
A CONTROL STRUCTURE FOR
MULTI-TASKING WORKSTATIONS

Richard J. Norcross

Reprinted from PROCEEDINGS OF THE 1988 IEEE INTERNATIONAL
CONFERENCE ON ROBOTICS AND AUTOMATION,

Philadelphia, Pennsylvania, April 24-29, 1988

A Control Structure for Multi-Tasking Workstations

Richard J. Norcross

Robot Systems Divis ion
National Bureau of Standards

Gaihburg,MD 20899

Abstract

Manufacturing control modules, which are bascd on hierarchical
control theory, decompose commands from a supervisory
controller into elementary tasks to be performed by subordinate
systems. The ability to simultaneously manage coordinated and
independent functions of subordinates, while also processing
new commands from the supervisory controller, i s beneficial in
advanced implementations of these controllers. T h i s paper
describes a control structure, based on computer operating
system principles, which provides the desired capabilities.
Utilizing concurrent processing and coordinating tasks via
resource allocation provides extensive modularity which
simplifies integration. gives a multi-processing environment,
and produces the aforementioned capabilities.

Introduction

The Automated Manufacturing Research Facility (AMRF) at the
National Bureau of Standards utilizes a five layer control
hierarchy to manage production within an automated factory
[1.21. Although the upper levels have not been implemented,
the AMRF operates through the hierarchy as a small batch
machine shop with six workstations. The Cleaning and
Debuning Workstation (CDWS) is the newest workstation at the
AMRF and represents a significant departure from other
workstations. While most workstations in the AMRF use a
single robot or AGV to assist autonomous machines in
performing a single function, the CDWS (figure 1) incorporates
two robots to assist and perform three distinct operations:
debumng, washing, and buffing[3]. The robots can work
cooperatively, independently, or in some combination of the
two. There are also tasks which either robot can perform and
for which there i s no preference prior to execution. The
workstation's tray stations provide a simple parts buffer and
enables the workstation to act on new commands while
perfonning the aforementioned tasks. These distinctions requirt
the CDWS workstation conmller to have significant flexibility.

A manufacturing control module within a hierarchical control
scheme decomposes input tasks into subtasks, assigns subtasks
and allocates resources to subordinates. analyzes subordinate
feedback, initiates appropriate corrective actions, relays status to
the supervisory controller, and is highly interactive and easily
extensible [4,5]. The CDWS requires its controller to have
additional capabilities. First, to utilize the input buffer, the
controller must process multiple independent commands from

This work is partially supported by funding from the Navy MANTECH
&gram and was prepared by U.S. Government employees as part of Uteir
official duties and is therefore a work of the U. S. Government and not
subject to copyright. Equipment listings in this paper do not imply a
recommendation by NBS mr that the equipment i s the best for the purpose.

n

Figure 1. Cleaning andDebuning Workstation Layout

the supervisor. Second, to utilize the redundant components
(the two robots), the controller must incorporate alternatives in
executing tasks. Finally tomaximize the throughput of the
different workstation functions the controller must blend
independent and coordinated tasks.

The AMRF's controllers are designed to be general purpose and
data-driven.The controllen use two forms of data: task specific
data (e.g., a machining lot's contents) and instructions on how
to perform the task (i.e., programming). Thus, a controller
provides the environment which executes the programs with the
task specific data. Hereafter this environment is referred to as
the erecution engine. Although implemented through various
coding schemes, the workstations in the AMRF generally use a
Finite State Machine (FSM) execution engine with task
instructions represented in either state tables or "process plans".
The state table representation provides enormous flexibility, but
a combinational explosion results when handling multiple
commands. Conversely, the "process plan" representation
readily handles multiple commands, but system changes require
substantial modifications to the execution engine.

In computers, the operating system provides a multi-processing
environment for the computer's tasks. Duplication of basic
principles in a controller's execution engine produces a
multi-tasking controller. Furthermore, by combining portions
of state tables and process plans, the controller has the
maintainability and flexibility desired. Thus, the CDWS's
controller combines the desirable aspects of the controllers in the
AMRF with an execution engine based on a computer operating
system.

II33
CH2555-1/88/0000/1133S01.00 0 1988 IEEE

Execution Engine

"Generic" controllers have an execution engine which mns the
system's programs. The engine does not reflect the particular
activities of a system as much as its capabilities, i.e., the
execution engine provides the environment for executing the
pmgxw+ng which &fives the system's tasks. Similarly, a
computa s operating system supplies the environment for the
execution of programs[6,73. The kernel provides process
management, synchronization, communications, and device
management functions of an operating system[6]. The control
structure described in this paper uses basic computer operating

principles to implementitsexecution engine s i rn i l a t to
the b e l of a small operating system Modeling a conmllcr 011
an operating system kernel results in a controller with
multi-pl.ocessing capabilities andhighly modular programming.

Process management in a kernel includes the creation,
manipulation, suspension, resumption, and termination of
processes[7]. Following the operating system concept of a
hierarchical process structure, the CDWS's control structure
creates tasks hierarchically. The processes form a directed
rooted tree whose nodes correspond to processes with one
parent and zero or more children. A process definition (the
programming) specifies the precedence relationships which
direct the creation of the child pmcesses.

The control system creates a new process (task) for every
executed step in the function defmition. "Creation" means the
system generates a job control block (JCB) for the task and
adds that block to an active queue. The JCB is a data structure
which defiies the curnnt state of the task. Like computer
operating systems, this information includes the task's process
relationships, status, and resome allocations.

The active queue is a l ist of tasks waiting for an opportunity to
execute. Only a portion of the tasks are in the active queue. The
system suspends (i.e., removes from the active queue) alltasks
which are blocked by a child task or mource allocation conflict.
Tasks resume execution when the resource conflict is resolved,
a child task completes, or when directed by a separate task.
Tasks execute concurrently with their parent and no task may
execute unless i t i s a member of the task hierarchy.

A job control blocks process relationships include pointers to
the tasks parent, to it's offspring, and to a hierarchical data
structure which parallels the hierarchical process structure. The
child JCB's data.pointer points to the parent's data list when
spawned. The parent's entries, made before spawning the
child, are shared by the parent. the child, and by the child's
children. Since the data is shared the hierarchical data structure
provides inter -process communications and some
synchronization between the various tasks of a sub--.

While inter-process communication provides some
synchronization, the primary mechanism for task coordination i s
resource allocation. The system's programs (the decomposition
plans) contain a list of requiredresources. The system allocates
resources to a task if the resource is free or held by the task's
parent If the resource cannot be allocated. the task i s blocked
and the system adds the task to a waiting list for that resource.
When the resource becomes available, the system returns the
waiting tasks to the active queue and the tasks compete for the
resource. The first task, whose resources are al l available,
becomes active while the othersremto the waiting list. In the
current implementation, in the CDWS, starvation and deadlocks
are not possible so the active queue and wait lists are combined.
However, the potential for starvation and deadlocks could exist
in other applications and proven solutions from operating

systems should be successful.

Since system coordination is based on device management,
programming the s y s m is highly modular. The programming
of conflicting tasks m y address their resource requirements
individually, greatly simplifying programming. The use of
modular components in decompositions also simplifies on-line
planning. The advantage of this execution engine i s that
execution of separate tasks proceed independently while
intertwined tasks remain coordinated. The engine is easily
extensible and may incorporate other +rating systems
solutions as problems mise. Most importantly, this execution
engine fulfi l ls the rcquiRmcnts of a multi-tasking workstation
with redundant components.

System Programming

The execution engine functions as a simple operating system.
Thus, it does not directly control the workstation but provides
an environment for the execution of programs. These programs
specify how commands decompose into instructions to
subordinate systems. A command from the supervisor forms a
task which decomposes into multiple sub-tasks. These tasks
decompose further until the decomposition forms a command
for a subordinate controller. At each level, the decomposition i s
guided by aprogram, called a decompositionplan.

Decomposition Plan Format
Decomposition plans contain three groups of data: parameters,
resources, and steps. This follows the Ah4RF Process Planning
Format's parameters. requirements, and procedure sections [SI,
however. differences exist in the use and form of each section.
Particularly, the steps contain alternatives and prerequisite
functions similar to state tables.

Name and value pairs define parameters. The name i s the e n q
into the hierarchical data structure and the value is the default
value for that parameter. When spawned, a task adds those of
itsparameters which are not already members of i ts branch of
the data shucture to the data structure. If the decomposition call
does not reference a given parameter and that parameter i s not
already amember of the data l ist then the default value i s used.

Resources are essentially scheduling and coordinatlon flags.
They form the control system's primary method to synchronize
tasks. The resource list contains the hardware and software
items the plan needs for decomposition. Alternative resource
sets are listed when applicable. Tasks do not decompose until
all resources, from one alternative set, are allocated and no
resources are &mated unless all arc available.

The execution steps are the heart of the decomposition plan.
Each step contains predicate and action elements. The predicate
elements test the state of the system and are a list of prenquisite
steps and system query functions. Through the predicate
elements, process relationships are constructed. The action
elements are commands with arguments. A command i s either a
function call or a plan to decompose.

A plan's execution is a review of the decomposition steps. Th is
review consists of comparing the steps' prerequisites to the
system's current state. The system must not change during the
review. Thus, the review i s a critical section and must be kept
short. Th is execution and programming format avoids intempt
requirements and simplifies implementation, maintenance, and
troubleshooting. Thus the system segments tasks and pennits
multi-task decomposltion and control.

I I34

On-line Planning
On-line planning avoids the requirement to maintain several
similar decomposition plans. Based on the system's
modularity, functions can be written which produce decom-
position plans which decompose to existing plans. The
planning approach should be reasonably quick so as to not
impede the controller. Also planning functions may be
implemented on a separate processor.

Error Recovery
The hierarchical task structure also simplirres automatic e m r
recovery. Recovery from an error has four steps: isolation,
investigation, correction, and continuation. While the
investigation and comt ion annot time critical, the error must
be isolated quickly to avoid being compounded. Pruning the
decomposition tree automatically isobs the ~ C S O U ~ ~ ~ Saffected
by the error since the controller would issue no commands
affecting the XSOUIXS held in the pruned sub--.

Error recovery programs consist of functions which rtplace the
command in a~ancestor's JCB with one which performs the
recovery. This technique necessarily requires the recovery
function to know the decomposition hierarchy. However, this is
not a loss of generality since investigation for recovery q u i r e s
the determination of the original intent A very robust pnxedu~
i s required if the "prune andreplace"procedure reaches the mot
of the hierarchy (orderly shutdown andrequest for help).

Example

Consider moving a workpiece from the VISE to the WASHER
in the CDWS (fig 1). Based on the decomposition plan in figure
2, the command is "move-part P52 WASHER. "$$part"
and "$$goal" are assigned the values "PS2" and "WASHER'
respectively. Part PS2's current position and description are in
the world model and thus not specified in the command.
Although a robot wil l be required to move the workpiece, the
decomposition of move-part does not require any mources.

name: move-part
parameters: ($$part nil) ($$goal nil)
resources: nil
steps:
predicates action
1 (0) (set-data Smove-plan) mate-movement -plan
2 (1) exealte $$move-plan
3 (2) (=? S g d (location Span)) remove-plan $$move-plan

(2) (reset 12) M P
4 (3) rrport

Figure 2. Sample Decomposition Plan Definition

Steps 1 and 2 above form a sequential process construct. The
f i i t step calls a routine which develops a plan for moving the
part, then Step 2 executes that plan. Since the "$$move-plan"
data entry i s created prior to creating the plan, all of the tasks
offspring have access to the movement plan's name. Step 3 is a
conditional loop. If the movement plan leaves the part at i ts
ultimate goal, the plan is removed from the plan table and the
loop is exited. However if the ultimate goal was not reached
(i.e., part taken to a buffer), steps 1.2, and 3 are re-executed.

Figure 3 shows the plan created in move-part. Since there
may be several move-part's executing in the system, the name
is any unique symbol. There are three alternatives of resources
which reflect the alternatives in the "xor" construct in Step #1.
In the f i r s t alternative, the Unimate 2000 moves the workpiece
via the given sequence to the WASHER ("2" is the WASHER).

name: g100654
parameters: nil
resources: (VISE CZOOO WASHER)

(VISE060WASHER)
(VISE C2OW TRAY11)

steps:
predicates action
1 (0) (rrzourcc? c2ooo W,GHER) QCtBwve -pm (546 553.623 2)

(0) (rrsauce?060) C76O-movepan (546 876562 2)
(0) C2CtBmove -pan (546 553 623 11)

2 (1) repart

Figure 3. On-line Generated Decomposition Definition

The second alternative commands the Puma 760 todo the same
via a different sequence; while the thirdoption sends the part to
tempomy storage.

Step 4 of figure 2 and step 2 above, signal completion of the
decompositions. Upon completion the system terminates the
task by releasing the resources, removing the JCB, and
returning thepatent task to the active queue.

If an error occurs during the part movement, the resources held
by g#00654 define the affected area of the workstation.
Unrelated activity would not be affected by the failure. The
command which replaces g#OO654 specifies the recovery and
may Pf fec t moreanas,but would wait for them to be available.

Summary

This paper outlines a controller structure based on computer
operating system principles. Specifically, the struchue uses Job
Control Blocks, an active queue, critical sections, hierarchical
task structure, inter-process communications, and resource
allocation to implement an execution engine which segments
tasks and provides for control of multiple independent tasks and
coordination of multiple actors. The advantages are explained in
terms of modular programming which improves flexibility,
on-line planning, and error recovery. The principles used in this
controller are applicable to any workstation controller which
performs multiple functions, utilizes on-line planning, or
implements redundant components. These activities will become
more important as designers improve workstation utilization
rates and reliability.

References

1 J.A. Simpion. R.J. Hocken, and J.S. Albus. "The Automated
Manufacturing Research Facility of the National Bureau of Standards ",

2 J.S. Albus, A.J. Barbara. R.N. Nagel, "Theory and Practice of
Vol. l(1) ~ ~ 1 7 - 3 2 ,1982.

Hierarchical Control",
Confennce. Sept 1981.

andDeburring Workstation for the AMRF", I 22643.

A W . P' ' ' Aug 1985.

Manufacturing System", PmAu&Ui Oct 1984.

Addison -WesleyPublishing Co.Inc..Reading, MA, 1983.

Publishing Co. Inc.. Reading. MA, 1984.

NBS, March 1986.

3 H. McCain, R.D. Kilmer, K.N. Murphy, "Development of a Cleaning

4 A.T. Jones, C.R. McLean, "A Production Control Module for the

5 H. Scott, K. Strouse. "Workstation Control in a Computer Integrated

6 J. Peterson, A. Silberschatz,

7 H . M . D c i t e l , P Addison -Wesley

8 D. Gordon, "Rocess Plan Flat File Format", AMRF-Internal Repon,

I135

