the 2-D images.

When an object first appears in the spatial model,
an entry is set up for it in the table. If the ob-
ject arises from an hypothesis, the slots are all
filled in immediately. Otherwise, slots are filled
in using values obtained by feature extraction
techniques. Before an cbject has been recognized,
the name list contains a flag indicating that its
identity is unknown. As objects are recognized, or
more information is discovered from sensory input,
the remaining slots are filled. When an object
disappears fram the world, its entries are erased
and the space is made available for later uee.
Obrjects can also be merged if they are found to be
connected. Merging is a simple operation in the
table, involving the coalescing of the various
table entries. A problem arises when the same set
of features lends support to more than ane hy-
pothesis. For example, a region in space may ten-
tatively be identified as one of a number of known
objects. The confidences in each of the identifi-
cations depends on the features that match with
the corresponding object models. To decide which
iz the best identification requires a relaxation
labelling process to establish the most globally-
consistent set of matches (Mackworth, 1977).

Answering questions is fairly straichtforward. To
find out about the world it is not necessary or
desirable to interrogate the sensors directly.
The representation contains both predictions about
the world and information cbtained from sensors.
There is no direct way of distinguishing between
information from different sources. Answers to
questions contain both empirical and hypothetical
elements. Answering questions about space involves
checking the octree for the ocolor of the node
corresponding to the requested region. Questions
that refer to specific features or surfaces are
answered by reference to the table. Finding all
occurrences of a particular feature involves scan-
ning a column of the tahle. Depending on the gen-
erality of the question, this can be very simple
or can require searches of lists of features
stored at each position. In either case, h,
the search is limited to a =small, well-defined
subset of the known information. To f£ind out what
features or ocbjects occur at a given location, the
octree is traversed to find which nodes span that
location. The pointers fram the nodes are fol-
lowed, and an answer found in the tables.



Identifying (naming) features and objects is also
simplified. If a sensor perceives an object, and
the projection of the object intersects with an
already—identified or an hypothesized object, then
simple feature checking can estahlish a confidence
in the identity of the cbject. If there is no in-
tersection, the properties and features extracted
by the sensor can still be matched with those from
the object models, by comparing corresponding en-
tries in the tahle.

4. Conclusions

The system described above is currently being im-
Plemented as part of an hierarchical sensory-
processing system that interacts with an hierarch-
ical robot control system to perform tasks requir-
ing real-time sensory gquidance. The lower-level
image-analysis and feature-extraction algorithms
have been implemented using a network of micropro-
cessors that operate independently and asynchro-
nously (Kent, 1982, Shneier, 1962). The output of
the lower levels forms the input necessary for
constructing the spatial and feature-based
representations, and for matching objects with
their models. The models currently in use are
hand-crafted, but a computer-aided design system
is now available, and a database of models will
goon..— be..generated- - and- interfaced with the
workspace modelling system. The result will be a
flexible representation scheme that should allow
real-time responses to questions of significant
complexity.
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Eigure 1. Intersecting conee from two views
of an object.

Eigure 2. Objects enclosed within a cube, and
the octree representing the volume of the



