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ABSTRACT

A fundamental problem any design for an intelligent machine must
address is the following: How will the machine, immersed in a physical
environment whose number of states is orders of magnitude larger than its
own number of internal (information theoretic, or ‘‘mental’’) states, select
which external states will cause modification of its own internal state?

This paper elaborates on this problem, as it applies to man-made intelli-
gent machines, in terms of an informal information theoretic model, one pri-
marily concerned with what is to be done, rather than how. We argue that
current models of automated control for a robot do not address this problem,
primarily because so much emphasis is placed on model-based logical infer-
ence.

A proposed solution framework is offered to the sensory selection prob-

lem based on an information theoretic definition of event. The resulting
architectural paradigm is then applied to what we call event-driven hierarchi-

cal control.

““Substances are not the units of
things and events are not their
motion, but events are the units
of things and what is described
as a material object is just a
feature of events.”” ALFRED N.
WHITEHEAD

1. INTRODUCTION

Within the last several years a
number of research projects concerned
with the design and implementation of
computer controlled vehicles, with various
levels of ‘‘autonomy’’, have appeared.
This ‘‘autonomous vehicle’” would have
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the ability to decompose high Ilevel
descriptions of a ‘‘mission’’ into an
appropriate plan and subsequently execute
it, all with relatively remote human
involvement. Projects involving land vehi-
cles [19,23], underwater vehicles [2,16,29]
and space vehicles [3,18] have been
funded.

It is the intent of these efforts to
integrate results from artificial intelligence
(AI), sensory (vision) understanding
research, modern control theory, etc., all
driven by the economics of low cost, high
performance microprocessors. Initially,
these projects will address issues of low
level control etc., but the expectation is
that this will evolve upward to the point
where real-time planning and execution of
multi-vehicle coordinated activity, in sup-
port of complex missions, becomes feasi-
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ble. While much of the funding has come
from the defense community, giving a dis-
tinct military flavor-to these projects, it is
also clear that an autonomous vehicle is
not only an attractive context within which
to integrate these technologies, but would
provide an invaluable capability in many
non-military situations.

There is clearly a host of engineering
issues and design decisions related to sen-
sory data acquisition and the representation
of the workspace, all in support of task
execution. In this paper we will not be
addressing these issues in any detail, but
rather wish to place in perspective what is
happening from a more abstract point of
view. In particular, we wish to address a
fundamental theoretical issue whose recog-
nition, articulation and ‘‘solution’’, we see
as having a number of practical implica-
tons for the functional interaction among
the subsystem components making up an
‘““‘intelligent machine’’.

From the point of view of design, this
issue concerns the decision process which
selects that subset of the information
potentially available about the environment
which will be allowed to modify the
machines ‘‘mental behavior’’. This deci-
sion process involves numerous consecu-
tive decision steps of which we single out
three major levels for the purpose of dis-
cussion. These are

(1) Hardware Selection: By choosing a
particular suite of sensors, the
designer bounds the information
available to the machine, and hence
the potential effect of the environ-
ment, to just those sensor modalities,
frequencies, resolutions, etc., charac-
terized by the sensors chosen.

(2) Algorithmic Feature Selection: Given
the suite of sensors, the effect of the
environment is further reduced to just
those features of the environment for
which the designer supplies an algo-
rithmic procedure for their extraction
from the sensory data.

(3) Information Theoretic Model Selec-
tion: The provision by which a
‘“‘world/task model’’ is incorporated
into the machine, the use of which
provides the basis for the machine to

‘‘select’’ its sensory input from the
much larger amount available to it.

All three levels of design are con-
cerned with narrowing the effects of the
environment to just those which will pro-
vide sufficient information for the machine
to accomplish its task. The first two levels
are explicitly made by the designer, while
the third is made somewhat less explicitly
through whatever inferencing mechanisms
are built into it. It is the method whereby
this third level, the information theoretic,
selects information from the environment
that we are concerned with here.

We view any definition of what con-
stitutes  “‘intelligent behavior’” by a
machine as picking an arbitrary point on a
continuum. More important for the discus-
sion here is the distinction between deter-
ministic closed form algorithmic methods
based on a tractable mathematical analysis
of the desired behavior, and heuristic
methods. We will argue that ‘‘classical
robotics’’ has emphasized methods of the
former, but must, if it is to address the
new class of problems to be encountered
by these ‘‘autonomous vehicles’’, adopt an
extended architectural paradigm.

Another point of view motivating our
ideas is the apparent impasse which Al
seems to have encountered, and suggest
that Al has limited itself by addressing a
form of intelligence based solely on
model-based logical inference, one devoid
of sensory input, and hence suffering from
‘‘sensory depravation’’.  Within Al
research, one such problem associated with
a priori model-based reasoning has become
known as the ‘‘frame problem’’ [6,22,26].
In the frame problem, an algorithm for
planning is sought which operates entirely
by model-based logical inference. The
assumption is that by providing for a
sufficiently rich internal modeling of the
external environment and the task, the
problem may be solved a-priori (at least to
within some ‘‘resolution’’, so that the rest
is only a matter of ‘‘detail’’), all without
recourse to sensing the physical world.
That is, success in solving an instance of
the planning problem in information space
is tantamount to its successful physical
execution. For ‘‘sufficiently simple’’
environments this will work. However, as
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documented in the above references, this
paradigm appears to break down at some
level of complexity, if not in principle,
then in practice.

We argue here that the frame problem
is an artificial problem precisely because it
requires a solution to take place entirely
within an internally held information
theoretic model. In observing ‘‘natural
intelligence’’, one observes that its goals
are achieved through the use of primitive
thought processes acting on and sensing
the physical environment{4]. »

This is to say that at a fundamental
level, at least for natural intelligence, the
external world, to a great extent, is its own
model. In this way, behavior becomes as
rich and open ended as the environment.
This is not to say that an internal model of
the environment does not occur, but rather
that it is more in the form of a repository
of learned past successful behavior in
terms of generic ‘‘mental landmarks’’.
These latter include, for example, rote
fragments of formal methods, e.g., logic
and mathematics, utilizing sensed symbols
either in the environment or in the ‘“‘minds
eye’’, and hence provide the basis for what
appears to an observer, the ability to per-
form complex inference based problem
solving.

We argue here that this ‘‘natural
organism’’ paradigm of side stepping the
frame problem appears at the moment to
be the only one available for use by an
artificially intelligent machine operating in
real time, and suggest that the integration
of Al techniques and sensory processing
provides a vehicle for accomplishing this.

In what follows we will use the term
autonomous agent to refer to a member of
this (as yet) hypothetical class of
machines. We use the term machine deli-
berately so as to include, not just isolated
information theoretic algorithmic
processes, but the physical mechanisms by
which these abstract processes interact with
the environment, i.e., its ability to sense
and act on the environment. More
specifically, we are interested in how a
machine can take action in a world whose
events it can only partially predict, and
argue that the solution lies in treating both

the information theoretic and physical
aspects simultaneously.

2. THE PROBLEM OF SELECTIVE
SENSORY PROCESSING

Sensory processing for an intelligent
machine is concerned with ‘‘making
sense’’ out of the wealth of information
potentially available to it about the
immediate environment. Naively, it would
seem that ‘‘natural intelligence’’, e.g.,
human intelligence, somehow uses a ‘‘bot-
tom up’’ process by which it successfully
accomplishes this. .However, a simple
information theoretic argument demon-
strates that this bottom up model must be
an illusion. This argument makes the
observation that the number of potential
states, and hence the information content,
of the physical environment within sensor
range is much larger than the number of
potential ‘‘internal’’ logical states encoding
some model of the environment. Hence
any attempt to let this information modify
its own internal states will cause it to
eventually run out of “‘new’’ states, thus in
effect negating any effect the information
up to that point may have had on it.

The above problem may be stated:

How does an autonomous agent,
immersed in a physical environ-
ment whose number of potential
physical states is orders of mag-
nitude larger than the agents
own number of internal logical
states, select which physical
states will cause modification of
its own internal state?

The solution, clearly, must lie within
the ability of the machine to convert the
task given it, not only into just actuator, or
as we shall refer to them, effector controls,
e.g., motion control etc., but also into cri-
teria whose purpose is to match with and
hence select predefined changes of external
state space relevant to carmrying out the
task.

More pointedly, this means that for a
machine to exhibit adaptive behavior with
respect to its sensing of the environment, iz
must be prepared to select its own input
amongst the much larger set of data avail-
able 1o it.
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For a ‘‘computer’’, the selection cri-
teria are in the mind of the designer and
incorporated implicitly in the ‘‘input’’
hardware and associated input decoding
algorithms for selecting a set of predefined
signals. A nmore physically adaptive
behavior results from selection criteria
which respond to generic environment
features, e.g., ‘‘ropisms’’ which result
from being attracted or repelled by
predefined sensory features such as light,
temperature or specialized geometric
features [5,11]. A third ‘‘level’’ of selec-
tion criteria is that based on an information
theoretic model, resident in the ‘‘mind’’ of
the autonomous agent, which serves to
translate the needs of the task/goal at hand
into specific selection criteria. It is this
idea which we are interested in developing
here.

The word ‘‘event’’, through common
usage, has come to mean ‘‘any change’’,
or ‘‘thing which happens’’ in external phy-
sical state space. However, from an infor-
mation theoretic point of view concerned
with how physical state space modifies an
agent’s behavior, we argue that events
exist only in the context of an individual
agent’s information theoretic state space.
They are precisely identifiable with
matches made between selection criteria
and sensory features coming from physical
state space. In general, an agent’s
behavior must be explainable in terms of
the selection criteria and the subsequent
acquisition of external physical state space
changes, i.e., the agents personal sequence
of events. An autonomous agent’s behavior
both determines its events and is deter-
mined by its events.

This brings us to a second related
issue, namely the need to distinguish
between an agents world model space and
an ‘‘observer’s’’ (e.g., the ‘‘designer’s ”)
world model state space. This distinction is
important as an agent has access only fo its
own world model space in performmg a
task, and not to the observer’s.

For example, a list of dcsu'able
features for an autonomous agent often
includes the ability to deal with ‘‘unex-
pected events’’. But this ‘‘unexpected-
ness’’ exists only within the mind of the
designer, for if an autonomous agent’s

design and subsequent behavior take that
information into account, its behavior,
from its point of view, can hardly be said
to be dealing with the ‘‘unexpected’’.
Hence the idea that an autonomous agent
must be able to deal with the unexpected is
a naive and ill-defined one.

For example, consider a mobile robot
which has been designed to move around
in an environment containing obstacles
made known to it through the use of a
‘‘vision sensor’’. If now an obstacle in the
form of a sheet of glass is placed in the
robots path and is hit by it, (e.g., a bee
against a window), the robots physical
state behavior as observed and modeled by
an observer’s world model will have been
modified to be different than what it other-
wise would have been had the glass not
been there. But in fact the robot’s internal,
or ‘‘mental’’ model of what has happened
has not changed, but only gotten ‘‘out of
sync’’ with its environment due to the
inadequacy of its sensors. It is the
observer’s events which have been
modified by the introduction of the obsta-
cle, not the robot’s.

Hence we must be on guard to always
distinguish between changes in a first
agent’s physical state space as observed by
a second agent, and changes in the infor-
mation theoretic model of the first agent.
The observed physical state can not always
be used as an indication of the information
theoretic.

We will return to this point later to
show that what is intended to be captured
by ‘‘unexpected event’’ is captured by a
particular type of information theoretic
expectation on the part of the autonomous
agent.

3. THE LIMITATION OF CONTROL
THEORY FOR “CLASSICAL”
ROBOTICS

If a robot can answer a question
about a hypothetical experiment involving
its own effectors without actually perform-
ing the experiment, then it has exhibited
one of the components of intelligent
behavior.

Classical robotic control theory con-
sists of - establishing ‘‘closed”” form
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answers to questons of (1), kinematics,
and (2), dynamics [10]. In both cases, what
is meant by closed form answers is a
method of establishing the functional
homomorphism, as we shall informally
refer to it, between certain internal logical
control states of the robot and that subset
of physical state space constituting the pos-
sible states the robot’s effectors may be in.

For example, from knowing the
values of certain joint state variables, one
wants to deterministically calculate the
position and orientation of a gripper. Con-
versely, from an initial position and orien-
tation, one would like to calculate the
sequence of logical state variable values
associated with the joints in question so as
to move the gripper in a particular manner
to a desired location and orientation.

A fundamental observation of classi-
cal robotics is the (ideal) requirement that
there be a one to one mapping (via the
kinematic and dynamic model) between the
set of (legal) values for the logical state
control variables and the set of physical
state variable values used to characterize
the physical state the robot is in. This
insures that the successful generation of a
‘“‘plan’’ for effector control is logically tan-
tamount to the plan’s successful execution.
Elaboration on this static model to allow
the “‘sensed’’ entry and exit of objects in
the workspace only requires that we
include all ‘the physical environment as
constituting the ‘‘robot’’. The fundamental
observation remains: the robot must main-
tain an internal ‘‘simulation’’ or ‘‘world-
model’’ of the workspace which will main-
tain the robot’s ability to compute elements
of the homomorphism modeling a subset
of physical state space.

In short, all ‘“‘external events’’ associ-
ated with certain physical states have an
analogous internal logical state with which
the external states of the workspace may
be identified, and conversely, all ‘‘internal
events’’ associated with certain logical
states may be identified with certain
corresponding external world model states.
It is by the matching of these internal and
external events, i.e., the ability to compute
the homomorphism, that synchrony is
maintained between internal logical state
space and external- physical state space.

Classical robotics is based on this funda-
mental relationship: the ability to predict
(evaluate the homomorphism), detect
(sense the difference between the current
external state and the desired), and correct
(change the external state through the
predicted use of effectors). This classic
paradigm is depicted in figure 1.

Task ‘
Control

Homomorphism

Task ATask
+

Figure 1. A conceptual schematic of a
closed servo loop. Its simplicity results
from the simple -(closed form) relationship
between the two sets of equivalence
classes induced by the effectors and sen-
sors respectively.

The ability for a world model to
always compute the homomorphism (for a
given environment/task), will be referred to
as a complete world model. In general, the
ability to compute the homomorphism will
come from both g priori information, and
from the ability to sense external physical
state space. If only a priori knowledge is
required to compute the homomorphism,
the world model is said to be an a priori
complete world model (‘‘open loop’’), oth-
erwise if sensing the environment is
required to maintain the homomorphism, it
is said to be a sensory extended complete
world model (servoed or ‘‘closed loop’’).
In the extreme in this latter, behavior
becomes predominantly determined by the
environment through what is sensed. For
example, see [5,11].

The entire thrust of control theory for
classical robotics is concerned with the
articulation of complete workspace-world
model homomorphisms in the form of
algorithms for computing this homomor-
phism for specific effectors and sensors
operating in a given workspace performing
specific tasks. The precise characterization
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of the robots effectors, sensors and
workspace serve the purpose of providing
an information theoretic complete world
model which in turn provides the basis for
computing the homomorphism.

We have attempted to capture, by the
notion of the world model homomorphism,
all control processes, from the simplest
thermostat through the most complex mul-
tiprocessor multiprocess control system.
The algorithms controlling these processes
are by design intended to deal with some
set of expected contingencies by maintain-
ing synchrony between their world model
state space and the physical state space
within which they find themselves. For a
complete world model no selective process
is required to select among the contingen-
cies as all possibiliies have been
accounted for a priori within the three lev-
els of design mentioned in the introduc-
tion. Only their particular sequence and
time of arrival is unknown.

If in fact the world model for a
machine does not provide the basis for
computing the homomorphism between the
machine’s information state space and its
physical state space, then the world model
is inadequate, and we will refer to it as an
incomplete world model. We will (arbi-
trarily) reserve the term autonomous agent
to refer to an intelligent machine whose
world model is incomplete, and argue that
the ability to modify ones own world
model homomorphism, in the case of
incompleteness, is a necessary component
of autonomous behavior. (We also note,
that as a practical matter, a world model
will consist of complete and incomplete
submodels, but wish only to discuss the
fundamental issues here.) To the extent
that a world model is inadequate in its
ability to distinguish (i.e., predict) between
task-induced differentiated states, it must
selectively acquire the information to make
the needed differentiation through its sen-
sors.

Given a particular task or class of
related tasks, issues which a theory of
robotics should address with respect to
completeness include:

(1) The basis by which a given robot,
ie., a world model together with a

suite of sensors and effectors includ-
ing associated algorithms, may be
proved complete or incomplete with
respect to carrying out a task or class
of tasks.

(2) The basis by which, for a given robot,
the existence or nonexistence of a
complete world model, sufficient to
perform a given task or class of tasks,
may be proven.

For example, if sensors do not exist
for detecting changes of physical state
space produced by causes other than the
robots own effectors and the task requires
the ability to distinguish between these
states, then a complete world model, with
respect to that task, clearly cannot exist.

The conceptual limitation of control
theory for classical robotics is that it
presupposes the existence in principle of a
complete world model: given enough sen-
sors, effectors, computational power and
the proper world model and task represen-
tation, the homomorphism may be com-
puted to a sufficient ‘‘resolution’’, so that
the machine may accomplish the task. It
presumes on the part of the designer the
ability to a priori incorporate the sufficient
sensory selection criteria by the choice of
sensor hardware and sensory feature
extraction algorithms. We argue here that
this conceptual model is inadequate for an
autonomous agent, primarily because it
does not address the problem of selective
sensory processing at the information
theoretic modeling level required for an
incomplete world model.

In this paper we are concerned pri-
marily with intelligent machines whose
world model is incomplete. From the point
of view of the machine, not all external
states are representable nor of interest to
the machine. In fact we will argue that a
major component of ““intelligence’’ is
bound up in this selection process required
of machines whose world model is incom-
plete.

4. THE INFORMATION THEORETIC
MODEL

The designer of an intelligent
machine will naturally divide physical state
space into ‘‘machine’” and ‘‘non-
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machine’’., However, this dichotomy exists
only in the world model, i.e., ‘‘mind”’, of
the designer, and is not even then very
well defined. For example, is the road the
wheeled mobile robot uses part of the
robot? And what about the ‘‘landmarks’’ it
uses for navigation? We contend that any
separation of physical state space into
“‘machine’’ and ‘‘non-machine’’ serves
only the needs of the designer in reasoning
about the machine. From the point of
view of the machine, its ability to make
distinctions about physical state space,
including physical aspects of itself, is that
determined by its own functional
homomorphism. This homomorphism may
or may not include an elaborate representa-
tion of self depending upon the class of
tasks the machine is to perform.

As a consequence of this, the point of
view taken here is that based on a ‘‘func-
tional dualism’’ [14] between the following
two components: (a) a physical state
space, and (b), an information theoretic
state space. Physical state space is charac-
terized by physical, or, ‘‘external’’ srate
variables, which constitute a description of
the physical component of the machine
together with the physical environment.
Information theoretic state space consists
of a finite set of distinguishable symbols,
encoded as a special set of physical state
variables, i.e., memory, whose distinct
configurations over time constitute the suc-
cession of ‘‘internal’’ states the machine is
in, and among other things, serves to
“implement’” the machine’s functional
homomorphism.

Two classes of transducers provide
for the respective modification of these two
disjoint state spaces: (1) Sensors by which
physical state space is selectively allowed
to modify information state space, and (2),
effectors by which information state space
selectively “‘operates”” on and hence
modifies a certain subset of physical state
space. See figure 2.

Processes, encoded in information
state space, control the interaction between
information state space and physical state
space. These process ‘‘maps’’ are:

(1) External State Acquisition(2): The
process by which certain physical
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Figure 2. An intelligent machine may be
thought to consist of all physical state
space, together with an encoding of infor-
mation state space, in which all interac-
tions between the two are limited to the
sensor and effector functions.

state variables are ‘‘measured’’ by
various sensor modalities with the
intent of (a), maintaining the ability
of the world model to compute the
homomorphism, and (b), selecting
information relevant to the carrying
out of some task.

(2) World Model homomorphism(¥): A
process implementing the homomor-
phism: on demand knowledge of the
current state of selected physical state
variables, and as an adjunct the ability
to ‘‘predict’’ future states of them
under hypothesized conditions.

(3) Planning and Execution(I'): The pro-
cess by which certain information
state variables, derived from task/goal
definitions by ‘‘planning’’, are ‘‘exe-
cuted’’ via the effectors so as to
cause a change in physical state
space.

Collectively, we identify the informa-
tion contained within these processes the
logical or information theoretic state space
of the machine. This information state
space is ‘‘closed’’, i.e, does not
‘“‘interact’’ with any other state variables of
physical state space, except through the
use of its effectors and sensors. :

In figure 2 the four maps A, Q, ¥
and T, respectively, depicting ‘‘physical
causality’’, sensor encoding, world model-
ing and effector decoding have, for a com-
plete world model, the following relation-
ship,

Abask = rleﬁectors . \Hlask model ® Q.vensors.
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where e is function composition and the
subscripted bar means that the function
domain is *‘restricted to’".

As mentioned earlier, physical state
space must include not only the physical
workspace of the machine but the physical
machine as well, as there is no way for the
machine to disambiguate the two beyond
what is modeled by its world model
homomorphism. We will collectively refer
to physical state space as the machine’s
workspace. It is the information theoretic
nature of the interaction between physical
state space and the world model homomor-
phism which we are concerned with here.

As an intelligent machine performs
some task, its world model will acquire
new information in support of maintaining
its ability to compute the homomorphism.
This sequence. of homomorphism transi-
tions, taking place entirely within informa-
tion state space, will be called its objective
behavior. This is in contrast to its overt,
or observed behavior, created in the infor-
mation theoretic state space of an observer.
This latter includes projected purposive
behavior, e.g., the projection of ‘‘intent’’
into the observed behavior of the agent by
the observer, and is the source of much
potential confusion. The contrast between
these two is depicted in figure 3.

The school of psychology known as
behaviorism is based on the tenet that
since only observed behavior is known to
an observer, any theory of that organism
must be in terms of just these observations.
Purposive behavior is then seen to exist
only in the observer’s mind. However, for
designed machines, predictive, as opposed
to merely descriptive understanding on the
part of an observer, must be entirely in
terms of objective behavior{7].

For a machine with a complete world
model, the sequence of world model states
(objective  behavior) is homomorphic,
modulo the task, to an appropriate subset
of physical state space transitions
(observed behavior), and hence its
behavior could be identified with either.
However, if synchrony is not maintained,
these state transitions are not equivalent,
but the knowledge of where this
discrepancy lies, potentially exists only in

Figure 3. The objective behavior of an
autonomous agent is identified with its
world model homomorphism transitions.
Its observed, or subjective behavior, is
identified with that portion of an observers
world model homomorphism transitions
modeling some subset of the first agents
physical and information - theoretic state
space variables.

the world model of some observer agent.
When such a discrepancy between objec-
tive and observed behavior exists, it will
be called undefined behavior. The detec-
tion of self-undefined behavior on the part
of an agent is of course of considerable
interest to that agent and corresponds to
self knowledge about an incorrect model of
its own physical state space.

The definition of an event is then
identified with transitions in the world
model homomorphism. An event is a
source of new information which results in
an (updated) homomorphism.

The problem of selective sensory pro-
cessing then becomes:

How does an autonomous agent
choose its own events?

We argue that the distinction between
the classical model for a robot and that for
an autonomous agent lies not in the physi-
cal relationship between logical state space
and physical state space, but rather in the
ability of an autonomous agent to generate
from its task, selection criteria, or as we
shall refer to them, expectations, which
will serve the purpose of selecting its input
from physical state space. A successful
match between an expectation and its phy-
sical state space instance results in the
modification of the current world
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homomorphism and is identified with an
event. Generality of design, on the part of
an autonomous agent’s designer, deter-
mines whether modification of the
homomorphism 1is, at one extreme, a
parametric modification, or at the other
extreme, one of functional form
modification, and embodies what is meant
by ‘‘learning’’.

In the classical model for a robot, the
selection of its ‘‘input’’ is preordained by
relatively fixed hardware and program
expectations associated with a particular
sensing device, order of occurrence,
discretization, predefined codes etc. Exam-
ples of such sensors and their ‘‘measure-
ment *’ include a clock’s ‘‘ticks’’, naviga-
tion sensors and the resulting coordinates,
communication channels and the characters
they transmit (but not necessarily the
interpretation of these characters), etc. It is
able to do this only because associated
with each input is an (implicit) expectation
to match it. We will refer to such sensor
data as signals, and note that a signal’s
interpretation, i.e., its effect on subsequent
behavior by the robot in a given state, is
predefined.

When the input available becomes
mixed with irrelevant information or when
its interpretation must be extracted from a
larger set of potential interpretations, e.g.,
the control of a camera and the processing
of its imagery for the purpose of extracting
knowledge ‘concerning obstacle avoidance
by a vehicle, the process by which the
input is selected becomes central to both
practical and theoretic considerations in the
design of an intelligent machine.

S. KNOWLEDGE BY
HYPOTHESIZED QUERY

In order to make more specific this
process of acquiring information, and
hence beliefs about the environment, we
perform the following mental experiment.

Imagine for a moment that you, the
reader, were placed in a steel tank, i.e., a
‘‘submarine’’, and placed underwater.
Imagine that this submarine were equipped
with controls for moving and orienting the
submarine, and also, as part of the subma-
rine, a number of sensing devices, more or

less equivalent to your own senses are
available, but in a peculiar way: two tele-
type like machines are available to you in
the submarine, one labeled control, the
other labeled sensing.

The control teletype accepts English
like commands for operating the motion
control mechanism of the submarine, while
the other teletype will accept and answer
queries about the immediate environment
at the moment the query is made.

Since the sensors are to be ‘‘general
purpose’’, they make no interpretation of
what they ‘‘sense’’, but rather respond in
terms of a set of ‘‘features’’ which are
extracted by the application of processing
algorithms to raw data obtained by the
sensing devices. These sensing devices and
associated algorithms for the extraction of
features may be of your own choosing.

Our claim is that this is the situation
which an algorithm implementing the
““mind’’ of an intelligent agent would find
itself, with you the imaginary submarine
pilot simulating such an algorithm.

If you have some model of the under-
water terrain with you, either in the form
of a map or in your head, then you may
perform certain tasks by commanding that
the submarine move to a particular location
by coordinate or landmark etc. If you
know a priori that there are no obstacles,
or you know their location, you can still
move without hitting them by breaking the
motion up into sequences around the
obstacle(s). This is the case of having an a
priori complete world model with respect
to a simple ‘‘move to location x’’ class of
tasks.

If your model of the environment you
have been placed in is not an a priori com-
plete one, e.g., you know that all obstacles
are lying on the bottom and are less than
five feet in diameter, but you do not know
their location, then it is still possible to
perform the task of moving about without
bumping into an obstacle by using the sen-
sor query teletype. Assuming you have a
feature called ‘‘obstacle ahead’’ you may
avoid bumping into these objects as you
proceed to another location by continu-
ously utilizing this query. The knowledge
you have of the objects together with the
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ability to sense their location provides you
with the ability to perform the same simple
class of tasks as befere, and exemplifies a
sensory extended complete world model.

If the nature of the objects is
unbounded, either with respect to your
ability to sense them or spatially so that
they possibly isolate you from your desti-
nation, then success, assuming the
existence of a solution, depends on how
‘“‘clever’’ you are in forming task relevant
hypotheses about the environment, and fol-
lows from the following claim: the only
method for obtaining information about the
outside is to ask questions of the form ‘‘Is
there an instance of primitive query feature
X in the environment?’’, or questions
which are compounded of such queries.

Your ‘‘plan’’ to achieve the task then,
is, together with the actions necessary to
achieve it, a sequence of hypothesized
queries sufficient to find the additional
information needed to make the actions
sufficient. Your mental activity consists of
(incrementally) first ‘‘imagining’’, i.e.,
hypothesizing, the situation, in terms of the
available features, prior to finding whether
each is the case or not. Your timeliness
and effectiveness in achieving the task is,
for a given primitive query feature set,
dependent on the order in which the com-
pounded queries are asked.

It might be argued that a query of the
form ‘‘What's out there?’’, resulting in an
enumeration of all instances of the primi-
tive query feature set, will contain as a
subset all relevant information. But not
only is this computationally expensive, but
one is still left with the essence of the ori-
ginal problem: the algorithmic determina-
ton of the criteria by which the task
relevant subset is found. :

A positive response to a compound
query of the form ‘‘Is there an instance of
either one of the features A or B?’’, con-
tains intrinsic uncertainty as to which of
either feature A or B has occurred. Most
queries will contain some degree of gen-
erality compounded of such disjoint
features, and hence will have an intrinsic
uncertainty  associated with positive
responses. (For example, see [27] for an
application of this to the problem of
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motion (uncertainty) determination from a
sequence of images.)

The point we wish to make is that in
attempting to find out about the environ-
ment you are in, you are intrinsically lim-
ited to making queries which can always
be answered by a simple ‘‘yes’’ or ‘“‘no’’
as to whether a (predefined) feature or
complex of features does or does not exist
within the sensed region you are in. Stated
another way, your paradigm is limited to
making ‘‘matches’’ between a fixed set of
internally held or generated patterns and
their occurrence as feature instances in the
environment.

There is no algorithmic procedure by
which the environment is forced to reveal
itself, except that by which an hypothesis is
first generated and then matched against
the environment.

We will refer to this method of
acquiring information about the physical
environment as the hypothesized query
paradigm.

A good argument can be made for
supposing that human sensor processing is
based on the hypothesized query paradigm
to acquire information about the external
physical world. This is especially well
documented for human vision [17]. At a
higher level, it is the ‘‘mind set’’ (expecta-
tions) whose characterization is attempted
in the psychologist’s Rorschach test. This
paradigm of matching predefined features,
patterns, hypotheses etc., is a fundamental
one and 1is ubiquitous within human
endeavors. The scientific  Method,
mathematics, diagnostic medicine and even
a court trial provide examples whereby
hypotheses, propositions, statements etc.,
are first generated, and then solicitation
made as to their truth or falsity.

An exception is the logician’s explicit
purpose in creating a methodology for
establishing complete world models for
some area of discourse (usually mathemati-
cal in nature). By starting from some set of
axioms, he attempts to provide a method
by which the body of knowledge is gen-
erated systematically. As a practical
matter, Godel’s incompleteness theorem
established that the logician’s objective is
not possible (at least for any model com-
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plex enough to include arithmetic), as there
will always be statements which are
correct but not capable of being generated
by any algorithmic process. This in fact
supports the argument that an information
theoretic model adds to its knowledge
about its physical environment only by
hypothesized query.

For an autonomous agent, expecta-
tions, generated as a by product of plan-
ning, serve as the basis for hypothesized
queries in search of the events out of
which the world model homomorphism is
maintained.

We suggest that an information
theoretic theory of questions and answers,
based not on model directed inference, but
rather on task directed sensing of the
environment, is needed in support of the
design of such an agent. Such a theory
would provide the basis for an algorithmic
articulation of the scientific method within
closed or ‘‘engineered’’ environments, and
would provide the basis for artificial
epistemology.

6. ELEMENTARY
EPISTEMOLOGY

By epistemology is meant the study
of the grounds for belief and the nature of
knowledge, and is operationally identifiable
with the scientific method. Artificial
epistemology deals with similar issues, but
within closed artificial (i.e., designed by a
human) subsystems, such as a robot’s
information state space model of it’s
workspace.

Artificial epistemology is concerned
with characterizing the necessary and
sufficient information contained in infor-
mation state space in order that the
machine be able to perform a given rask.
A task is defined as a pair of initial and
final states of physical state space, in
which the machine is to transform the ini-
tial state into the final state through the use
of its effectors. Operationally, artificial
epistemology is just the algorithmic articu-
lation of (a task induced subset of) the
scientific method utilizing a suite of
artificial sensors.

From the point of view of the design
of a machine to accomplish a given task,

ARTIFICIAL

physical state space has three independent
partitions superimposed on it. The first
partition, induced by (1), the machine’s
task definition, induces in turn the neces-
sary discriminating ability of (2), the sen-
sor, and (3), effector, partitions.

More specifically, a particular sensor
differentiates between discretized measure-
ments performed on some set of physical
state variables. This results in the partition-
ing of all physical state space into
equivalence classes, in which all elements
of an equivalence class have the same
value with respect to that sensor measure-
ment. Two orthogonal sensors measure
two independent physical state variables
and generate the cross product of their
respective equivalence classes. (See [24]
for the application of this idea to naviga-
tion.)

Similarly, a given set of effectors
serve to partition physical state space into
equivalence classes in which members of
each such class all correspond to the same
control variable state setting.

A task is a given partition together
with two identified states: the current state
and the desired task completion state. A
successful execution of the task
corresponds to going from the current state
to the task completion state through a
sequence of intermediate states, each of
which is obtainable and distinguishable by
effectors and sensors, respectively, from
the previous state.

A given task and workspace in which
the task is to be carried out also determine
a set of predicates. These predicates in turn
determine the sensor and effector partition-
ing needed to carry out the task: sensors
must provide sufficient information about a
sensor equivalence class that it be distin-
guishable from other classes of the parti-
tion. Analogously, effector predicates,
corresponding to effector states, must be
sufficient to provide the class of physical
state  transitions  between  effector
equivalence classes needed for carrying out
the task.

Artificial epistemology is concerned
with the mathematical characterization of
task definitions in terms of workspace
equivalence class partitioning, together
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with methods of proving that given
effector and sensor. partiions provide a
“‘belief*” structure sufficient for carrying
out that task.

Kripke structures [15,21] are related
to the above in that they attempt to provide
a language and associated semantics within
the framework of modal logic for world
model homomorphism partitions, called
possible worlds by Kripke. We have sug-
gested here, that in general, three such
structures are needed i.e., task, sensor
(world model), and effector structures.
However, we also suggest the possibility
that two or more of these partitionings be
identical. For example, simple servoing
results when the sensor and effector parti-
tions are identical: associated with each
effector control variable is an identical sen-
sor variable whose interpretation is the
same or computationally simply related.
Hence a simple predict, detect and correct
algorithm exists for their control as dep-
icted in figure 1.

7. PLANNING EVENTS IN AN
INCOMPLETE WORLD MODEL

A collection of partially ordered (with
respect to time, cost and other priorities)
tasks constitutes a mission. Planning is the
compilation of task(s), stated in terms of
an information theoretic task model, into
actuation sequences stated in terms of the
planning and execution state space subset
of information theoretic state space, and is
used for generating physical state space
changes through the use of its effectors.
An actuation sequence is made up of
(atomic) actions which reflect the elemen-
tary changes of physical state space by a
particular suite of effectors.

An action is not only determined by
task intermediate physical states, but also
by goals implicit in the definition of a task
and the cost of using the resources avail-
able to the machine. These goals are used
to choose among alternative action
sequences for achieving the task in ways
which tradeoff the ‘‘value’’ of intermediate
task states against their ‘‘cost’’. An
action also contains the instantiation of
information descriptive of physical state
space where the task is to be performed.
This latter information may be known a

priori, or only become known incremen-
tally through the use of the machine’s sen-
SOrS.

For example, the task of going from
location A to B is compiled into an action
entailing the control of effectors for mov-
ing from A to B. The particular coordi-
nates used are determined by A and B and
obstacles between them. Among the many
routes, the one best meeting the goals of
least time, fuel etc., is chosen.

The compilation of a task into an
actuation sequence for controlling effectors
is still not sufficient for intelligent
behavior. As an action is ‘‘executed’’,
changes in physical state space must be
kept in synchrony with the plan. For a
machine whose world model is complete,
this is performed via the homomorphism,
but for incomplete world models, these
physical state changes must be selected
from all those available to it through the
use of its sensors. We argue here that this
selection process is critical, and its ela-
boration provides the constructive basis for
designing an autonomous agent.

The concept of an event is central to
this basis, and from an external point of
view is identified with precisely those
changes of external physical state space
which result in a modification of the auto-
nomous agent’s world model homomor-
phism, i.e., an event is defined operation-
ally in terms of whether the subsequent
objective behavior of the agent is different
from what would have been the case had
the event not occurred. The definition is
made in the context of a hierarchy of set
inclusions with event being the most
exclusive. This hierarchy and the
corresponding selection criteria is depicted
in figure 4.

The most inclusive set of information
sources for an intelligent machine are the
changes of external physical state space
(world space potential). In order for these
to have any effect on an intelligent
machine however, they must be capable of
being detected by a sensor. This set of
potentially detectable changes of physical
state (sensory space potential) is further
restricted by those actually detected, since
most sensors will not be ‘‘omniscient’’
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Figure 4. An autonomous agent’s events
are jointly selected by a hierarchy of sen-
sor selection criteria, starting with those
determined by the designer through those
which are task specific, together with the
corresponding hierarchy of induced in-
stances contained in the world space poten-
tial.

with respect to the modality they measure,
but will be dependent upon, for example,
their location and the time (sensory space
frame). Further, these detected changes of
state must be transformed into changes in a
subset of information state space which we
will call observations, which in general are
in terms of a priori defined generic ‘‘pat-
terns’’ of atomic features. The machine at
this point may record these observations
for latter perusal etc., but one additional
restrictive process must be brought to bear
in order for the external change of state to
cause an information state space change
and hence be an event. This restriction .is
that the observation must be ‘‘matched’’
with an expectation associated with the
achievement of an action resulting from
the ‘‘decomposition’’ of higher level action
sequences.

For an autonomous agent r then, an
information theoretic r-event, is a change
of external physical state space whose
occurrence is matched to a world model
state space expectation stemming from the
‘‘decomposition’” of r’s task. In other
words, all r-events, or r’s ‘“‘events’’, must
be anticipated by a ‘‘plan’’, which in
effect is the ‘‘organized’’ representation
for achieving these events within some
predefined set of  ‘‘eventualities’
significant to the success of the task. It is
in this way that exclusively relevant exter-
nal changes of state are (1), extracted from
the environment, (2) kept in synchrony
with the execution of the plan, and (3),
made ‘‘meaningful’”’ by being identified
with a particular action of the plan. Obser-
vations not matched represent changes of
external state which are ‘‘uneventful”
(irrelevant) with respect to the current
plan.

A plan then consists of action
sequences and associated expectation
sequences. As presented above, the events
resulting from a match between the expec-
tations and the corresponding features from
sensory space are the enabling events, and
are identifiable with the achievement of
corresponding actions. Enabling events are
based on the a priori information available
to the planner when the feasible plan, con-
sisting of action and expectation
sequences, was generated. The execution
of this plan entails the plan’s resolution
against reality, and must include, due to
the incomplete world model, the possibility
of new information being acquired which
negates the possibility of achieving what
would otherwise be the next enabling
event. Hence the planner must also incor-
porate disabling expectations which poten-
tially match and become disabling evenis.
The significance of a disabling event is
that it serves as a source of new informa-
tion which must now be used to modify
the currently disabled plan and turn it into
an updated feasible plan.

Planning has two aspects. Feasibility
planning is concerned with the evaluation
of altemative strategies for accomplishing
a given task by resolving consequences of
these alternatives until one alternative is, to
some degree of confidence, superior to the
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remaining. Feasibility planning requires of
the world model the ability to hypothesize
actions and derivé’ their task relevant
consequences. We have downplayed this
process, not because it is not important,
but because its very importance has gen-
erated a large literature [8,25,28].

Once the feasible plan is chosen, plan
decomposition proceeds by resolving to
successively higher precision the instantia-
ton of that single plan. For a complete
world model, feasibility planning is simply
the ability to compute the homomorphism.
If only an incomplete world model is
available, then disabling expectations must
be generated so as to acquire the appropri-
ate additional information as it becomes
available.

From a logical point of view, the
current feasible plan is a representation of
the known necessary actions needed to
generate the events required to carry out
the task. However, because the informa-
tion about the world is incomplete, these
actions and resulting events are not neces-
sarily sufficient. Hence there must also be
a method of acquiring these unknown
events in a manner that allows them to
determine additional enabling events to be
incorporated into the plan. The disabling
expectations serve this purpose.

For example, a plan for going from
point A to point B with no a priori known
objects in the way might also want to
incorporate the ongoing (disabling) expec-
tation of encountering an obstacle. The
expectation may be a generic one, but
when matched against a specific instance
results in the information needed to gen-
erate new actions and enabling events
associated with going around the object.

Events take place in four dimensional
space-time, so that expectations may be
viewed as variously dimensioned elements
in this space. Expectations may be thought
of as having windows which open and
close as these elements are entered and
exited. The failure of a disabling event to
occur before the associated window closes
is of no concern. For enabling events how-
ever, some may be unconditional enabling
events, so that their failure to occur within
their window is a disabling event in itself.

Other enabling events may be conditional
enabling events whose occurrence is
optional. For example, given the task of
detecting an object ‘‘presumed’’ to be in
some designated area determines a spatial
window within which a conditional ena-
bling event corresponding to the objects
detection is expected. Its failure to occur
before its associated window closes signals
only that it was not detected, an internal
event which must be one of the possible
outcomes incorporated in the plan. The
various expectation categories and their
relationships provide for an ‘‘event cal-
culus’’ whose interrelationships potentially
provide the basis for the generation of, rea-
soning about, and subsequent execution of
plans.

So far all events have been in terms
of atomic features taken from observations.
These are atomic events, and represent the
most primitive level of state transitions.
Compound events are defined in terms of
other lower level events and provide the
basis by which matching of higher level
compound features are matched with
higher level expectations. This provides the
basis by which event acquisition followed
by event assimilation is performed. Event
assimilation is what occurs after an expec-
taton is matched, hence generating the
event, and relates this event instance back
to the task via the plan from which the ori-
ginal expectation was associated, hence
giving the event ‘‘meaning’’.

The importance of event assimilation
is demonstrated by its absence in the fol-
lowing:

‘““There were a total of six of them,
three red, one black and two blue.”

Atomic events consisting of letter,
word and semantic identification etc., took
place in the readers mind, but the result
was not assimilated due to the lack of a
proper  higher level expectation associated
with the readers task.

For a given task there are in general
an infinite number of potentially disabling
events. Since not all of these eventualities
can be looked for as execution of the plan
is carried out, some must be discarded,
with the result that the autonomous agent
will be oblivious to (most) changes in phy-
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sical state space. A large component of
intelligent behavior consists of the process
by which a finite number of them are
selected and prioritized for inclusion in
what might go ‘‘wrong’’ with the current
plan at its various junctures.

8. EVENT-DRIVEN HIERARCHICAL
CONTROL

We have argued that for any auto-
nomous agent whose world model is
incomplete with respect to carrying out
some class of tasks, a mechanism for
matching task specific expectations with
predefined features of sensory space pro-
vides the basis for selecting just that infor-
mation necessary and sufficient (if this is
possible) to the carrying out of the task.
This space of potential expectations is anti-
cipated by the designer in selecting sen-
sors, e.g., modalities and frequencies etc.,
and by the algorithms chosen to extract
predefined features. Even further, we have
argued that potential ‘‘soft’’ events must
be ‘‘programmable’’ from expectations
generated from planning, i.e., information
theoretic level expectations. The result is
computational efficiency as well as keeping
an autonomous agent’s behavior as task
specific as possible.

This presents the designer of an auto-
nomous agent with the central design
issue: At what level, hardware, algorithmic
or information theoretic modeling, should
a given expectation be incorporated?

In this section we apply these ideas to
the hierarchical control architecture for
real time control [1,20,30].

The general form, depicted in figure
5, may be thought of as imposing three
‘“‘legs’’ on information state space. These
legs are hierarchical in that they resolve
space and time most finely at the bottom.
The legs perform the role of (1), feasibility
planning, plan decomposition and execu-
tion, (2), multi-sensor data acquisition,
fusion, interpretation and assimilation, and
(3), a world model homomorphism acting
as an intermediary between (1) and (2).

Figure 5 is not to be thought of as an
actual architecture, but rather the graphical
depiction of the relationship between the
concepts described here. For example, in
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Figure 5. The dynamics of event-driven
hierarchical control include, on the right, a
descending hierarchy of feasibility plan-
ning, plan decomposition and instantiation,
terminating in execution, and on the left,
an ascending hierarchy of multi-sensor data
extraction, fusion, interpretation and as-
similation, with the world model
homomorphism acting to match their
respective expectations and features. The
resulting matches constitute the agents
events.

an actual implementation, the actual
number of levels, e.g., of plan decomposi-
tion and instantiation, will reflect the par-
ticular requirements of the task(s) to be
performed.

An additional component, in the form
of common memory, supports several
types of ‘‘two way mapping’’ (bijective)
functions. As these are central to the abil-
ity to compute the homomorphism between
information state space and physical state
space we list them explicitly:
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(1) Spatial indexing map: Given a loca-
tion in space, ¢.g., a point, region etc.,
determine what object(s) are there, or
inversely, given these objects, deter-
mine their location(s).

(2) Object attribute map: Given a set of
attributes and/or attribute values,
determine the objects satisfying them,
and inversely.

(3) Sensor context map: The dynamic
context within which all sensory
interpretation, i.e., the transcription of
time/space dependent features of a
sensory frame into time/space invari-
ant features, takes place.

(4) Task/Goal Map: A map relating the
task, and goals constraining its
achievement, to expectations and
events.

Information state space interacts with
physical state space, or as it will be
referred to here, the world space potential,
at the bottom. On the left, sensors provide
data to an ascending hierarchy of increas-

ing integration. Roughly these levels are,

starting at the bottom:

(1) Signal Acquisition and Feature
Extraction: Signals, whose interpreta-
tion is predefined, e.g., clock ticks,
fuel left, velocity, location etc. and
are generated by sensors specific to
the signal, and predefined sensory
features are continuously looked for
and extracted in the current sensor
frame. We call these extracted
features observations.

(2) Space/Time Integration and Fusion:
Signals and atomic features are joined
in patterns coming from an attention
controller, forming compound
features.

(3) Event Extraction: The matching of an
observed (instance of) compound
feature and a (generic) expectation,
e.g., a man is coming toward me.

(4) Event Assimilation: The process
whereby an event is integrated within
the context of the cumrent task
directed behavior, e.g., the man com-
ing toward me is my brother, whom I
am meeting for lunch.

The first two levels constitute what
might be called a preastentive phase while
the latter two levels constitute a postarten-
tive phase. The first makes up the pool of
information aquired by the sensors in a
sensor-frame, while the latter represent that
select subset extracted from that pool by
virtue of their having been matched via the
outgrowth of an expectation.

Clearly, what we have in mind here
for sensory processing is a kind of general-
ized model-based vision paradigm [30].
The central idea is that at each level, other
than at the lowest, the only information to
become assimilated into information state
space is that which has been anticipated by
expectations which are in a form to be
matched from a set of predefined features.
At the lowest level, the features to be
extracted are determined during the design
process by the class of tasks which the
machine is expected to carry out. The so
called ‘‘blackboard’’ model, used in the
Hearsay-II  architecture [13] seems
appropriate for performing this hierarchical
integration [9,12]. ‘‘Knowledge sources’’
coming from below in the form of feature
observations are matched hierarchically to
predictions derived from hypotheses in turn
stemming from expectations.

In general, feasibility planning cannot
a priori place a strict chronological order
on when the expected events will actually
occur, but can only place a partial order on
them [28]. However, the actual occurrence
of some event during execution of the plan
may cause the order, time or time range of
other expected events to be determined. In
addition, some expected events will only
conditionally occur, or will be mutually
exclusive with others etc. Since it is not
desirable that all possible expected events
be looked for simultaneously, a technique
borrowed from discrete simulation can be
used to order expectations and hence con-
trol the opening and closing of the win-
dows associated with them, namely the
event queue.

All expectations are associated with
either a predicted time range or location
range, i.e., their window in space-time.
Expectations whose time range to occur
can be predicted are placed on a partially
ordered event queue at the proper location.
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The top(s) of this queue, when real time
catches up to the internal simulated time,
will contain the expectation(s) which can
be looked for. The power of this technique
lies in the fact that expectations can be
‘“‘chained’’ by causing an event to spawn
later expectation(s). In this way, the exact
time and order of events hypothesized by
the planner, in the form of the expectation
sequence, need not be determined until
execution of the plan.

For example, the event associated
with the time at which a course trajectory
is completed and a new heading started,
can cause the insertion of an analogous
expectation corresponding to the comple-
tion of the second trajectory, etc. In this
way each trajectory of a multi-trajectory
route spawns expectations for instantiating
the specifics for the following trajectory,
so that the events associated with the exe-
cution of become self-sustaining for the
entire route. The same technique may be
applied to other expected events which are
partially ordered with respect to one
another.

In analogy with the partially ordered
temporal event queue, we define a spatial
event queue, which orders with respect to
location and orientation. Given the current
location, this queue contains the antici-
pated events for which predictions can be
made about sensory space features at that
location. This is then used to predict and
focus attention in the processing of sensory
data as a function of location and orienta-
tion.

On the right hand of figure 5 is the
descending hierarchy of feasibility plan-
ning, plan decomposition and instantiation,
and execution, i.e.,, the generation of
sequences of actions via the effectors to
accomplish a task given at the top of the
hierarchy.

For an a priori complete world model,
in which the successful generation of a
feasible plan is tantamount to its successful
execution, the hierarchy is as stated. In the
case where a priori information must be
augmented by sensory data for world
model completeness, planning must also, in
conjunction with effector commands, gen-
erate expectations to be used by sensory

processing to acquire information not
known a priori.

In an incomplete world model, the
linear hierarchy becomes much less a dep-
iction of what must occur. In the case of a
complete world model, the feasible plan
need only be instantiated with information
either known a priori or known a priori
that it can be acquired through sensory
processing. In an incomplete world model,
any or all levels of the decomposition and
instantiation process must be prepared to
reject as infeasible the (sub)task given it.
Hence the rather static hierarchy of the
complete world model must be replaced
with the much more dynamic process by
which each level of the hierarchy must be
prepared to perform feasibility planning for
the (sub)task at that level. Knowledge of
when this feasibility planning is required to
take place is critically dependent on the
occurrence of disabling events, which
event also (potentially) provides the addi-
tional information required to generate the
new feasible (sub)plan.

Status information ascends from each
level to the level above it, and contains
information as to the completion of
(sub)tasks. For example, if in response to a
disabling event, a particular level is unable
to generate a new feasible plan, then this
information together with the disabling
event instantiation information is passed up
to the next higher level, where a broader
set of alternatives for feasibility planning
can be evaluated within the (new) altered
context.

Another consequence of the inability
to compute the state of the environment as
a function of effector actions is the need to
continually assess the task relevant events
extracted from physical state space. This
activity is controlled by an assessment
sequence which has been generated in
parallel with the actuation control
sequence. A major component of this
assessment sequence is the hierarchically
descending expectation sequence described
carlier by which the enabling and potential
disabling events were acquired. After event
acquisition, the hierarchically ascending
assessment sequence is also used to iden-
tify these events with various stages of
task accomplishment, and hence provides
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at the top of the hierarchy the basis for
situation assessment, with respect to the
task. -

The third leg of information state
space is the world model. At each level of
the hierarchy it acts as an intermediary by
providing appropriately resolved enabling
and disabling events acquired by sensory
processing to planning and execution. In
addition, world modeling performs three
other tasks of a hierarchical nature:

(1) Provides the means by which
hypothesized actions generated as part
of feasibility planning are evaluated
for their consequences. Evaluation
may occur in the form of closed form
solutions, model-based simulation or
incomplete heuristic methods.

(2) Provides the basis for task assessment
by resolving assimilated events
(obtained from task level sensor pro-
cessing) against the assessment
sequence to generate an assessment
history. This history is used for,
among other things, feasibility
(re)planning in which planning must
start from an intermediate state of
affairs.

(3) Provides for the hierarchical decom-
position of expectations for the pur-
pose of predicting features and the
controlling of focus of attention in
sensor processing by prioritizing the
efforts ‘at matching predicted features
and observations.

Sensor processing is controlled from
below by the observations it makes and
from above by the patterns looked for as
determined by predictions generated by
world modeling based on expectations gen-
erated in conjunction with the decomposi-
tion and instantiation of a feasible plan.

9. SUMMARY

We have argued in this paper that the
classical model of control, within the con-
text of what we have called a complete
world model, is inadequate for a control
architecture for an autonomous agent. This
is in large part because the classical model
does not address the problem of selective
sensory processing: /n order that a change
in physical state space make a change in

information theoretic state space, the
change in physical state must have been
anticipated in the form of an appropriate
expectation. This expectation serves as a
template against physical state space in
order that an instance be found, and is
mandatory in an agent which has only a
partial model of its environment.

The concept of an event, identified
with the acquisition of sensory information
which results in behavior different than
what otherwise would have occurred, is
central to an information theoretic under-
standing of an autonomous agent. We
have argued that these events, unlike in the
classical control model, must be actively
selected from the much larger available
set, by matching expectations generated by
task specific planning.

Events may be further broken down
into enabling and disabling events. The
enabling events are just those which, based
on a current incomplete world model, are
sufficient for achieving the task. The disa-
bling ones are not necessary, but if they
occur, provide the needed additional infor-
mation to generate the new set of sufficient
events. Since not every potentially disa-
bling event can be looked for, a large part
of intelligence is constituted in the ability
to select just those which have a high pro-
bability of occurring.

We have argued that the basis for
understanding these issues lies in treating
physical state space and information state
space simultaneously.
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