

Splines have been used to interpolate curve data for many years in various industries. The B-spline, with its defining polygon, has become extremely popular, because of the increased use of interactive graphics [1-4]. Instead of a strict interpolation procedure, many engineers using B -spline curves in shape design force the user of the software to begin by defining or sketching the so-called defining polygon. This polygon determines a B-spline curve. Once this curve is generated along with its defining polygon, the designer can interactively modify the defining polygon to obtain a locally modified Bspline curve of desired shape.

Non-Uniform B-Spline Input Interpolation Procedure

The procedure examined here begins not by inputting the defining polygon; rather it uses known or available curve shape or property information. The particular way this existing information should be input is very dependent upon the particular facility, hardware availability, and associated software.
This information should be handled a certain way once input to the computer. An overview of the procedure for an interpolation for a first approximation by a non-uniform B-
spline curve (the parameterization is not from zero to one for each segment) is called for. Existing mathematical routines are mentioned and an effective way to organize the information to define curves using these splines is outlined, in the context of transferring the information needed to generate the desired curve shape.
The types of conditions desired at given input coordinate points are outlined, and mathematical concepts and required algorithms are discussed. Lastly, ways in which the input information should be processed so that the algorithms might be applied are described.

Imposing conditions at the input points. There is nothing sacred about the number of or nature of possible conditions. They can be easily changed depending on the particular application or flexibility one wishes the curve form to have. The option information will be transferred through a code procedure (an integer array will carry the information as to which option has been selected for each point). The use of a code to transmit curve property information has been suggested by others $[3,5]$, but details of an implementation have not been included.
For simplicity of discussion, we restrict our attention to the case of a B-spline curve of order 4 (degree 3) and of

Fig. 1 A E-spline curve with ell input coordinnte pelofts hoving certinuous second dertratives.

Fig. 3 A B-spine eurve, with the fourth displayed point from the Efft being the start of a straight line segment. At this point there is a curvature discontinuity.
dimension 2. We are considering the construction of a parametric cubic spline in the $x-y$ plane. We first assume that we will be supplied with a sequence of coordinate points $[(x(1), y(1)),(x(2), y(2)), \ldots,(x(m), y(m))]$ that we wish the B-spline curve to interpolate in the given order with the increasing parameter value.

At each of these points, a number of properties can be specified that will determine the character of the curve in the vicinity of the point. The number of available options for first and last points will be limited as compared to the other points. We will first list the options that are available for points other than the two end points:
(1) The given point in the string of input coordinate points has a continuous second derivative. This is the standard spline condition (Figure 1).
(2) The given point will locate a tangent discontinuity (Figure 2).
(3) The given point is the start of a straight line segment. At this point there will be a curvature discontinuity (Figure 3).
(4) The given point is the start of a straight line segment. At this point there will be a tangent discontinuity (Figure 4).
(5) The given point is the end point of a straight line segment. A curvature discontinuity exists at the point (Figure 5).

Fig. 2 A E-apline curve that has a tangent discontinulty at a point.

Fig. 1 A B-epline eurve deflined from the top right point to the bottom right point. At the fourth point a straight line stars; there is a tangent discontinuity at this point.
(6) The given point is the end point of a straight line segment and a tangent discontinuity exists at this point (Figure 6).
(7) The given point is the end point of a straight line segment and the start of another (Figure 7).

To accomplish the information transfer, we used an integer array, $\operatorname{NCODE}(I), I=1, \ldots, m$, and for each of the I points (I not equal to I or m) we assigned one of the values 1 through 7. The default for each point was 1 ; if the user wished a different condition he/she could make the appropriate change.

At the first or last point of the sequence, two conditions are allowed. Either the second derivative is taken to be zero-a commonly used approach-or it is the start of a straight line segment. The zero second derivative is the default condition and the NCODE() value is 1 . If the first point is the start of straight line segment, $\operatorname{NCODE}(1)$ is given the value 3, and if the last point is the end of a straight line segment, $\mathrm{NCODE}(n+1)$ is given the value of 5 .

Underlying mathematical problem. The underlying mathematics for B-spline interpolation of arbitrary order for nonuniform spacing of the knots has been well formulated in the literature $[5,6]$. How the knots, data points, and other interpolation information is related to the defining polygon is

Fig. 5 A Bepline curve that starts with a straight liow and blonds Into a curved segment. At the transition point there is a curvature discontinuity.

Fig. 7 A B-epline curve with two allacent distinct Bine sog. ments. The start of one line segment is the end of the other.

Fig. 6 A Bespline curve that starts with a straight liwe segment and ends whth a general curved segment. At the transition point there is a tangent discontinuity

Fig. 8 A bespline curve that ls a compeshe of the seven curves of Figures 1.7.

explained. It is shown that the defining polygon can be determined by solving a linear system of equations.
The knot sequence $\quad T=T(i)_{i=1}^{n+k}, \quad$ contains real numbers such that $k<n, T(i)<T(i+1)$, and $T(i)<T(i+k)$ for all i, and has a corresponding sequence of B -splines of order k,
$(B)_{i=1}^{n}$. The spline S_{k} is a vector
$S_{k}^{n}=\sum_{j=1}^{n} b_{j} B_{i}(t), T(k)^{+} \leq t \leq T(n+1)^{-}$
where each $b j=\left(b x_{j}, b y_{j}\right)$ is a point of the defining sequence for the defining polygon.
To solve for the defining points of the defining polygon n interpolation must be given. This information could be coordinate information or derivative information at a partic-
ular parameter value t. In fact, when $t=t_{i}$, for some i, it may be necessary to distinguish whether $t=T(i)^{-}$or $t=T(i)^{\text {t }}$ because of derivative discontinuities (see Figure 2).

In our implementation, we followed Butterfield's suggestion [5] and incorporated this type of information with that of the derivatives in an array $N D(i)$. In particular, if $\left(P_{i}\right)_{i=1}^{n}$ are the parameter values where the spline has specified derivative values $g(i)=(g x(i), g y(i)), i=1, \ldots n$, then $N D(i)$ is a nonzero integer such that $(|N D(i)|-1)$ is order of the derivative at

$$
t_{i}=\begin{aligned}
& p_{i} \text { if } N D(i)>0 \\
& p_{i} \text { if } N D(i)<0, i=1, \ldots, n
\end{aligned}
$$

Fig. 9 The B-spline curve of Figure 8 with fts defining pelygon displayed. (a)A B-spline curve defining polygon; (b)the defining polygon of (a) along with the B-spline curve: (c)the B-spline curve generated by the above defining polygon

