
NBSIR 86-3393

Marilyn Nashma 1-1

U.S. DEPARTMENT OF COMME9CE
Nationzl Bureau of Standards
National Engineering Laboratory
Center for Manufacturing Engineering
Gaitiwrsburg. MD 20899

NBSlR 86-3393

A LOW LEVEL ROBOT INTERFACE: THE
HIGH SPEED HOST INTERFACE

Marilyn Nashman

U.S. DEPARTMENT OF COMMERCE
Nationel Bureau of Standards
National Engineering Laboratory
Center for Manufacturing Engineering
Gaithersburg, MD 20899

June 1986

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Dirsctor

Table of Contents
1. Introduction

2. System Design and Protocol

3. Commands

4. Uses for the High Speed Host Interface

5. Conclusion

6. References

Figures

Figure 1: The American Robot Merlin Arm

Figure 2: Control System Inputs and Outputs

Figure 3: The Robot Origin and Coordinate Axes

Figure 4: HSHl Architecture

Figure 5: Optimal Host Program Design

Tables

Table 1: Common Memory 'Map

,Table 2 : Common Memory Handshake Bufier

Table 3 ; HSHl Commands

1

2

4

8

9

10

Appendix A HSHI Data Structures

Appendix B Joint/Motor Conversions

Appendix C: Subroutine Library

A LOW LEVEL ROBOT INTERFACE: THE HIGH
SPEED HOST INTERFACE

Marilyn Naahman

Sensory -Interactive Robotics Group
National Bureau of Standards

Gaithersburg, MD 20899

ABSTRACT

This paper describes the High Speed Host Interface (HSHI) developed
jointly by the Robot Systems Division at the National Bureau of Standards and
the American Robot Corporation (AR). The High Speed Host Interface provides
an interface between American Robot’s software gnd hardware and the user’s
software at the lowest level of control-joint position, joint velocity, motor posi-
tion, or motor velocity. It can operate at an update rate of 256 times per second
or can be used at a csrtesian level of control at an update rate of 7.5 times per
second. The paper discusses the design of .HSHI and its capabilities ae well aa
some possible appli’cations for such a system.

June 3, 1986

A LOW LEVEL ROBOT INTERFACE: THE HIGH

SPEED HOST INTERFACE

Marilyn Nwhman

Sensory -Interactive Robotics Group

National Bureau of Standards

Gaithersburg, MD 20899

1. Introduction

. The HSHI is a low level interface designed to run on American Robot Corporations's Merlin

Robot System, a six degree of freedoF robot arm used in research as well as in industrial applica -

tions. Although this commercial equifiment w m purchased 'by' the National Bureau of Standards

and subsequently modified with the cooperation of the manufacturer, it is not the only equipment

which might have been adapted to obtain equivalent performance. The six stepper motor driven

axes are mounted on a base and consist of a waist joint, a shoulder joint, an elbow, a wrist rotate

axis, a wrist flex axis, and a hand roll axis. (Figure 1) The robot, as supplied by the American

Robot Corporation, includes not only the arm but a control system which can be programmed by

using a teach pendant or ARSMART, a language developed by AR [3]. ARSMART permits the

user to teach the robot arm poind and to move from point to point in a defined order: it is used

primarily for "pick and place" operations. While this capability is useful in many industrial

applications, it does not lend itself to the area of intelligent machines. At the National Bureau of

Standards' Robot Systems Division, we are interested in developing real-time sensory interactive

control of robots(l,4]. A real-time sensory interactive control system must decide ita output

actions based on both the commang goal and the senhry data that measure the state of the

environment. (Figure 2) In addition them results must be output to the control system at fast

- 2 -

update rates to ensure an effective and stable response. It was with that concept in mind that the

High Speed Hast Interface was designed and developed.

The basic concept of the HSHI is to provide the user access to the lowest level of the control

system through his own program control. Thus the user or host can control motor velocity and

motor position at a rate of 256 updates per second, as well as being able to control robot position

and orientation relative to a Cartesian coordinate frame located at the center of the robot (Figure

3) at a rate of 7.5 times per second. The command update rate is defined to be the delay between

the controller’s receiving a command from the host and its execution of that command- including

the appr0priat.e return of feedback status information. The types of feedback provided by the

HSHI will be discussed further when the interface commands are described.

._

2. System Design and Protocol

The physical structure of the American Robot controller consists of a Motorola 68000

microprocessor and Seven independent 6809 mickoproc&rs 131: Thek processors are housed in an

electronic enclosure which includes a disk drive system that boots a Regulus Unix system and

runs the N S H I software. Each of the 6809 processors is dedicated to a single task such aa control -

ling a single motor. The software used with each of the 68099 is stored in PROM (Programmable

Read Only Memory) chips located on the same circuit board as the 6809 which uses it. The HSHI

software runs on the 68000 system and is stored on a floppy diskette. The 68000 system commun-

icates with each of the 6809 microprocessors through shared memory over a Versabus. Using

HSHI, these interprocessor communications and protocol are invisible to the hmt programs.

User program are written in a combination of C language and 8086/8087 assembly

language on a Multibus based CPM-86 operating system. The executable program is downloaded

to an Intel 8086 microprocmor which is resident in AR’s electronic enclasure. Data is passed

between the Multibus and the Versabus systems via a Halversa Synergist board. (Figure 4)

The communication protocol between the host and the HSHI is implemented using the con-

cept of a common memory are= 4 specific section of memory is designated at^ the common

- 3 -

memory area and is available to both systems for reading or writing commands and response feed-

back (4,51. The common memory area has been divided into command and response buffers

defined at specific addresses in the memory open to both processors. Table 1 lists the buffers used

and their common memory definitions. The command buffers associated with each request will

contain all pertinent data related to that request, e.g. desired position and orientation, motor

velocities, joint positions, etc. The response buffers are written into by the HSHI and will contain

current status information relevant to the type of information requested, e.g. Cartesian position,

motor position and velocity, cycle clock time, etc. The types of information that can be either

read from or written to these addresses is predefined. The host program has write permission into

all command buflers, while the HSM program has read only access to those areas. Conversely,

the HSHI program has write permission into the response buffers, while the host programs can

only read those areas.

Unlike the contwl systems described by Barbera, Fitzgedd and Albus [2,4,5] in which read-

ing and writing into the common memory area are permitted only at specific time intervals, the

HSHI allows communication asynchronously. The HSHI is prepared to accept and act upon a new

* .

command as soon as it has completed processing its previous command. Depending on the type of

command issued, communication can take place as often as every 4 milliseconds, or as infre-

quently as every 128 milliseconds. The host or the HSHI determine whether it can read or write

from (into) the common memory area by examining a semaphore in the common memory

handshake buffer. This flag can be set to either of two values: setting it to "HOST" implies that

only the user program may read or wri te into common memory, and all status information is

guaranteed to be updated 88 of the time tag sssociated with that data When the Rag is set to

"HSHI", only the American Robot program has permission to read or write data When either

side has completed accessing the memory, the semaphore is set for the other user. Since all com-

munication is based on a "command-response-command-responee..." scenario, data integrity is

insured. Neither command requests nor respo-may be queued since the steplmk mode of

operation is enforced by the protocol,

- 4 -

The remainder of the 16 byte handshake buffer ia divided between the host and the HSHI.

The host is responsible for setting a coded command byte which not oniy instructs the HSHI

about the type of action it is to perform, but also provides a pointer to the appropriate data

buffer in common memory from which to extract (or insert) the information it wi l l require. In

addition, the host sets the current cycle time (time of command) and updates the "total -

commands -sent" value. Only after the relevant command data has been copied into the common

memory buffer area, the command value set, and the remaining bookkeeping functions performed,

does the user turn control to the HSHI by setting the "HSHT flag in the handshake bufler. Table

1 lists the buffer are= associated with each of the commands. Table 2 describes the contents of

the handshake buffer area, and Table 3 lists the defined commands and their coded command

values.

The HSHI processor uses the handshake buffer to extract the command value and the

relevant common memory data in order to perform the required task. Upon completion, it seta a

"SUCCESS" or "FAIL" flag in the buffer's response wofd, 8% well aa echoing the command value,

starting cycle time and cycle time of command completion. Feedback information is written into

the appropriate buffers, and the transaction is completed by setting the "HOST" flag.

3. Commands

There are thirteen codes which define requests to the HSHI processor, these can be divided

into two categories: commands for action and requests for status. Thie section briefiy describea

each of the command functions. Appendix A describes the structure and format d the input or

output amociated with each command value.

Command 1 (Set Servo Parameters) is a request for resetting the robot arm's servo parametem.

By issuing this instruction, the maximum acceleration, the maximum velocity, and the gain on

each of the six motor axes can be individually adjusted in real-time. In this manner, the robot's

performance can be observed and optimized for a particular application.
I

- 5 -

Command 2 (Command Cartesian Position) is used for positioning the robot arm at a point in

Cartesian space relative to the robot’s base frame. The god position and orientation refer to the

position and orientation of the tool tip which is defined to be three and one half inches forward of

the wrist axis. The X, Y, 2 coordinates are expressed in inches, and roll, pitch and yaw are

expressed in radians. If the goal point cannot be reached in a single execution cycle, the arm will

continue to move at its maximum speed until that goal position is achieved. HSHI requires 128

milliseconds to perform the necessary computations required in decomposing a Cartesian request to

servo level commands. Note: Command 4 (Read Cartesian Position) must be issued before any

Cartesian level command if that command has been preceeded by a joint or motor level com-

mand.

Command 3 (Read Motor Position and Velocity) is a status request on the state of each of the six

motors which can be executed at tht rate of once every 4 milliseconds. The values returned in

the pmaasigned memory buffem include the position of each of the mobra expressed in motor

encoder ticks, the velocity of each motor expressed in ticks per second, and the 6809 cycle time

when each motor was read. A motor encoder tick is defined to be a unique incremental motor

position equal to 1/2000 of a stepper motor shaft revolution. This command is implicitly per-

formed whenever a motor p i t i o u or motor velocity command is issued but is also provided as a

stand-alone feature.

Command 4 (Read Cartesian Position) is a status request which returns the X,Y,Z coordinates of

the tool tip in inches and its roll,pitch and yaw in radians. In addition, the current joint angles

and motor position values are updated.

Command 5 (Command Joint Position) is used to position each joint in space; its inputs consist of

six joint angles in radians. If the goal point commanded cannot be reached in a four rnillieecond

time interval, the arm will continue to move towards ita goal at maximum velocity and accelera -

tion.

Command 8 (Command Joint Velocity) queab specific joint velocitiea for each of the six robot

joints. The velocities are expressed in radians per second. After a joint velocity command baa

been imued, the jointa wil l continue to move at the commanded velocity until either another joint

velocity command is received, a new motor velocity command is received (command 9), or a halt

command (command 18) is issued. Because of the floating point arithmetic involved in this com-

mand, it is not considered to be high speed but can be executed once every 20 milliseconds.

Motor position, motor velocity, joint position, joint velocity and the 6809 cycle count buffers are

all updated a9 a result of the execution of this request.

..

Command 7 (Read Joint Position and Velocity) is a request for reading position and velocity'

status on each'of the robot joints. The position of each joint'is expressed in radians, and the

velocity is expreaaed in radians per second. Because of the floating point computations involved,

this command can only be executed every 20 milliseconds. In addition to returning the requested

joint values, motor position, motor velocity, and 6809 cycle times are also updated. This com-

mand is built into commands 5 and 6, but is also provided as a stand-alone feature.

Command 8 (Command Motor Position) is the recommended fast mode of commanding motor

position. The input for this command can either be expressed in radiana or in motor encoder

ticks. Command 8 differs from command 5 in that the HSHI can accept, act.upoo, and return

status to the host within a four millisecond time interval. This "fast" mode of operation is made

poaaible because the host program provides a utility program written for the 8087 Numeric Data

Processor which converts joint angles expressed in radians (floating point variables) into motor

encoder ticks (integers), or conversely, converts motor ticks into radians for more meaningful
,

- 7 -

status information. Appendix B describea the conversion formulas used for this purpose. At the

completion of this command, motor position, motor velocity and 6809 cycle time are updated.

Command 9 (Command Motor Velocity) is the fast version of command 6, i.e. commanding motor

or joint velocity. When the input to this command is expressed as joint velocities in radians, the

host program converts these values into encoder ticks per second. The status information

returned, motor position and motor velocity, can similarly be converted from encoder ticks to

radians.

. -

Command 10: Undefined

Command 11: Undefined

Command 12 (Set Cartesian Speed) is a request for setting the arm speed. It is issued prior to

performing interpolation commands (commands 13 or 14). The value sent to HSIII represents the

speed in inches per second that the arm is to travel.

Command 13 (Joint Interpolator) is a cartesian pcuition request. When the hast defines a goal

point relative to the tool tip in Cartesian space, a trajectory consisting of n subintervals, where n

ie a function of the requested arm speed, is planned by the HSHI. The path computed is based on

the joint that haa the farthest distance to travel: that joint is driven at top speed, and the

remaining five joints are set so that all six joints wil l amve at the goal point simultaneously. The

processing time for computing each intermediate goal point in the interpolated path is 128 mil-

liseconds. The advantage of this trajectory is that the ann wiil consistently be able to achieve ita

maximum velocity. If the host requests a position that the ann cannot reach, the "FAIL" flag
,

- 8 -

will be set in the common memory handshake buffer, and the trajectory motion will not be ini-

tiated. Note: Command 4 (Read Cartesian Poeition) must be imed before any Cartesian level

command if that command has been preceeded by a joint or motor level command.

Command 14 (Straight Line interpolator) is a Cartesian position request. The host program again

supplies a goal point for the tool tip in carfesian coordinates relative to the robot's base frame. In

this mode however, the HSHI plana a trajectory such that the tool tip wil l always travel in a

straight line between its s t a r t p i t i on and its goal position. As with command 13, the processing

time'for each intermediate position is 128 milliseconds, and an error message will be returned i f

the goal point cannot be reached by the robot arm. Note: Command 4 (Read Cartesian Position)

must be issued before any Cartesian level command if that command has been preceeded by a

joint or motor level command.

Command 15: Undefined

Command 16 (Halt Servoing) is a command to halt arm motion after either joint or motor veloci-

ties have been commanded. It effectively commands each motor to a velocity of zero motor

encoder ticks per second without the host having to supply input parameters.

4. Uscs for the High Speu i Host Interface

The unique capability of the HSHI to receive and process servo level commands in a four

millisecond time interval makes it an especially useful tool in implementing certain low level con-

trol system tasks. In [SI, Featherstone preaenta algorithms for calculating robot joint variables

from the position and velocity of the end effector and vice versa. His algorithms translate the

path of the end effector into joint or motor values which are the values under control. The BUD

ce88 of this method is very dependent on the ability to perform the required calculations in red-

- 9 -

time and to rapidly update feedback information in the form of joint velocities to the robot. This

paper does not address the problems associated with real-time computation, but by taking advan-

tage of hardware math accelerators, parallel processing, optimized code, and look up tables for tri-

gonometric functions, updated commands can be computed and delivered to the HSHl , and

motor pasition and velocity status returned to the host in the minimal four millisecond time inter-

val. Figure 5 describes the recommended optimal use of the HSHI. Portions of Featherstone’s

algorithms have been implemented on the AR Merlin robot in the Robot Systems Division’s robot

laboratory using the HSHI.

A hierarchical control system based upon the HSHI is a logical extension of this project (7).

The lowest level of the hierarchy, the HSM, would accept position or velocity commands in

motor coordinates, and return motor position and velocity status. The next level could be a low

level control and would provide real time poeition or velocity commands in motor encoder ticks to

the HSHI. Algorithm such aa thoee developed by Featherstone [6] would be implemented at this

level.. The commaqda seat to the arm.could be developed by interpreting trajectories provided by

a still higher control level or by servoing on eensory feedback.

6. Conclusion

The High Speed Hast Interface developed jointly by the Robot SyHtems Division at the

National Bureau of Standards and the American Robot Corporation provides accesa to the servo

level of control by accepting position or velocity commands in motor or joint coordinates and

returning relevant status information 256 times per second. At a slightly higher level, commands

expressed in cartesian coordinates can be p r W 7.5 times per second. A handshake protocol

and common memory area have been designed and implemented which insure proper communic*

tion between the host and HSHI programs. A library of C language subroutines and 8086,43087

assembly language routines (Appendix C) haa been developed to test and implement the features

of the HSHI.

- 10-

References

1. J. Albus, ABarbera, M.L.Fitzgerald, M.Nashman, "Sensory Interactive Robots", Presented at
the 31st General Assembly of the International Institution for Production Engineering
Research, September,l98I.

2. J. Albus, C. McLean, A. Barbera, M.L. Fitzgersld, "An Architecture For Real-Time Sensory
Interactive Control of Robots in a Manufacturing Facility", WAC Information Contd
Problems in Manufacturing Technology, 1982.

3. American Robot Corp., "Merlin Robot System, Openrtor and Uaer Guide", Manual #SMT-
2.04184, Revision 2.1,Feb~ary,1984.

4. ABarbera, M. Fitzgersld, J. Albue,"Concepta for a Real-Time Sensory Interactive System
Architecture ", Proceedings of the Fourteenth Southeastern Symposium on System Theory,
Apri1,1982.

5. A. Barbera, M. Fitzgerald, J. Albus, L. Haynes, " A Language Independent Superstructure for
Implementing Real-Time Control Systems",1984.

6. R. Featherstone, "Position and Velocity Transformations Between Robot End-Effector Coordi-
nates and Joint Angles", International Journal of Robotics Research, Vol 2, No. 2, Sum-
mer,1983.

7. E. Kent, "Space Domain Control with Fittd-Law Functions and Separation of Translation and
Orientation Trajectory Spaces", 1984.

8. J. Toth, "Merlin Universal Controller High Speed Host Interface",American Robot Corp.,
h4arch 1986.

HAND
A X E

Figure 1: The American Robot Merlin Arm

.

Figure 2 Control Sptem Inputs and Outputs

Figure 3 Tbe Robot Origin and Coordinate Ax-

*

. _

Ox184oO*

< >

-7-

Fiiure 4: High S p d Host Interface Architecture

l

) Compute Neu
Command

P o l l on CM
B u f f e r - HOST

Send Nau
Command

z
I

Figure 5: Optima H& Program Deaign

PROTOCOL DWFER AQDRESS NUMBER OF BYTES

Hand sha k e 18400 he x 16

Servo Parame te rs
C a r t e s i a n P o s i t i o r :
I n t e r p o l a t o r Speed
J o i n t P o s i t i o n
Jo in t V e l o c i t y
R o t o r P o s i t i o n
Plotor V e l o c i t y

RESPONSE BUFFER F!riME

Car tes i an P o s i t i o n
J o i n t P o s i t i o n
J o i n t V e l o c i t y
M o t o r P o s i t i o n
M o t o r V e l o c i t y
C y c l e T ime

ADljRESS

18410 hex
18460 h e r
18480 hex
184AO he x
184CO he x
1SSEO he x
500 hex

ADDRESS

18400 he x
18620 he x
18640 he x
10660 he x
18580 hex
1@6AO he x

NUMBER OF BYTES COMMAND I)

60
24
4

24
24
24

24

NUMBER OF BYTES

24
24
24
24
24
24

1
2.13, 14
12
5
6
8
9

COMMAND 0

Table 1: Common Memory Msp

,

Bytes 1 and 2 :System Cycle Clock
Bytes 3 and 4 :Total Number of Commands Sent
Bytes 5 and 6 :Current Cycle Number
Byte 7: Buffer Ready Flag
Byte0: Command
Bytes 9 and 10:Echoed Command
Bytes 11and 12 Echoed Cycle Number
Bytes 13 and14:End Qcle Number .
Bytee 15 and 16 Reaporme Code

Table 2 Common Memory’Handahake Buffer

#- Action

1 :Set %NO Parameters
2 :Command Cartesian Position
3 :Read Motor Position and Velocity
4 :Read Cartesian Position
5 :Command hiit Po&ion
6 :Comrned Joint Velocity l

7 :Reid Joint Poeition and Velocity
8 :Command Motor Position With Status Returned
8 :Command Motor Velocity With Statw Returned
10 :Undefined
11 :Undefined
12 :Set Speed For Carteaian Moves
13 :Joint Interpolator
14 :Straight Line Interpolator
15 :Undefined
16 :Halt Joint AngIe Sentoing

Table3 HSHXCommsnds I ,

,

Appendix A

The data structures and variable formats used in each of the HSHI commands are listed in this
section. In accordance with 8086 definitions, a byte is defined to be 8 bits, a character to be 1
byte, an integer to be 2 bytes and a long integer to be 4 bytes. Floating point numbers are 4
bytes Iong and are represented in IEEE format.

Command Number. 1

Description : Set Servo Parametem - maximum velocity, acceleration and gain for each of
the six motors.

Data Structure:
struct servo-motor{

long int maxacc; /* in revolutions per second squared*/
long int maxvel; /* in revolutions per second */
long int gain; /* a servc&op multiplier */

1;

struct servogaram{
struct servo-motor motorl;
struct servo-motor motor2;
s t r u c t servo-motor mOtor3;
struct servo-motor mOtor4;
struct servo-motor motor5;
i t r u c t servo-motor motod;

1;
Range of values: 0 <= maxacc <= 32

0 <= maxvel <=-12
0 <= gain

Default values: maxacc = 8
maxvel = 12
gain = 4

Command Number: 2
Description : Command Cartesian Position

Data Structure:
struct cart-pos{

float c-xpos; /* x,y,z position io inch- */
float c ~ p o s ;
float c-zpos;
float c-roll; /* rol1,pitch and yaw in radians*/
float cg i tch ;
float c d a w ;

1 ;

Calibration position is defined at 38.124,-11.9,0,0,0,0

Command Number: 3

Description : Read motor status - position, velocity and time cycle at
readings were obtained.

Data Structure:
struct r-mpcs{ /* Motor position is expressed in encoder ticks

long int r-ml; 2000 t icks per motor revolution.*/
long int tm2 ;
long int r-m3;

which those

- A l -

long int r-m4;
long int r,m5;
long int r-m&

} ; Read Only Bufler- updated by AR .Iter cacb motor
velocity or position command ir imued

Calibration p i t i o n is defiaed at O,O,O,O,O,O

s t q c t r-mvel{ /*Motor velocity in encoder ticks */
long int r-vml;
long int r-vm2;
long iot r-vm3;
long int r-vml;
long int r-vxnS;
long int r-vm6;

} ; Read Only Buffer-updated by AR after ercb motor
velocity or motor poeition command is issued

struct r,mcyc{ /* Incremental counter set by the 6809 boerQ
long int r-mcycl; every 4 millisecondb useful for checking
long int r-mcyc$ timing of commanda */
long int r-mcyc3;
long int r-mcycl;
long int r-mcyC5;
long int r-mcyCe,

Command Number. 4
} ; * l (Red Only Buffer)

Ikscriptioo :Read Cartesian Position
Dut. StNCtUW

struct r,csrtsos{
float r-x; /* x,y,z in ioches*/
float r-y;
flat r-a;
float r&i; /*dl,pitch and yaw iodims*/
Boat rgitch;
loat rJaw;
} ; (Red Only Buffer- updated only dter command 4
in imued)

Command N u m b S
Description :Command Joint Paition
Dah StNCtUN?:

utruct joint-{
float c j l ; /* Joiota 1 -6 c x p d io d a n s */
Boat CJZ;

float c j 3 ;
hat c j r ;
Boat c j 5 ;

1;
float c j 6 ;

Calibration Position: O,O,O,O,O,O

..
.

- A20

Command Numberr 6
k r i p t i o o : Command Joint Velocity

struct j,vel(/+Joints 1- 6 exp ianr/acaad */
Boat c-vjl; Note: Velocity commanded will mtinuoudy
float c-vj2; be sent fo the ann until command 16
Boat c-vj3; isiusued
float c-vj4;
B6at c-vj5;
float c-yj6;

Command Number: 7
Description :Read Joint St.tua
Data Structure:

D8t. StNCtUn:

_ _

1;

r t ruct r j p (/* Joint position returned inrdi.ns*/
aarrt r j l ;
Boat rJ&
Boat r j 3 ;
8oat rj4;
float rjS;
float rj6;
} ; Read Only Buffer updated when joint position
or joint velocity ye cornmmded.

rtruct &el{ /*Joint velacity retunid inndim~/nec*/
Boot rJv1;
float rjvZ;
float r j v3 ;
float rjv4;
float r jv5 ;
B o l t r 3 6 ;
1; Read Only Buff-o p d d when joint positioo

or joint velocity ue commanded)
Command Number: 8
Description :Command Motor Paition
Data Structure:

rtrpct m p { /* MobrMtionr a p d inencoder Q c h */
long int c-ml;
long int c-;
long int CJO&

long int cm4;
long int c,m$
long int c-rn6;

1;
Command Number: 9
Dcscription :Commsnd Motor Velocity

DB@StNCtUie:

lrtruct m,velacity{ /* Motor velocity expremed in ticks/sec */
long int c-vm1; Note: Velocity commanded will continuously
long int c-vrn2; be aedt to the urn until command 16
long int c-vrnt; iohued

long int c-vml;
long int c-vm5;
long int c-vm6;

1 ;
Command Number: 12
Dewription :Set Speed for commands 13 and 14 (interpolation commands)

Data Structure:
struct cart-vel{

float rate; /* speed in incbes per second. */
1;

Range of input: .009 <==mte <= 30.0
Default d u e : 5 inches per second.

Command Number: 13
Description : Joint interpolator.

Dah StNCtUl’C:

rtruct Cart.Jm{
Boat c-xpos; /* x,y,t position in inches */
float C J ~ ;

Boat c-zpas;
float c-roll; /* rol1,pitch and yaw in radiurr*/
float c g ikb;
float c,yaw ;

Command N u m k 14
1 ;

a

Description :Straight lineinterpOt.tor.
Data Structure!

&mct cutJaJ{
float c-xpcq /* x,y,x position in inches */
float CJXJB;

flmt c-zpas;
float c p l l ; /* d1,pitcb and yaw indims*/
Boat cgitcb;
6-t CJ8W ;

1 ;
Command Number: 16
Description :Halt servoing on joint or motor velocity commmda
Data Structure: None

,

Appendix B

The following C code defines the formulae used to convert joint angles, expressed in radians, into
motor encoder ticks and viceversa. The constants defined are particular to the American Robot
Merlin Robot used in the Sensory -Interactive Robot Lab. The actual conversion code used is writ-
.ten in 8087 assembly language.

Radians to Motor Encoder Ticks

rad-to-ticks(mr)
float mrl]; { /* Array mr originally contains 6 joint angles

expressed in radians. At the completion of the
routine, the array will contain the equivalent
motor encoder readings in motor tick units */

double temp;

temp = mr[4] l 1.2;

mr[5] = mr[3] + temp - mr[5];

mr[4] = mr[3] - temp;

mr[0] *= NEG-MAIN-RATIO ;

mr[l] *= MAIN-RATION ;

mr[2] *= NEG-MAIN-RATIO ;

mr[3] *= RATIOW ;

mr[4] *= RATIOW ;

mr[5] *= RATIOW ;

1

Motor Encoder Ticks to Radians

ticks-to-rad(mr)
float mri]; { /* Array mr contains 6 motor encoder readings.

The array will contain joint angles
in radians upon exit */

double ratid;
double ratio2 ;
double ratio1 ;

,

mr[3) = mr[3)/(K*WRCR);

mr[4] -mr[l)/(K*WRGR);

m [S] = mr[S]/(K*WRGR);

mr[S] = 2.0 lmr(3) - 4 4 1 -mr[b];

. _

The coostanb ubtd in this cwvenion arc

#define MAINJUTIO 15278.875
/* MAINJZATIO * (ET*TGR)/O*PI r h m:

ET = #KK) encoder t ickr per rev.
. tPt=&28XL85 ./

4ddnc N E b ~ J A T I O -15278.815

#dell- K 318.310
#define RATIOW WRCR*K
#define RATIOlL 0.%33333333 /e gear mtio amstantdin

#detnac WRGR 24.0 /. r* gardo./
/* number dmdor t i c b per 4.0*/

convexmion d joint 4 fmm encoder t ickr
tordiw */

.

Appendix C

Following is a brief description of the major subroutines contained in the HSHI library written by
the Sensory -Interactive Robotics Group at the National Bureau of Standards.

init-cornmon-memory ();
This routine initializes the common memory handshake buffer. It must be called before any
..commands are sent to the HSHI.

format-command(command number, buffer-addreas);
This subroutine fills the common-memory areaa with the appropriate values as indicated by
"command number". Data to be sent to the HSHI should be in "buffer-address". If a "read
data" command is issued, (e.g. read motors), set buffer address to NULL (or any dummy
value). Data values are converted to 68000 compatible format via a call to wordswap0
which is described below.

EXAMPLE:
To command Cartesian position 38.124,-11.9,0,0,0,0
float homefs];
home[O] = 38.124;
home[l]= -I1.9;
home[2]=home[3]=home[4]= home[5]=0.0;
command = 2;
fonnat-command(command, home);

dump-cm-buffer()i
Prints' the' current' contents of the common memory handshake buffer. Last command
issued, number of commands issued, buffer-ready flag, and response bib can be read.

wdtotic(floating pt array,long integer array);
8087 subroutine to convert six joint positions or velocities to motor ticks for faster procew
ing. Input array (radians) in Boating point format is converted to long integer array (also six
values) in ticks.

tictorad(floating pt array,long integer array);
The converse of radtotic- motor encoder ticks in long integer format are converted to joint
angles in radians. Both input and output arrays must contain 6 elements.

waitbur()
Assembly language routine to be called before reading in requested statue feedback. Makes
sure HSHI has completed transferring the data to common memory before the host attempts
to read.

wordswap(buffer,bufsize);
Before and after each data transfer between the 68000 and the 8086 systems, this routine is
called to swap high and low order 16 bit quantities in 32 bit floating point numbers or long
integers. Note: this routine destroys the original contents of its input buffer. Wordswap is
called automatically by library subroutines and need never be called by the user.

read-cp(cartpos) ,
struct r- cartgos *cartpos;

Command 4 (read C a r t e s i a n position) is implicitly sent to the interface (using
format-command). Cartesian position data is then transferred from the common-memory
area into the local bufler cartpos. Routine wordswap0 is used to format the data into 8086
form.

read-motors(motorpos,motorvel,motcyc)
struct r-mpce *motorpas;
struct r-mvel *motorvet;
struct r-mcyc *motcyc;

N k r command 3 (read motor status) is sent to the interface, this routine transfers the
appropriate common memory areas into the local buffers motorpos,motorvel, and motcyc.
wordswap() is used to format the data into 8086 form.

getmotorpos(motorpos,radval)
struct r-mpos *motorpa;
float radval;

Transfer motor position from common memory buffers into array rnotorpas and convert it to
radians. Result is stored in array "radval".

get-cyc-no(c-buf)

Transfer the 6809 motor cycle time to buffer c-buf. The 6809 cycle number is updated
every 4 milliseconds whenever an action command is issued.

struct r-mcyc *c-bui;

. *red-jointa(jo in tp , jointvel) .
struct r ip& *jointpoa; .
struct r j v e l *jointvel;

After command 7 (read joint status) is iesued , this routine transfers the appropriate com-
mon memory areas into the local buffers j o i n t p and jointvel. wordswap() is called to for-
mat the data into 8086 form.

re&~Ponseo;
This routine polls for the completion of the last issued command and returns the response
word set by the 68000 program. A negative value returned indicates an error.

,

SHEET (See instructions) NBSIR 86-3393

IBS-114A (REV. 2 4 C)

JUNE 1986

U.S. DEPT. OF COMM.
REPORT NO.

1. PUBLtUTlON OR 2. Performing Organ. Report NoJ 3.Publication Date

BIBLIOGRAPHIC DATA

0Unlimited
PRINTED PAGES

4. TITLE AND SUBTITLE

The High Speed Wst Interface

5. AUTHOR(S)

MarilynNashman
6. PERFORMING ORGANIZATION (Ifjoint or other titan NBS. see instructions) 7. ContracdGrant No.

8. Type of Report & Period Covered
NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

LO. SUPPLEMENTARY NOTES

[IIDocument descrtbes a computer program; SF-185, FlPS Software Summary, i s attached.

bibfiography of literature survey. mention it here)
11. ABSTRACT (A 200-word or less factual sumrnory o f most signlfrcant informatron. lf document Includes a slgnlfrcant

. .
m s paper describe$ the High speed mst Interface (HSHI) &velapeajointly py
the IWot Systems Div is ion a t the National m u of Standards and the
mican &botCorporation (AR). The High Speed Host Interface provides a n
interface between the manufacturer's sofixu -e and hardware and the user's
software a t the lowest level of control-mtor position and velocity. It
can operate a t an u@te rate of 256 times per second or can be used a t a
Cartesian level of control a t an update rate of 7.5 times per second. The
paper discusses the design of HSHI andits capabilities as wllas sane
possible applications for such a system.

.2. KEY WORDS (Six to twe lve entries; alphabetical order; capitalize only proper names: and separate key words by semicolons)

coarmon menr>ry;interface; law levelcontrol;microprocessor; real time sensory
interactive control; mbtcontroller;servo level control

14. NO. OF,3. AVAILABILITY

a For Official Distribution. Do Not Release to NTIS
nOrder From Superintendent of Docbments. U.S. Government Printing Office. Washington, D.C.

20402.

0Order From National Technical Information Service (NTIS). Springfield. VA. 2216 I

30

15. Price
$ 9.95

1
USCOMM -DC 604S - PBO

