Real-time Algorithms and Data Structures for Underwater Mapping
David N. Oskard*, Tsai-Hong Hong?, and Clifford A. Shaffer’

*Robot Systems Division
National Bureau of Standards
Gaithersburg, MD 20899

HDepartment of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract

As part of the Multiple Autonomous Underwater Vehicle (MAUV 1) pro-
ject at the National Bureau of Standards, a spatial mapping system has been
developed to provide a model of the underwater environment suitable for
autonomous navigation. The system is composed of multi-resolution depth
maps designed to integrate sensor data with an a priori model, an
object/attribute database for storing information about detected objects, and a
set of flags to monitor abnormal or emergency conditions in the environment.
This paper describes the structure of the mapping system and the algorithms
used to map terrain and obstacles detected by acoustic sonar.

1. Introduction

In an autonomous system, the ability to predict, estimate, and evaluate the state of
the environment largely determines the capabilities of the system. For the application of
autonomous underwater vehicles, a means must be developed to model the world accurately
enough to perform such tasks as obstacle avoidance, path planning, and long-range mission
planning with sufficient speed to operate in real-time. Research at the National Bureau of
Standards (NBS) has led to the development of a real-time control system (RCS) for mult-
ple autonomous underwater vehicles (MAUYVs) performing cooperative tasks [3]. Based on
the theory of hierarchical control [1], the system is designed to perform both high and low-
level planning tasks with a world model that provides timely information at multiple resolu-
tions. The RCS is divided into several logical levels of complexity; at each level, the world
model contains 6 modules:

t Funding for the MAUV project was provided by the Office of Naval Technology, Defense Advanced
Research Projects Agency.

GCNTRIBUTION OF THE NATIONAL BUREAU
GF STANDARDS. NOT SUBJECT TO COPYRIGHT

1) Update Module -~ interprets and adds incoming sensor data to
the model,

2) Data Server - provides requested model information to the
planner,

3) Sensor Prediction Module - provides expected sensor data
estimates for use in validation by the sensor processor,

4) State Evaluator ~ monitors emergency conditions and the state
of each RCS module,

5) Learning Module - categorizes information supplied by the
database and other modules,

6) Database — for storage of information.

The emphasis of this paper is on describing the update module and portions of the
database. For information on the other modules and the functionality of the world model,
refer to [3].

In its current form, the MAUV world model mapping system consists of depth maps
of lake bottom terrain, state variables, emergency flags, and a database of objects. We will
focus primarily on the lake bottom and obstacle mapping functions of the world medel and
considerations in their design and implementation. The first section discusses the selection
of data structures for representing the underwater environment, followed by a description of
the mapping system. Algorithms used in the update module are presented, with an empha-
sis on the concept of confidence-based mapping. The discussion points out some of the
strengths and weaknesses of the system and suggests directions for further research.

2. Criteria for Data Representations

The first and most important task in the development of an effective world model is
choosing an appropriate data representation. In most mapping systems, a primary distinc-
tion can be made as to whether given information is spatial or non-spatial data. Depth maps
or other models of a 3-dimensional environment are referred to as spatial data strictures,
whereas structures representing objects and their attributes are primarily non-spatial data
structures. Although most objects in the world contain a spatial component, namely a loca-
tion and 3-D structure in some frame of reference, a suitable representation for the associat-
ed descriptive information is an object/attribute database. A simple object/attribute
database has been developed to store data of this nature. Each object structure contains an
identification number along with a 32-bit mask describing known capabilities. A linked list of
attributes stores sensed characteristics for each object (e.g. X, Y, Z coordinates, velocity
vectors, etc.) with the ability to store multiple entries over time in a circular queue. It is flex-
ible enough to allow 3-D representations of objects to be stored as attributes themselves by
storing pointers to the 3-D data structures in the attribute list.

Choosing a data representation to model the underwater environment is a more diffi-

Oskard, Hong, and Shaffer 2

cult problem. One solution is to implement a complete 3-D data structure to model the lake
bottom and all detected obstacles. An example of such a representation is the octree [5,7],
which considers the working universe to be one large cubic region. The universe is recursive-
ly divided into 8 equal cubic sub-regions or "octants” until each sub-region is considered to
be homogeneous, that is, either completely empty space or completely full, containing an
object or the lake bottom. This approach has been used successfully to represent an auto-
mated factory environment [4]. However, in the application of autonomous underwater vehi-
cles, an octree representation cannot keep up with the demands of the real-time environment
when CPU resources must be shared by more than one RCS module. The cost of bookkeep-
“ing is high with octrees, as each new sonar reading may cause the tree to decompose or
merge several nodes. With each decomposition, 8 new nodes must be allocated for the new-
ly created subregions, and every merge operation requires the reclamation of unused nodes.
Considering that the CPU is shared and the sampling rate for the six sonar sensors on a pro-
totype vehicle is 0.6 seconds [6], a full 3-D representation was not attempted.

3. Global and Local Map Configuration

A less computationally intensive approach is to use a 21/,-D representation, storing
only depth information for any map location. The current autonomous underwater vehicle
(AUV) world model uses two types of 21/,-D data structures for its mapping scheme: a set
of global maps, each of which contains data for the vehicle’s operational domain, and region-
of-interest maps, which only store a localized area around the AUV’s current location. The
region quadtree [14,15,16], which is the 2-dimensional analogue of an octree, is used to rep-
resent depth maps at a global level. The root node of the tree represents a 2-D square area
that is recursively decomposed into 4 quadrants, sub-quadrants, and so on, until each node
contains only one depth value. Because each branch of the tree contains half as many nodes
as an octree branch, quadtree updates are generally faster than octree updates and the struc-
ture consumes less storage as well. As with octrees, a node is only further decomposed if it
is not homogeneous. This property leads to storage savings over array data structures
when the data is sparse, or when the data set contains large homogeneous regions such as
islands or flat regions of a lake bottom [sec Figure 1]. The quadtree approach also allows
point and linear feature data to be represented using compatible data structures as described
below. .

3.1. Global Quadtree Implementation

The quadtree representation used for this project is a compact implementation of a
pointer-based quadtree. The pointer-based quadtree explicitly stores pointers from each
internal node / to I’s four children. This is in contrast to the linear quadtree which stores a
list of leaf node values sorted by block location [2]. An explicit pointer structure is used
because the quadtrees and other structures are maintained in memory when in use.

Our implementation reduces storage requirements over the common pointer-based

Oskard, Hong, and Shaffer 3

Root node
/ 17 17 18
Average
Depth 17 19
15 1516 18 19
18 16 1517 18 19 19 20 151 17
16 17 18] 19 a1
19] 20

Figure 1. A region quadtree representation for a typical depth map. Only nodes containing more than
one depth value are further decomposed. Each branch of the tree correponds to northwest, northeast, south-
west, and southeast quadrants of a given region (shown in left to right order).

implementation which stores four pointer fields.and a value field with each node of the tree.
Instead, we only store pointer fields with internal nodes, commonly referred to as GRAY
nodes. A GRAY node G is represented by a block of four contiguous descriptor fields, each
corresponding to one of G’s children. In the case where a child is itself a GRAY node, the
value stored in the descriptor is a pointer to the block of storage representing that child. ‘In
the case where a child is a leaf node, the value stored is simply the depth value for the block.
This representation is illustrated by Figure 2 which shows the storage structure for the
quadtree of Figure 1. In Figure 2, each of the four child fields has an extra bit field associated
with it to distinguish between GRAY children (a ‘O’ bit) and leaf children (a ‘1’ bit). In actu-
al implementation in the C programming language on Motorola 68020 processors, GRAY
nodes are represented by four contiguous 32-bit words. The low order bit of each 32-bit val-

Node ID NwW NE SwW SE
Root node — 1 17 1 |- 2 oO|—+=3 0f|—~4 0
2 17 1 18 1 17 1 19 1
3 15 1{—™ 5 0 16 1 17 1
4 18 1 19 11— 6 0] 21 1
5 18 1 16 1 15 1 17 1
6 18 1 19 1 19 1 20 1

Figure 2. Illustration of quadtree implementation. Each GRAY node has four fields, labelled NW,
NE, SW, and SE. Each field has 2 subfields: the value and the GRAY/Child descriminator.

Oskard, Hong, and Shaffer 4

ue distinguishes between a GRAY child and a leaf child.

This implementation avoids the wasted storage of four null pointers associated with
each leaf node to indicate that no children are present. The data structure stores a single
pointer to each GRAY node and a value for each leaf node (i.e., no explicit pointers to leaf
nodes are stored). Thus the total storage required is a single 32-bit value for each node in
the tree for both leaf nodes and GRAY nodes. Since a quadtree of L leaves requires 4Lt
nodes, this is also the number of 32-bit words required.

Three region quadtrees are used to represent different aspects of the global depth
maps. One of these is the a priori map, which contains data from a survey of the lake bottom
and does not change during the mission. A priori data was collected for an approximate area
of 1.6 km? in Lake Winnapesaukee, New Hampshire (the 1987 test site). The resulting set
of irregulérly spaced data points was mapped to a regular grid using Renka and Cline’s trian-
gulation algorithm [12,13] and converted to quadtree format using a region quadtree con-
struction algorithm [17]. The a priori quadtree in this instance does not yield much storage
savings over a grid structure, as the lake survey data is of low resolution and could be repre-
sented by an array smaller than 512 by 512; however, using a quadtree provides a convenient
means for integrating a priori map information with incoming sensor information.

A separate sensor quadtrec is used to store higher resolution depth values collected
from the AUV sonar sensors during vehicle test runs. Both downward- and forward-looking
(obstacle avoidance) sonars are used in refining the sensor map, which is overlaid onto the a
priori data to give the most accurate view of the world. A third quadtree stores a depth confi-
dence value for each node in the tree. The confidence map supports the important function of
distinguishing spurious sonar readings caused by debris or signal inconsistencies from actual
obstacles that must be detected and avoided. Additional bit fields in the confidence map
node value are used as flags to mark the vehicle’s track through the water, as well as to
record whether a given node has been updated with downward or forward-looking sonar.
This extra information could be useful in classifying newly discovered objects and in examin-
ing the AUV’s complete path after a mission. The region quadtree is particularly efficient for
sensor and confidence map representation, since unexplored portions of those maps are emp-
ty. Such areas can be represented by a small number of nodes in the tree.

3.2. Point and Linear Feature Representation

In addition to the quadtrees used to represent region data, point and line storing
quadtrees have been implemented to provide locations of known objects and topographic fea-
tures of the lake bottom used in high-level path planning. This simplifies tasks such as
locating the nearest other vehicle to a given location or plotting a course along linear topo-
graphic features like ravines or underwater pipelines. The planner can then retrieve informa-
tion in a region of interest without having to search the object/attribute database directly.
The global maps provide an efficient method for storing large quantities of data while main-
taining the spatial relationships between different types of features.

Oskard, Hong, and Shaffer]

Point objects are represented by means of a point region (PR) quadtree [14]. The PR
quadtree is similar to the region quadtree except that its decomposition rule is based on the
number of point objects located within a block. If a block contains no points or a single point,
then this block is represented by a single leaf node. Otherwise, the block is decomposed into
quadrants and sub-quadrants recursively, until each block contains at most a single point.
Implementation of the PR quadtree is identical to that of the region quadtree illustrated in
Figure la. Each point object is identified in the object/attribute database by means of an
index number. Leaf nodes of the PR quadtree store this index. Operations such as finding
the nearest object to a specified location and locating all objects within a specified distance of
a location have been implemented.

Linear features are represented by means of the PMR (or point matrix random)
quadtree [9]. Upon insertion of a line segment into a block B, the PMR quadtree decompos-
es B exactly once if the number of line segments already contained within B exceeds some
threshold (in our case, the threshold is four segments). This does not guarantee that a block
will contain four or fewer segments, since segments lying very close together may pass
through the same block even after decomposition; however blocks rarely contain much more
than four segments. The main objective of this decomposition rule is to reduce the number of
line objects contained within a single block so as to make processing efficient. Note that
varying numbers of line segments may be associated with a single block. Our PMR quadtree
implementation is identical in structure to that of the region and PR quadtree implementa-
tions, except that leaf nodes store a pointer to a linked list of the line segments contained
within that node. Operations such as finding the nearest line segment to a point have been
implemented. The PMR quadtree has yet to be integrated into the map representation and
planning portions of the MAUV system. However, availability of the PMR quadtree imple-
mentation will enable future versions of the planner to operate directly on the higher level
representation of ridge and trench lines rather than on the low level data currently provided
by the sensor and confidence maps.

3.3. Local Maps

The AUV world model makes use of grid or array data structures for storing local
region-of-interest maps of varying resolutions. Arrays are used for their fast, constant
access and update time and for ease of implementation. Local maps are generated from the
global quadtree database, first by extracting a priori map data for the region, then overlaying
the data stored in the sensor and confidence quadtrees, which are presumed to be more accu-
rate than the lake survey information. In fusing the three sets of data, all three quadtrees are
traversed over the local map region. The value stored in the confidence quadtree for any map
location is used to determine whether or not there is sensor data for that area. Because the
updating algorithm only stores data in the sensor quadtree if it has a confidence measure
above the level assigned to a priori data, any node for which there is sensor data uses the
sensed value. The local map uses a priori knowledge only if insufficient sensor data has

Oskard, Hong, and Shaffer 6

been collected for that node. Confidence quadtree values are also copied into the local map
to be used extensively in the updating algorithm.

Each map has an offset coordinate which defines its position relative to a global ori-
gin. As the vehicle moves to within a predefined distance of the current local map’s edge (in
this case 64 meters defined as !/s the width of the map), a new shifted map is generated in a
second buffer so as to keep the AUV nominally centered. Before this is done, any newly
acquired sensor and confidence data in the old local map must be written to the respective
quadtrees, making it available for the new map. During the generation process, incoming
sonar data is used to update the old buffer (still being used by the planner), but is also held
in a data queue to be applied to the new buffer after it has been extracted. When the new
map has been completed, the software simply swaps the two map pointers and updates the
global coordinate offsets of the new local map. With this double buffering arrangement, the
planner can still access current data while a new map is being generated. This provides the
capability for asynchronous world model queries as required in the AUV’s multiprocessing
environment.

The algorithm that copies data from the quadtree representing the global map to the
local map array is a simple directed traversal of the quadtree beginning at the root node. If
the root is a leaf node, then the value of the root is copied to the portion of the array over-
lapped by the root. If the root is a GRAY node, the algorithm is recursively called for only
those children of the root that overlap the local map. Thus, only that portion of the global
quadtree overlapping the local map is processed.

Updates of a global quadtree from the local map take place when the AUV moves
beyond the center region of the local map. The quadtree update algorithm is analogous to the
array update algorithm, except that one can view the quadtree update algorithm as being
driven by a traversal of the array rather than the quadtree. Each pixel of the array is visited
not in raster scan order, but in the order that the pixels would be visited by a preorder traver-
sal of the corresponding quadtree. The pixel addresses for such a traversal are calculated by
interleaving the bit representation of the x and y coordinates for each pixel, and visiting the
pixels in ascending order; this is known as Morton order, N-order, or Z-order [2]. As each
local map pixel is visited, it is compared against the corresponding node in the global
quadtree, whose node value is updated if required. Processing in Morton order ensures that
all pixels of the current quadtree node will be checked before the next node must be located.

3.4. The Mapping Hierarchy

As mentioned in section 1, the RCS is a hierarchical control system, meaning that
tasks to be performed are functionally decomposed into distinct levels of complexity. Vari-
ous levels of the control hierarchy require different local map resolutions. Different types of
data may be needed at each level. Generally, the resolution of maps at each level differs by
an order of magnitude or more. All local maps are implemented as array data structures and
only the lowest level (highest resolution) local map updates the global quadtrees. Figure 3

Oskard, Hong, and Shaffer 7

shows the mapping hierarchy for a generalized data set. In the current implementation, the
mission level map divides the area into a coarse grid of approximately 25 x 25 picture ele-
ments or pixels per square mile, each pixel storing the average depth of the corresponding
area, along with probabilities of detection and destruction of the AUV at each location based
only on a priori knowledge. It functions primarily as a guide in tactical planning.

The next two levels in the hierarchy, the group and vehicle levels respectively, share
the same local map for this data set. Each pixel of the local map stores the minimum and
maximum known depths over a 4 x 4 meter area. It serves the purpose of providing informa-
tion for high level navigation tasks, such as determining the probability that an area is
traversable by one or more vehicles. This map is updated as new information is added to the
lowest level map, known as the elemental move or ‘‘E-move’’ level map.

The E-move local map has the highest resolution, and is used in determining the
traversability of a path between two specified points. The world model returns a probability
that the path is traversable based on the information in this map and the needs of the plan-

Mission Map

coarse resolution
mission planning

Group Map

for coordinating
groups of vehicles

Vehicle Map

navigation planning

E-move Map

highest resolution
"pilot” planning

Figure 3. The MAUV mapping hierarchy.

Oskard, Hong, and Shaffer 8

ner. For example, the output may be a percentage of pixels for which the AUV clears the
lake bottom over the hypothesized path. In the simplest case, the world model can provide a
probability of 1 if all of the pixels are traversable, or 0 if any are obstructed. Typically, the
pilot planner will query the world model for the traversability of several paths, using a modi-
fied A* search algorithm [11] to choose the safest, most efficient path available. The E-
move map is also the level updated directly by sensor readings; its modifications are propa-
gated up through the hierarchy.

In addition to the world model maps, a set of emergency flags are constantly moni-
tored for conditions which require immediate action. These flags are raised by the lowest
level of the sensory processing module when abnormalities are detected in sensor data.
Each bit in the emergency flag register corresponds to a different condition, such as low fuel,
water leakage, sensor failure, etc. One bit is reserved for an imminent collision condition,
meaning that the system has not responded quickly enough to avoid an obstacle, an oncom-
ing ship, or possibly even another AUV. This guards against the inherent delay in detecting
obstacles, adding them to bottom maps, and planning paths around them. It also provides a
backup safety mechanism for the case that a bug in the software has caused an object not to
be detected. While the mapping system is designed for use in dynamic path planning, its per-
formance in terms of object detection delay is ultimately tied to sensor cycle times, CPU effi-
ciency, and resource allocation, in addition to the algorithm design and implementation.

4. The Mapping System Algorithm

For the first implementation of the mapping system, the confidence assignment algo-
rithm has been greatly simplified. A complete implementation would include a stochastic
analysis of the sonar data, taking into account the increased likelihood of error as the range
to the target increases, as well as uncertainties in the AUV’s navigational data [18). Here
we have assumed that the incoming data has been filtered by a sensory processing module
to minimize such inaccuracies.

At the beginning of a mission, the AUV initializes the global and local maps, reading
available a priori knowledge from a secondary storage device. In our prototype, the lake bot-
tom survey map is read from an optical disk storage medium into the a priori quadtree. The
sensor quadtree is initially composed of a single, empty node, though it could also contain
sensor data stored from previous missions if available. Likewise, the confidence quadtree is
initialized as a single node containing a base confidence value, unless there is confidence
data from a previous mission. In general, the AUV world model starts up in a state of total
dependence on a priori knowledge, gradually becoming more reliant on the current sensor
map as data is collected.

4.1. Confidence-based Mapping

One principle that has become central to the map updating algorithm is the concept of
confidence-based mapping. By modifying values in the confidence map, the interpretation of
incoming sensor data can be controlled, which in turn influences the vehicle’s behavior. Con-

Oskard, Hong, and Shaffer _ 9

fidence values are incremented or decremented from an initially assigned base value as con-
firming or conflicting information is received. The range of values is set by the user at com-
pile time, the default being from 0 to 20, where a value of 20 corresponds to 100% confidence.
The upper bound on a pixel’s confidence guards against the problem of not detecting a mov-
ing object due to overconfidence in data which no longer is accurate. When the system
receives conflicting sensor data, the local map update module waits until a pixel’s confidence
drops below a threshold before changing its depth value. The threshold value is a prespeci-
fied constant determined by the maximum change a single sensor reading can affect, though
this can also be assigned by the user.

The other constants in the algorithm are the base confidence values. One is assigned
to a priori data; the other, to pixels whose depth values have just been modified with sensor
information. These constants directly affect the behavior of the mapping system by determin-
ing the amount of conflicting sensor data required to cause a change in the depth map. If the
base confidence given to the a priori map is relatively high, it will take several conflicting
sonar readings before a pixel’s depth is updated with new sonar information. The higher the
a priori confidence, the longer the AUV will take to ‘‘see’’ and subsequently avoid a new
obstacle. On the other hand, higher initial confidence values reduce the effects of erroneous
sensor readings.

Another feature of the confidence algorithm is the ability to weight the input of each
type of sensor differently. In our current implementation, depth sonar readings are able to
modify a pixel’s confidence by 10% per reading, while obstacle avoidance sonars only modify
confidence values by 5% per reading. Although these particular values are somewhat arbi-
trary--based on the assumption that depth sonar is more accurate than obstacie avoidance
sonar due to fluctuations in the AUV’s orientation--the basic idea has been to create a map-
ping system whose behavior can be modified by changing its parameters, without requiring
substantial effort on the part of the programmer.

4.2, Evaluating Sonar Data

When presented with new information, a world model may classify it into one of three
categories. The new data may affirm knowledge already in the model, causing the confidence
in that knowledge to be increased; it may present conflicting information, in which case an
intelligent world model would decrease its confidence in that knowledge; or the incoming data
may be classified as irrelevant, requiring no action. Our ability to function in the world as
humans depends heavily on our ability to make such judgements. The same is true in
autonomous navigation. In the AUV prototype, inputs are limited to two types of range data:
downward-looking sonar and forward-looking obstacle avoidance sonar. Because of this
simplification, data classification of this sort is fairly straightforward.

Although the return from a sonar source can be somewhat eccentric [8], a sonar read-
ing is assumed to represent a conic beam of approximately six degrees in diameter, with a
coordinate transformation describing its position with respect to the vehicle. The map updat-

Oskard, Hong, and Shaffer 10

ing routine currently handles each sensor separately, using different approaches for the
downward and obstacle avoidance data to modify the local map. As a first step in process-
ing, a sonar beam is projected into the X-Y plane, transforming its coordinates with respect
to the vehicle into world model coordinates with respect to the global origin.

4.2.1. Depth Sonar

In updating the map from the downward-looking sonar, the algorithm first computes
an approximate neighborhood size of pixels to be updated around the current AUV location
depending on the width of the beam and the distance to the lake bottom. This approach is
possible because the pitch and roll properties of the vehicles are negligible, causing the depth
sonar to always point straight downward. Given that the beam width of the sonar is fixed
and the range is returned by the sensor, a closed-form trigonometric solution can be per-
formed using a lookup table. Although the 2-D projection would be best represented as a cir-
cular region, for our purposes, a square neighborhood is sufficiently accurate and more effi-
cient to update. The depth stored at each pixel of the neighborhood in the local map is com-
pared to the observed sonar reading. If the two values are not within an acceptable margin of
error, the conflicting data causes the pixel’s confidence to be lowered. If the two depth val-
ues are in agreement, the confidence value is incremented unless it has already reached the
maximum allowed. Whenever a pixel’s confidence value drops below the predefined thresh-
old, it takes on the new depth reading and is assigned a base confidence value [see Figure
4). Fof the depth sonar, all information is classifiable as either conflicting or agreeing with
the knowledge already in the model. None of the data is irrelevant in this case.

Figure 4, Three stages of a map update from depth sonar: (A) Incoming sonar data conflicts with
the world model (B) Confidence values for the comresponding world model pixels are decremented (depth is
not modified yet) (C) After repeated conflicting readings, confidence drops below the threshold, the depth
is updated, and a new confidence assigned.

sonar reading: 10m reading: 10m reading: 10m
map depth: Sm map depth: Sm new map depth: 10m
confidence: 40% confidence: 30% new confidence: 50%
threshold: 20% threshold: 20% threshold: 20%
Local Map
:fg 2 » 2 ? > SRR %
= A R B 2 C

Oskard, Hong, and Shaffer 11

actual lake bottom._

) v
¢
\
'c' M)
l".
eranta®®

decrease depth

e snsescstanes,,

Figure 5. Updates from obstacle avoidance sensors remove false obstacles in the world model by
increasing depth values in the map. Obstacles are added by decreasing the depth, in effect, raising the bottom
of the lake model.

4.2.2. Obstacle Avoidance Sonar

The obstacle avoidance mapping algorithm is more complicated. Here the projection
of the cone into the two-dimensional plane approximates a triangular region. The cone itself
is approximated by two planar surfaces representing the top and bottom surfaces of the cone,
calculated at three degrees above and below the central axis of the cone respectively. Due
to the relatively coarse resolution used in the obstacle avoidance algorithm (0.5m? per pixel)
and the narrow width of a sonar beam, this does not introduce significant error into the calcu-
lations. As with the depth sonar algorithm, each pixel in the 2-D projection is examined and
updated if its confidence value drops below the threshold. Forward-looking sonar readings
provide two types of information: a given pixel may be clear, or it may be obstructed by an
obstacle. When the AUV detects an obstacle, the mapping algorithm adds the information to
the local map by raising the modeled bottom of the lake at that location (i.e. making it shal-

lower) [see Figure 5]. It is also an essential function of the world model to be able to
remove hypothesized obstacles in the local map as well as add them. For each pixel in the
triangular projection, if the three dimensional distance (measured along the sonar cone trajec-
tory) from the sonar source to the current pixel being examined is less than the range
returned by the sensor, the pixel is assumed to be clear. No obstacle was detected there, so
the depth at that location in the local map should reflect this information. Its value should be
greater than or equal to the depth of the bottom surface of the sonar cone at that location,
since any object obstructing the beam would presumably cause the sensor to return the
range to that object. If the local map value is shallower than the beam, it conflicts with the
new sensor data and the confidence value is decremented. If this results in a confidence low-
er than the threshold, the pixel is reassigned the depth value of the bottom surface of the

Oskard, Hong, and Shaffer 12

cone and a new base confidence value. Note however that a local map value in agreement
with sonar information does not necessarily increase its confidence. The sonar beam may be
projected in front of the vehicle when the AUV is near the surface, and a clear reading near
the surface would not yield any information about the depth of the lake bottom if we already
have some a priori knowledge that the lake is approximately N meters deep. In this case it
would be considered irrelevant data.

The same is not true for pixels in the projection whose distance from the sonar source
is greater than or equal to the range returned by the sensor. These pixels correspond to
detected obstacles and the depth values in the local map are compared to the top surface of
the conet Here the local map data should be at least as shallow as the top surface of the
beam to be in agreement with the sensor reading. If the map data does agree, it represents
confirmation of an existing obstacle and the confidence value should be incremented. It
should be noted that this confirmation only supports the hypothesis that there is an obstacle
at the depth it was detected; no conclusions can be drawn as to the true height of the object
or whether it extends all the way to the lake bottom. Although this may lead to some innacu-
racies in the depth map, an array of multiple sensors pointing in different directions mini-
mizes this effect.

In a similar manner, if the model continually disagrees with the sensor reading, the
confidence is decremented until the depth value is reassigned to the depth of the top surface
of the cone, making the model shallower. Its confidence is again initialized to a base value.

5. Mapping System Performance

Processing time for a sonar input is roughly proportional to the number of pixels that
must be examined in the depth map. On the software development system used at NBS, a
Sun-3 workstation, obstacle avoidance processing ranges in speed from 30 milliseconds of
CPU time for short distances of approximately 10 meters, to 100 milliseconds for the maxi-
mum accepted reading of 50 meters. Depth sonar updates are practically instantaneous, due
to the lack of computation required. Since the sensor cycle time is approximately 0.6 seconds
and the vehicles used are equipped with an array of 5 obstacle avoidance sensors [6], it is
not possible to process each sonar reading separately while sharing the CPU with several
other processes. To improve performance, a preprocessing filter has been added to the front
end of the system that combines similar sonar readings from the same sensor into a single,
more heavily weighted reading. The filter passes the average range returned by the sensor,
the average position of the vehicle, and the number of combined readings to the mapping sys-
tem. Tolerances for what constitute similar readings are parameters to the system. Only
the confidence assignment routine must be modified to accomodate the filtered data, mult-
plying the weighting factor for the current sensor by the number of combined readings. This
filtering process enables the system to operate well within hardware timing constraints.

t One detail worth mentioning is that the two-dimensional projection of the cone is extended by two pixels
so that it will not only include the projection of the beam, but also a portion of the detected obstacle.

Oskard, Hong, and Shaffer 13

Another time-consuming operation is the transfer of data between local maps and
global maps. Each time the AUV crosses the boundary of the current local map (really 64m
from the map’s edge as described in section 3.3), the world model must examine the entire
array for pixels which have been updated, modify the sensor quadtree, and extract the new
local map. This process takes on the order of several CPU seconds. For this reason, a sepa-
rate process should peform this task in the "background” while processing of the sensor data
continues using the old map buffer. As previously mentioned, data collected while the new
window is being extracted must be stored in a queue to be applied to the new local map.
Although this feature has not been fully implemented yet, it is expected that the queued data
will not cause the system to fall behind in its processing if filter parameters are set properly.
If necessary, the algorithm can be further modified to only store readings which caused the
old local map to be updated.

6. Discussion

The MAUV mapping system has been developed to provide an effective means for
autonomous navigation. During the first year of the project, much work has been done on the
problem of short term planning for obstacle avoidance. The 2 !/,-D depth maps using the con-
fidence-based mapping algorithm have proven to be an adequate solution. A dynamic plan-
ner continuously queries the world model for the probability of safe traversal over the
planned trajectory and is able to modify the vehicle’s path to avoid obstacles as soon as they
are detected. It typically takes 3-4 supported readings from the obstacle avoidance sonar
before the map is modified to show the obstacle, though this property can be adjusted by
altering the confidence parameters of the system. For example, a low base confidence value
would make the mapping system more responsive to sonar readings, decreasing obstacle
detection time, but increasing the probability of error due to sensor noise.

Because of the 2!/,-D nature of the data structures, the current implementation is
unable to model underwater formations such as caves and ledges. All obstacles are modeled
as elevated portions of the lake bottom. With this representation, the path planning module
does not consider routing alternatives which would go under detected obstacles. The system
also does not yet include facilities for representing the 3-D shape of objects; however, the
locations of objects can be stored in the PR quadtree with associated 3-D data maintained in
the object/attribute database. Because the database can be configured to store arbitrary
parameters for each data type, descriptive information such as volume, centroid location, and
number of holes may accompany an entry in the PR quadtree. As mentioned earlier, one of
the entries in the database may even be a pointer to an extensive 3-D representation of the
object.

The next generation mapping system will include the full integration of the PMR
quadtree with the planning modules to store route and topographic information. This will
enable high level planners to follow contours of the lake bottom and find paths of minimal risk
to the vehicles. Additional sensor data from laser ranging devices and underwater cameras

Oskard, Hong, and Shaffer 14

for inspection of objects may be included as well. Another topic for future research is the use
of spherical representations of the underwater environment in real-time world modeling.
Much more work is needed to fully test and develop the system, but progress so far indicates
that this approach will produce a fast and reliable system for real-time underwater mapping.

7. Acknowledgments

The authors would like to thank Dr. Tsung-Ming Tsai and Shujen Chang for their con-
tributions to this work.

Oskard, Hong, and Shaffer 15

References

[1] J. Albus, "Hierarchical Control for Robots and Teleoperators,” IEEE Workshop on Intel-
ligent Control, Albany, NY, August 26-27, 1985.

[2] I Gargantini, ‘‘An Effective Way to Represent Quadtrees’’, Communications of the
ACM 25, December 1982, 905-910.

[31 M. Herman and J. Albus, "Overview of the Multiple Autonomous Underwater Vehicle
(MAUYV) Project," IEEE International Conference on Robotics and Automation, April
1988. :

(4] T-H Hong and M. O. Shneier, "Describing a Robot’s Workspace Using a Sequence of
Views From a Moving Camera," IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 1985.

[5] C. L. Jackins and S. L. Tanimoto, "Oct-trees and Their Use in Representing Three-
dimensional Objects," Computer Graphics and Image Processing, 1980, pp. 249-270.

{6] J. Jalbert, "Low Level Architecture For the New EAVE Vehicle," Fifth International

Symposium on Unmanned Untethered Submersible Technology, June, 1987, Vol. 1, pp.
 238-244. '

[7] D. Meagher, "Geometric Modeling Using Octree Encoding," Computer Graphics and
Image Processing, 1982, pp. 129-147.

[8] H. P. Moravec and A. E. Elfes, "High Resolution Maps from Wide Angle Sonar,” Pro-
ceedings IEEE Conference on Robotics and Automation, March 1985, 116-121.

[91 R.C. Nelson and H. Samet, ‘A Consistent Hierarchical Representation for Vector
Data’’, Proceedings of the SIGGRAPH’ 86 Conference, Dallas, August 1986, 197-206.

[10] W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics, 2nd ed.,
McGraw-Hill, New York, 1979.

[11] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New
York, 1971.

[12] D. J. Orser and M. Roche, "The Extraction of Topographic Features in Support of
Autonomous Underwater Vehicle Navigation," Fifth International Symposium on
Unmanned Untethered Submersible Technology, June, 1987, Vol. 2, pp. 502-514.

[13] R.J. Renka and A. K. Cline, "A Triangle-Based C! Interpolation Method," Rocky Moun-
tain Journal of Mathematics, Vol. 14, No. 1, Winter 1984, pp. 223-237.

[14] H. Samet, "The Quadtree and Related Hierarchical Data Structures," ACM Computing
Surveys 16, June 1984, pp. 187-260.

[15] H. Samet and R. E. Webber, "Storing A Collection of Polygons Using Quadtrees,”
ACM Transactions on Graphics 4, 1985.

[16] H. Samet, A. Rosenfeld, C.A. Shaffer, and R.E. Webber, "A Geographic Information
System Using Quadtrees,” Pattern Recognition, Nov./Dec., 1984, 647-656.

Oskard, Hong, and Shaffer 16

[17] C.A. Shaffer and H. Samet, ‘‘Optimal Quadtree Construction Algorithms’’, Computer
Vision, Graphics, and Image Processing, March 1987, 402-419.

[18] W. K. Stewart, "A Model-Based Approach to 3-D Imaging and Mapping Underwater,"
Proc. ASME Conference on Offshore Mechanics and Arctic Engineering, Houston, TX.,
Feb. 1988.

Oskard, Hong, and Shaffer 17

