
A Robot Control System
Based on FORTH

For over 10 years, the National Bureau of
Standards has conducted research in re
botics. NBS has developed a Real-Time
Control System (RCS) that uses the
sensory-interactive hierarchical control
model. RCS has been implemented by a
snall team ofpngmnmen andcanmnhl
a variety of robots (Photo 1). suggestions
and theories detailingthe needs ofa fourth-
generation robot ContmIler have evolved
from the implementation of RCS (1,2).

The goal of the robotics research atNBS
has been to use the hierarchical model to
establish standardized interfaces between
successive levelsof the task decomposition
and sensory-interactive knowledge build-
ing.These interfaces would allow commu-
nication among levels to consist of a list
of agreed-upon commands and status
handshakes. With the god of s t a m h k d
interfaces realized, control levels
developed by different interests could com-
municate via this protocol.

In robot hierarchical control, tasks are
decomposed into simpler and simpler
tasks. Eventually, the tasks are decom-
posed into lowlevel control commands for
the robot As the tasks for each level are
decomposed, sensory -interactive know-
ledgebuilding is occurring simultaneous -
ly. Low-level sensor information is
gathered and combined into higher and
higher levels of knowledge about the cur-
rent state of the robot's environment This
feedback is used by the hierarchical con-
trolsystem to compare the actual state vs
the expeckd state to provide control com-
mands for the next command cycle.

Much of the initial work involved inte-
grating a structured light vision system to
work with the control system (3) (Photo
2). Cvrent work has emphasized the goal
of integrating robot functions as a part of

22 ROB(rnCS ENGINEERING May 1986

~~

John L. MichJoJ<i
and

Barry A. Warsaw
Natlonal Bureau of Standards

Galthersburg, MD 20899

Photo 1. Am~ngthcrobotrmtheAutwMted Manu.
facturing Research Facility (AMRR of the National
Bureau of.%nda& is aCincinnati M i "3.used
in h e horizontal workrtaton.

an Automated Manufacturng Research
Facility (AMRF) (4.5). The AMRF is a
demonstration facility developed to serve
as a research tool for studying measure-
mentsandstrndardsin theautomatedpm
duction of machined parts. The control ar-
chitecture developed for the AMRF is an
extension of the hierarchical robot control
system theoty.The AMRF has proved that
the concepts established by RCS are not
limited to robot control systems, but per-
tain also to abroad body of programming
endeavors.

A REAL-TIME CONTROL SYSTEM
The RCS software has been imple-

mented with FORTH as its base coordi-
nating and development system. Any num-
ber of programminglanguagescan be used
to solve the wide variety of problems as-
sociated with robotics, but some are bet-

ter suited than others for certain tasks.
Assemblers are best for low-level, high-
speed hardware interfaces; block-struc-
tured compiled programming languages
such as C or Pascal are good for math-
ematically intensive computation; and a
high-levelsymbolic progmnminglanguage
such as LISP or PROLOG is better for
logical reasoning andplanning. The choice
of FORTH was a compromise between a
desire to satisfyallrobot programming re-
quirements and the integration problems
of implementing a control system.

FORTH is both a computer program-
ming language and a philosophy of soft-
ware development. It opens up all levels
to the user with complete and explicit ac-
cess. It indudes aninterpreter,acompiler,
an assembler, and a multitaskingcapabiii-ty. all existing within a highly interactive
atmosphere. FORTH breaks away from
traditional batch computer programming:
instead of a cycle of compiling, linking,
loading, executing, editing, compiling,
linking, etc., FORTH software develop
ment uses small, verifiably comct modules
that are incrementally compiled. This
iterative style of software development im-
proves programming productivity.

With the increased speed of develop
ment, FORTH makes the fine tuning of
design easier (6). Because it is so easy to
develop a working implementation of a
program, results from the prototype can
be compared to the design expectations.
Depending on theanalysis, the design will
be reevaluated or further refined.In tradii
tional sobare projects, the initial pro-
btypeisusuallythefinishedproduct With
robotics applications, the need to fine tune
code is imperative.

FORTH has a symbol table, known as
a dictionary, that keeps all the variables



and routines, called words, in the system.
Newly compiled words are added to the
dictionary as combinations of existing
words.Because FORTH is written initself,
system modifications to meet a functional
requirement, common in a robot control
system, are not difficult. FORTH’s exten-
sibility allows new control and data struc-
tures to be developed to match aparticular
programming need. This creativity hasled
to the development of new robot-specific
programming constructs, which simplified
the software. Although much of the RCS
is not strictly FORTH, many of the
language’s programming philosophies
have been maintained or enhanced. RCS
adapted the FORTH model to meet the
needs of a robot control system. A study
of the impact of FORTH on some of the
functional specifications that guided the
development of RCS will further explain
why we selectedit

Real-Ti& Rquinment An original
RCS implementation goal was real-time
performance within acost4ectiw control
system. The hardware consists of a multi -
microprocessor system with the different
levels of control and support processes
residing on multiple boards. The boards
operate in parallel and communicate
through defined interfaces, including the
commands and status that are defined in
a common memory map. Actual communi-
cation is controlled by an independent
process that synchronizes the data ex-
change between hierarchical levels.

A m&r functional requirement of RCS
is the output ofnew control signals for the
robot in real time. RCS updates to the in-
dividual commercial robots vary,but range
from a new position every 25 ms (or 40
new poseslsecond) to anew position every
100ms.In order to meet the demands of
real-time control, the control system was
partitioned among these processor boards.

The constraints of real-time perform-
ance and multiboard communication had
aprofound effect on the software require-
ments. Typically, interproeess communicz+
tion is carried out through shared data, a
process that presents both hardware and
software problems. Where to put the
shared data, and how a process must per-
form the readkite handshake must be
resolvedto ensure proper communication.
Exploiting exact knowledge of theabsolute
addresses for the communication channels
simplifies the task.

Pboto 2. The robotic vision system and the inter-
-le grippen are AMRFs ditions totheT3
robot

Understanding system operation is not
difficult inFORTH. There is asimple layer
of a virtual machine that resides on top of
the operating hardware, and the mapping
between a logical and a physical address
is straightforward. Mixing high-level code
with assembly code is also simple. The pro-
menvironment provides anon-Iine
assembler for quick and easy machine or
hardware access. Interactively testing as-
sembly code further simplifies ahardware-
mtensiw project. Finally, FORTH provides
the feel of assembly -level closeness to the
machine, yet provides the flexibility of a
lugh-level language.

RCS Reliability. The RCS system was
designed to avoid performance degrada-
tion due to hardware troubles;failures that
require troubleshooting can undermine.’
any unprepared operating system environ-
ment. For example, a typical interface to
a hardware device has a process awaiting
a response. If thispollingis embedded in
a lower level process, the system perform-
ance can come to a standstill.

Because of its dependence on sensor
hardware, a robot programming system
must be prepared for these problems. RCS
incorporates a software design method-
ology that forbids embedded loops and
other types of control structure that would
allow a hardware failure to cause the sys-
tem to hang. instead,an entire pass
through the system isperformed each cy-
de. However, no matter how hard the pre
grammuattempts to anticipate a hardware
malfunction, anm r statuswillpropagate

up the levels of control and must be
handled. Taylor (7) has pointed out that
in a robot application such as assembly,
only 10 percent of the robot commands
are for motion; the msiority are for han-
dling 110 and the “anticipated but un-
predictable” problems. During robotic
software development, there is a strong
need for testing and debugging aids that
diagnose hardware failure symptoms.

As it turned out, the software require-
ments of RCS were eased by having the
control system on a dedicated, not a
general-purpose. machine. RCS is thus not
required to provide user protection mech-
anisms associated with most operating
systems. The layers of protection provided
by such systems may help with multiuser
timesharing, but hinder development
under a robot control system in that each
layer of protection hides more and more
of the operation from the programmer.

RCSSupport Todr Although anyone can
“program” a fifth-generation robot, most
people don’t realize the amount of pro0
wingrequired with even a simple task.
Ro#amming a robot requires accounting
for so many details of operation that
understanding the system supercedes how
to p r o m the application. The RCS ap-
proach has been that the pngmmingm
vironment is as important as the actual
control algorithms. The RCS approach is
to provide a system to the user that incor-
porates as much knowledge as possible
about the current state of the robot, and
to that end has established a tighter rela-
tionship between the system support and
the-control alogrithms.

’ Understanding complex robot applica-
tions demands that a relationship between
the system support, including the source
code, and the control algorithms be con-
stantly maintained on line. The FORTH
on-line global dictionary of the variables
and words present in the system provides
direct and immediate access to all parts
of the system. RCS extends this idea and
assigns a variety of modes that depend on
defining type with each word in the system.
For example, FORTH provides a LOCATE
feature that ties a dictionary word to a
source disk location. When the user wishes
to edit a word, referencing the word with
editing intentions fetches the location on
the disk, as opposed to remembering an
exact location of the word in what file on
disk. Further. RCS adds modes of seman-

ROBOTICS ENGINEERING May 1986 23



tic meaning categorized by data type to
simplify programming.

program comctncsr and Troubkrhoot.
ing. In a robotics application, simply prov-
ing program correctness is not enough:
program correctness de& only with se-
quential programming, and robotics con-
tains numerous nondeterministic activities.
RCS uses a synchronized clock in commu-
nications m an attempt to regulate the nom
deterministic activities, but even so,inter-
mittent errors caused by unforeseen tim-
ing side effects and hardware failures
regularly occur m real-time applications and
make software testing a toughproposition.

The interactive testing atmosphere of
FORTH and RCS simplifies dealing with
problematic hardware testing and debug-
ging. The dictionary entry to progmn a
simulated fifth-generation robot to sweep
a floor would be as follows:

:SWEEP -FWR door GOTO
door OPEN broom GET
door CLOSE floor SWEEP

But in robot control the anticipated be-
havior does not always match the actual
behavior. If the robot runs into the door,

the cause of the failure must be pinned
down. FORTH and RCS provide single-
stepcapabilities that helppin down an er-
ror sequence. For example, each com-
mand can be executed independently to
monitor robot behavior. Trying again,
dow is pushed onto the stack and then
GOTO is intetpreted separately. The
discovery that this worksleadsto the test
of door OPEh?This execution causes the
robot to crash into the door. Upon study,
the determination was made that a push
through type of door was chosen, not a
door with a handle. Loading a new door
prepares the robot for another try.

This time SWEEP-FLOOR causes the
robot to slam the door, requiring a fine
tune of the system. A simple extension to
FORTH, highly used in RCS, allows any
lowerlevdword embedded within the code
toben5signedanewexecutionsequence
because of the availability of indirection.
Thus, all higher words defined af tk
CLOSE will use the original CLOSE, but
the indirecb;on willprovide the location of
the new code.

With some tinkehg, anew CLOSEwill
cause the robot to close the door quietly.
The fine tuning has been achieved with a

e -

minimum of overhead not available in a
compiled or downloaded system.

REDUCING COMPLEXITY
Given the complicated nature of robot

programming, simply helping with pro-
gram debugging is akin to handing a pail
to the captain of the Titanic. Reducing the
software complexity is also required, and
one way to achieve this is by reducing the
amount of the sobare through modular -
ization and information hiding. Several
programming practices can also help, such
as factoring, extensive data and control
structure design, and abstract data typing
in a class structure architecture.

Factoring. FORTH and RCS promote
compact and modular design through ex-
pression factoring in which common por-
tions of several different expressions are
factored out into a separate expression.
-ne a FORTRAN program containing
lengthy formulas. Within three of the for-
mulas, acommon expression is calculated
each time. Software elegance mandates
that the common expression be factored
out and represented as a separate expres-
sion. The program gains execution speed
and software verbosity is reduced. T M -
ed interpretive languages thrive under this
mechanism; not only are mathematical ex-
pressions factored, but so are entire al-
gorithms, both small and large.

In FORTH and RCS. a new word can
bedtofactorrecurringlargerprogram -
ming constructs. After a new word ex-
tracted from several sources is defined it
can act as abuildingblock, and the hlgher
level words can replace the existing code
with thii word. The FORTH system, as
well as application progtams, are wryam-
pact, and these small modules are easier
to verify.
Extensibility. Extensibility allowed the
development of many enhancements to ac-
commodate the functional needs of a robot
control system. One of the initial exten-
sions was SMACRO, a sbuctured language
based on superassember maaw that trans-
lates source code directly into assembly.
SMACRO was developed tobridge the gap
for robot operations that are timecritical,
while offering a structured programming
control application environment. The
SMACRO extensionprovides FORTH with
hckaiented structured language.

24 ROBOTICSENCMEERING M.yl986 Circle 40



SMACRO allows a user to write struc-
tured code within a FORTH programming
environment. The programs resemble
those written in high-level languages lii
Pasca!, C, or Pu1. These macros generate
machine instructions directly executed by
the host processor. In general, this object
code produced by SMACRO is faster than
that for an equivalent structured language
program. Further, SMACRO per fom di-
rect banslation that maintains a simple
logical-to-physicaladdressing layer that is
normally lost when executing code of a
compiler code generator. Finally, SMACRO
maintains FORTH's interactive atmosphere
plus allowing FORTH words to mix with
the SMACRO machinegenerated code.

Most of the control algorithms that are
mathematically intensive use SMACRO
and its floating-point enhancement,
FSMAC. FSMAC provides basic floating
point operators, again executing directly
on the math coprocessot chii.Inaddition,
operators important to robot kinematics
were added, such as vector operations in-
cluding vector normal, cross multiply, dot
product, and matrix operators.

An example of FSMAC will illustrate
FORTH's extension to accommodate new
arithmetic operato~.The following is a
fragment of robot kinematic code:

mutine WC -xgz
(&lalate distance fiwn xyz to xty2' us-
mg direetimt unit vector to give xahg
direction back down the ann.)

pose {&d&) .V*S. .V->. dx'
pose {xyz) .v-.dx' .v=>. x'

end-mutine

The first line contains the .V'S., or vec-
tor times scalar binary operator. The vec-
tor pose {dxdydz) represents the orien-
tation unit wctor in the x direction of the
robot pose, which is a threeelement, con-
tiguous floating-point array. This orienta-
tion vector is multiplied by the scalar
length, yr, which is a constant represent-
ing the distance from the yaw point to the
roll point on the robot The second line
contains .V -.or vector subtraction. The
wrist point vector pose (xyz) is subbacted
by the amount of dx to derive the amount
of distance down the arm to the wrist plate.

Abrorct D m Typing. Sophisticated data
structures relating to robotics can be de-
veloped in FORTH. Within the realm of
robotics, the requirement of an object-

GRIP 1
U,de

GRIP 2
MI ade

GRIP 4
back

GRIP 5
from

GRIP 3
nght ude

GRIP 6
top

oriented perspective cannot be denied.
The work of apick-andplace robot, for ex-
ample, is to transfer an object from here
to there. Categorizing the data and the
functions associated with it is one way to
simplify the problem. This type of meth-
odology isknown as an object-oriented ap
pmch, as opposed to the procedure-
oriented approach of languages such as
Pascal and FORTRAN.

Using CREATERHIES>, FORTH can
achieve object-orientsd stmctms. For ex-
ample, assume a robot is involved in a
reasoning task about children's spelling
blocks. The generic block can be con-
sidered an abstract data type with six faces
to contain letters.The operations available
would be based on the des in Figure 1.

Reasoning would direct the robot to
change the orientation of certain blocks
50 the letters on their forward-facing sides
spelled a word.
Inobject-oriented structures, the way in

which these operations are implemented
islessimportant than the abiiity to declare
an instance of the object and then be able
to use the operators included with the o b
ject Each declared instance of a spelling
block would contain a different letter on
each of its faces. For example, to deciare
two different blocks:

'Q""B" 'S" ,p. "K" 'R"

SPELLDUGBLOCK BLK2
Since both BLKl and BLW share the

common operators available with SPELL
MGBLOCK, the type of architecture in
Diagram 1(next page) is possible within
FORTH.

CONCLUSIONS
The amount of information required for

robot control is staggering; thousands, if
not hundreds of thousands, of programs,
variables, and decision processes, and
megabytes of source code, are present in
the system. The burden of keeping track
of 50 much data should be transferred
from the human brain to the computer.
Only with the help of the proper program-
ming environment can sophisticated robot
applications be realistically developed.

Robot s o h a r e development can be easy
with FORTH, due to three important fea-
tures inherent in the language. First and
foremost is the interactivity that aliows the
user to test out routines, do data dumps,
or just plain experiment with the system
and get immediate responses. Another fea-
ture is that routines are usually small and
easily verifiable, and tackle only a very
specific part of the problem. A routine
does not t ry to handle too much and pro-
grams are written hierarchically. FORTH
is well suited to topdown design, bottom-
up development. The third feature is that

ROBOTlCS ENGINEERING May 1986 25



Diagram 1
Class of Spelling Block

MersrgerlOprratlonr

0 MESSAGE grlp 4-6

2 MESSAGE grip 1-2
1 MESSAGE gflp 5.7

. 3

Contrd Interface for Robot M-Mps
Navy NA V . Workshy onRobotr Stand&.
June 6-7 1985.

3. Alba. J., A. Barbem J. EVW, and C. Vander -
Brug. "Control Concepts for industrialRobots
in an Automatic Factory," Society ofManuhac
fwing h g m m Techrucaf Paper MS77"745.

4. Furlani, C.M.. and E.W. Kent "The Automated
ManufacturingResearch Facility of the National
Bureau of standards."Summer Simuhtion Con-
ference, Vancouver, B.C., July 11-13. 1983.

5. Simpson, JA., RJ..Hocken. and J.S.h.'The
Automated Manufacturing Research Facility of
the National Bureau of Standards." J m l of
Manufadmhg Systm, vol.1, no. 3. 1982.

6. Hanis, K. 'The FORTH Philosophy." Ih.Dobb's
Joumal, no. 59. September 1981, pp. 6-11.

7. Taylor, RJ., P.D. Summers. and J.M. Mwm.
"AML A M a n U n g Language, "hwmfkmuf
J d d R -R d . Vol.1,no.3,1982.

John L. M i c b k i and Barry A. Warsaw are com-
puter scientists in the Real Time Control Croup of
the Robot Systems Division at the National Bureau
of standards.

Reader Feedback
To rate ths artcb. ctrcle the appropnate number
on the Reader Servtce card.

4 14 24
Excellent Good Far

+.hiPPh3 h.adllns
The International Guide-

book andReference book of
Computer Automated Manu-

facturing. A superior book for
training, instructionandcontinued

education inthe field of CNC-DNC-CAD-
CAM-FMS-FPC-RO~O~~CS.

Please ordernow:

BECKER PUBLISHING COMPANY,IkIC
P.O.BOX8396, "LES,FL33941,USA
PHONE: (813) 947-1800

26 ROBOTICS ENGINEERING May 1% Circle 39

TWO ze BASED CONTROLLERS
SUM 28 Conhwllsr

. -.. ... .

J

Kusfem Daia Services, inc.
mD U ~ ,~ r * kMWIUZI at~n.u(~

Circle 48


