A Robot Control System
Based on FORTH

For over 10 years, the National Bureau of
Standards has conducted research in ro-
botics. NBS has developed a Real-Time
Control System (RCS) that uses the
sensory-interactive hierarchical control
model. RCS has been implemented by a
small team of programmers and can control
a variety of robots (Photo 1). Suggestions
and theories detailing the needs of a fourth-
generation robot controller have evolved
from the implementation of RCS (1,2).

The goal of the robotics research at NBS
has been to use the hierarchical model to
establish standardized interfaces between
successive levels of the task decomposition
and sensory-interactive knowledge build-
ing. These interfaces would allow commu-
nication among levels to consist of a list
of agreed-upon commands and status
handshakes. With the goal of standardized
interfaces realized, control levels
developed by different interests could com-
municate via this protocol.

In robot hierarchical control, tasks are
decomposed into simpler and simpler
tasks. Eventually, the tasks are decom-
posed into low-level control commands for
the robot. As the tasks for each level are
decomposed, sensory-interactive know-
ledge building is occurring simultaneous-
ly. Low-level sensor information is
gathered and combined into higher and
higher levels of knowledge about the cur-
rent state of the robot’s environment. This
feedback is used by the hierarchical con-
trol system to compare the actual state vs
the expected state to provide control com-
mands for the next command cycle.

Much of the initial work involved inte-
grating a structured light vision system to
work with the control system (3) (Photo
2). Current work has emphasized the goal
of integrating robot functions as a part of

22 ROBOTICS ENGINEERING May 1986

John L. Michaloski
and
Barry A. Warsaw
Nationa! Bureau of Standards
Gaithersburg, MD 20899

Photo 1. Among the robots in the Automated Manu-
facturing Research Facility (AMRF) of the National
Bureau of Standards is a Cincinnati Milacron T3, used
in the horizontal workstation.

an Automated Manufacturing Research
Facility (AMRF) (4,5). The AMRF is a
demonstration facility developed to serve
as a research tool for studying measure-
ments and standards in the automated pro-
duction of machined parts. The control ar-
chitecture developed for the AMREF is an
extension of the hierarchical robot control
system theory. The AMRF has proved that
the concepts established by RCS are not
limited to robot control systems, but per-
tain also to a broad body of programming
endeavors.

A REAL-TIME CONTROL SYSTEM

The RCS software has been imple-
mented with FORTH as its base coordi-
nating and development system. Any num-
ber of programming languages can be used
to solve the wide variety of problems as-
sociated with robotics, but some are bet-

ter suited than others for certain tasks.
Assemblers are best for Jow-level, high-
speed hardware interfaces; biock-struc-
tured compiled programming languages
such as C or Pascal are good for math-
ematically intensive computation; and a
high-level symbolic programming language
such as LISP or PROLOG is better for
logical reasoning and planning. The choice
of FORTH was a compromise between a
desire to satisfy all robot programming re-
quirements and the integration problems
of implementing a control system.

FORTH is both a computer program-
ming language and a philosophy of soft-
ware development. It opens up all levels
to the user with complete and explicit ac-
cess. It includes an interpreter, a compiler,
an assembler, and a multitasking capabili-
ty, all existing within a highly interactive
atmosphere. FORTH breaks away from
traditional batch computer programming;
instead of a cycle of compiling, linking,
loading, executing, editing, compiling,
linking, etc., FORTH software develop-
ment uses small, verifiably correct modules
that are incrementally compiled. This
iterative style of software development im-
proves programming productivity.

With the increased speed of develop-
ment, FORTH makes the fine tuning of
design easier (6). Because it is so easy to
develop a working implementation of a
program, results from the prototype can
be compared to the design expectations.
Depending on the analysis, the design will
be reevaluated or further refined. In tradi-
tional software projects, the initial pro-
totype is usually the finished product. With
robotics applications, the need to fine tune
code is imperative.

FORTH has a symbol table, known as
a dictionary, that keeps all the variables

and routines, called words, in the system.
Newly compiled words are added to the
dictionary as combinations of existing
words. Because FORTH is written in itself,
system modifications to meet a functional
requirement, common in a robot control
system, are not difficult. FORTH's exten-
sibility allows new control and data struc-
tures to be developed to match a particular
programming need. This creativity has led
to the development of new robot-specific
programming constructs, which simplified
the software. Although much of the RCS
is not strictly FORTH, many of the
language’s programming philosophies
have been maintained or enhanced. RCS
adapted the FORTH model to meet the
needs of a robot control system. A study
of the impact of FORTH on some of the
functional specifications that guided the
development of RCS will further explain
why we selected it.

Real-Time Requirement. An original
RCS implementation goal was real-time
performance within a cost-effective control
system. The hardware consists of a multi-
microprocessor system with the different
levels of control and support processes
residing on multiple boards. The boards
operate in parallel and communicate
through defined interfaces, including the
commands and status that are defined in
a common memory map. Actual communi-
cation is controlled by an independent
process that synchronizes the data ex-
change between hierarchical levels.

A major functional requirement of RCS
is the output of new control signals for the
robot in real time. RCS updates to the in-
dividual commercial robots vary, but range
from a new position every 25 ms (or 40
new posesisecond) to a new position every
100 ms. In order to meet the demands of
real-time control, the control system was
partitioned among these processor boards.

The constraints of real-time perform-
ance and multiboard communication had
a profound effect on the software require-
ments. Typically, interprocess communica-
tion is carried out through shared data, a
process that presents both hardware and
software problems. Where to put the
shared data, and how a process must per-
form the read/write handshake must be
resolved to ensure proper communication.
Exploiting exact knowledge of the absolute
addresses for the communication channels
simplifies the task.

Photo 2. The robotic vision system and the inter-
changeable grippers are AMRF’s additions to the T3
robot.

Understanding system operation is not
difficult in FORTH. There is a simple layer
of a virtual machine that resides on top of
the operating hardware, and the mapping
between a logical and a physical address
is straightforward. Mixing high-level code
with assembly code is also simple. The pro-
gramming environment provides an on-line
assembler for quick and easy machine or
hardware access. Interactively testing as-
sembly code further simplifies a hardware-
intensive project. Finally, FORTH provides
the feel of assembly-level closeness to the
machine, yet provides the flexibility of a

high-level language.

RCS Reliability. The RCS system was
designed to avoid performance degrada-
tion due to hardware troubles; failures that

require troubleshooting can undermine -~

any unprepared operating system environ-
ment. For example, a typical interface to
a hardware device has a process awaiting
a response. If this polling is embedded in
a lower level process, the system perform-
ance can come to a standstill.

Because of its dependence on sensor
hardware, a robot programming system
must be prepared for these problems. RCS
incorporates a software design method-
ology that forbids embedded loops and
other types of control structure that would
allow a hardware failure to cause the sys-
tem to hang. Instead, an entire pass
through the system is performed each cy-
cle. However, no matter how hard the pro-
grammer attempts to anticipate a hardware
malfunction, an error status will propagate

up the levels of control and must be
handled. Taylor (7) has pointed out that
in a robot application such as assembly,
only 10 percent of the robot commands
are for motion; the majority are for han-
dling /O and the “anticipated but un-
predictable” problems. During robotic
software development, there is a strong
need for testing and debugging aids that
diagnose hardware failure symptoms.
As it turned out, the software require-
ments of RCS were eased by having the
control system on a dedicated, not a
general-purpose, machine. RCS is thus not
required to provide user protection mech-
anisms associated with most operating
systems. The layers of protection provided
by such systems may help with multiuser
timesharing, but hinder development
under a robot control system in that each
layer of protection hides more and more
of the operation from the programmer.

RCS Support Tools. Although anyone can
“program” a fifth-generation robot, most
people don't realize the amount of proc-
essing required with even a simple task.
Programming a robot requires accounting
for so many details of operation that
understanding the system supercedes how
to program the application. The RCS ap-
proach has been that the programming en-
vironment is as important as the actual
control algorithms. The RCS approach is
to provide a system to the user that incor-
porates as much knowledge as possible
about the current state of the robot, and
to that end has established a tighter rela-
tionship between the system support and
the.control alogrithms.

Understanding complex robot applica-
tions demands that a relationship between
the system support, including the source
code, and the control algorithms be con-
stantly maintained on line. The FORTH
on-line global dictionary of the variables
and words present in the system provides
direct and immediate access to all parts
of the system. RCS extends this idea and
assigns a variety of modes that depend on
defining type with each word in the system.
For example, FORTH provides a LOCATE
feature that ties a dictionary word to a
source disk location. When the user wishes
to edit a word, referencing the word with
editing intentions fetches the location on
the disk, as opposed to remembering an
exact location of the word in what file on
disk. Further, RCS adds modes of seman-

ROBOTICS ENGINEERING May 1986 23

tic meaning categorized by data type to
simplify programming.

Program Correctness and Troubleshoot-
ing. In a robotics application, simply prov-
ing program correctness is not enough:
program correctness deals only with se-
quential programming, and robotics con-
tains numerous nondeterministic activities.
RCS uses a synchronized clock in commu-
nications in an attempt to regulate the non-
deterministic activities, but even so, inter-
mittent errors caused by unforeseen tim-
ing side effects and hardware failures
regularly occur in real-time applications and
make software testing a tough proposition.

The interactive testing atmosphere of
FORTH and RCS simplifies dealing with
problematic hardware testing and debug-
ging. The dictionary entry to program a
simulated fifth-generation robot to sweep
a floor would be as follows:

:SWEEP-FLOOR door GOTO
door OPEN broom GET
door CLOSE floor SWEEP;

But in robot control the anticipated be-
havior does not always match the actual
behavior. If the robot runs into the door,

the cause of the failure must be pinned
down. FORTH and RCS provide single-
step capabilities that help pin down an er-
ror sequence. For example, each com-
mand can be executed independently to
monitor robot behavior. Trying again,
door is pushed onto the stack and then
GOTO is interpreted separately. The
discovery that this works leads to the test
of door OPEN. This execution causes the
robot to crash into the door. Upon study,
the determination was made that a push-
through type of door was chosen, not a
door with a handle. Loading a new door
prepares the robot for another try.
This time SWEEP-FLOOR causes the
robot to slam the door, requiring a fine
tune of the system. A simple extension to
FORTH, highly used in RCS, allows any
J_ower leve} word embedded within the code
to be reassigned a new execution sequence
because of the availability of indirection.
Thus, all higher words defined after
CLOSE will use the original CLOSE, but
the indirection will provide the location of
the new code.
With some tinkering, a new CLOSE will
cause the robot to close the door quietly.
The fine tuning has been achieved with a

— ket

“3 APPLE® is a rademark of Apple Computer HERO® is a trademark of Heath Electronics”

24 ROBOTICS ENGINEERING May 1986

minimum of overhead not available in a
compiled or downloaded system.

REDUCING COMPLEXITY

Given the complicated nature of robot
programming, simply helping with pro-
gram debugging is akin to handing a pail
to the captain of the Titanic. Reducing the
software complexity is also required, and
one way to achieve this is by reducing the
amount of the software through modular-
ization and information hiding. Several
programming practices can also help, such
as factoring, extensive data and control
structure design, and abstract data typing
in a class structure architecture.

Factoring. FORTH and RCS promote
compact and modular design through ex-
pression factoring in which common por-
tions of several different expressions are
factored out into a separate expression.
Imagine a FORTRAN program containing
lengthy formulas. Within three of the for-
mulas, a common expression is calculated
each time. Software elegance mandates
that the common expression be factored
out and represented as a separate expres-
sion. The program gains execution speed
and software verbosity is reduced. Thread-
ed interpretive languages thrive under this
mechanism; not only are mathematical ex-
pressions factored, but so are entire al-
gorithms, both small and large.

In FORTH and RCS, a new word can
be used to factor recurring larger program-
ming constructs. After a new word ex-
tracted from several sources is defined it
can act as a building block, and the higher
level words can replace the existing code
with this word. The FORTH system, as
well as application programs, are very com-
pact, and these small modules are easier
to verify.

Extensibility. Extensibility allowed the
development of many enhancements to ac-
commodate the functional needs of a robot
control system. One of the initial exten-
sions was SMACRO, a structured language
based on superassembler macros that trans-
lates source code directly into assembly.
SMACRO was developed to bridge the gap
for robot operations that are time-critical,
while offering a structured programming
control application environment. The
SMACRO extension provides FORTH with
block-oriented structured language.

L e

SMACRO allows a user to write struc-
tured code within a FORTH programming
environment. The programs resemble
those written in high-level languages like
Pascal, C, or PL/1. These macros generate
machine instructions directly executed by
the host processor. In general, this object
code produced by SMACRO is faster than
that for an equivalent structured language
program. Further, SMACRO performs di-
rect translation that maintains a simple
Jogical-to-physical addressing layer that is
normally Jost when executing code of a
compiler code generator. Finally, SMACRO
maintains FORTH's interactive atmosphere
plus allowing FORTH words to mix with
the SMACRO machine-generated code.

Most of the control algorithms that are
mathematically intensive use SMACRO
and its floating-point enhancement,
FSMAC. FSMAC provides basic floating-
point operators, again executing directly
on the math coprocessor chip. In addition,
operators important to robot kinematics
were added, such as vector operations in-
cluding vector normal, cross multiply, dot
product, and matrix operators.

An example of FSMAC will illustrate
FORTH’s extension to accommodate new
arithmetic operators. The following is a
fragment of robot kinematic code:

routine CALC-xyz

(Calculate distance from xyz to x'y’z’ us-
ing directional unit vector to give scaling
direction back down the arm.)

pose {dxdydz} .V°S. yr .V=>. dx’
pose {xyz} .V-.dx’ V=> x’
end-routine

The first line contains the .V*S., or vec-
tor times scalar binary operator. The vec-
tor pose {dxdydz} represents the orien-
tation unit vector in the x direction of the
robot pose, which is a three-element, con-
tiguous floating-point array. This orienta-
tion vector is multiplied by the scalar
length, yr, which is a constant represent-
ing the distance from the yaw point to the
roll point on the robot. The second line
contains .V —. or vector subtraction. The
wrist point vector pose {xyz} is subtracted
by the amount of dx to derive the amount
of distance down the arm to the wrist plate.

Abstract Data Typing. Sophisticated data
structures relating to robotics can be de-
veloped in FORTH. Within the realm of
robotics, the requirement of an object-

GRIP 1 GRIP 2 GRIP 3
side ieft side right side
/ f
GRIP 4 GRIP 5 GRIP 6
back fron top

Figure 1. Robotic manipulation of a solild block requires the use of six “gripper rules.”

oriented perspective cannot be denied.
The work of a pick-and-place robot, for ex-
ample, is to transfer an object from here
to there. Categorizing the data and the
functions associated with it is one way to
simplify the problem. This type of meth-
odology is known as an object-oriented ap-
proach, as opposed to the procedure-
oriented approach of languages such as
Pascal and FORTRAN.

Using CREATE/DOES>, FORTH can
achieve object-oriented structures. For ex-
ample, assume a robot is involved in a
reasoning task about children’s spelling
blocks. The generic block can be con-
sidered an abstract data type with six faces
to contain letters. The operations available
would be based on the rules in Figure 1.

Reasoning would direct the robot to
change the orientation of certain blocks
so the letters on their forward-facing sides
spelled a word.

In object-oriented structures, the way in
which these operations are implemented
is less important than the ability to declare
an instance of the object and then be able
to use the operators included with the ob-
Jject. Each declared instance of a spelling
block would contain a different letter on
each of its faces. For example, to declare
two different blocks:

“N” u}'\" uEn ul'u ‘T” uAn
SPELLING-BLOCK BLK1

‘Q" ‘B” *S” ‘P’ “K” “R”
SPELLING-BLOCK BLK2
Since both BLK1 and BLK2 share the
common operators available with SPELL-
ING-BLOCK, the type of architecture in
Diagram 1 (next page) is possible within
FORTH.

CONCLUSIONS

The amount of information required for
robot control is staggering; thousands, if
not hundreds of thousands, of programs,
variables, and decision processes, and
megabytes of source code, are present in
the system. The burden of keeping track
of so much data should be transferred
from the human brain to the computer.
Only with the help of the proper program-
ming environment can sophisticated robot
applications be realistically developed.

Robot software development can be easy
with FORTH, due to three important fea-
tures inherent in the language. First and
foremost is the interactivity that allows the
user to test out routines, do data dumps,
or just plain experiment with the system
and get immediate responses. Another fea-
ture is that routines are usually small and
easily verifiable, and tackle only a very
specific part of the problem. A routine
does not try to handle too much and pro-
grams are written hierarchically. FORTH
is well suited to top-down design, bottom-
up development. The third feature is that

ROBOTICS ENGINEERING May 1986 25

m’

Control Interface for Robot Manipulators,” NBS-

Diagram 1 Navy NAV/SIM Workshop on Robots Standards,

Class of Spelling Block

June 6-7 1985,
3. Albus, J., A. Barbera, J. Evans, and G. Vander-
Messages/Operations Brug. “Control Concepts for Industrial Robots
' in an Automatic Factory,” Society of Manufac-
0 MESSAGE grip 4-6 turing Engineers Technical Paper MS77-745.
1 MESSAGE grip 57 4. Furlani, C.M., and E.W. Kent. “The Automated
2 MESSAGE grip 1-2 Manufacturing Research Facility of the National
. Bureau of Standards,” Summer Simulation Con-
- ference, Vancouver, B.C., July 11-13, 1983
. 5. Simpson, LA., RJ. Hocken, and).S. Albus. “The

Automated Manufacturing Research Facility of
the National Bureau of Standards,” Jounal of
Manufacturing Systems, vol. 1, no. 3, 1982.

Vector gnp gnp gnp 6. Hamis, K. “The FORTH Philosophy,” Dr. Dobb's
4-6 57 12 ¢ 00 Journal, no. 59, September 1981, pp. 6-11.
i 7. Taylor, RJ., P.D. Summers, and J.M. Meyers.
“AML: A Manufacturing Language,” Infernational
Journal of Robotics Research, vol. 1, no. 3, 1982.
CODE CODE CODE CODE
grip grp gnp ° o e
4-6 57 1-2 John L. Michaloski and Barry A. Warsaw are com-
.l x4 puter scientists in the Real Time Control Group of
e the Robot Systems Division at the National Bureau
of Standards.
FORTH encourages the fine tuning of de- REFERENCES :
sign t_hrough a process of iteration and 1. Barbera, AJ.: M.L. Fitzgerald, J.S. Albus, and Reader FeedbaCk
factoring. :uidl::i“::r lr: mml;iﬁ‘::zi‘;ﬁi To rate this artiche. circle the appropriate number
Further information on FORTH is avail- S : Intem:nbnal W on HighLeel 27 Reader Service card.
able from the FORTH Interest Group, P.O. Computer Architecture, May 1984. 4 4 24
Box 8231, San Jose, CA 95155. 2. Fitzgerald, M.L., and AJ. Barbera. “A Low-Level Excelient Good Farr
! Fexible Automation '85/88 SLIM 78 Gonirolier
COMPUTER INTEQGRATED MANUFACTURING 2—5 Copies Packed on 8 3 x 875 PC
$13.00 i
maemories ol any combination

of CMOS RAMs, EPROMS, or §
EEPROMS. With Zilog 28671
CPU on board and one 8255
chip the controlier has 38 10
programmable lines to inter-
face with the outside world. The EEPROM can be easily programmed at 5V with ™
TINY BASIC command. The RS232 port and on-board simple monitor make SZC
an ideal development ool and a dedicated controlier. $175

6-20 copies
$12.00
+ shipping and handling
The International Guide-
book and Reference book of
Computer Automated Manu- B i g e S
tr;acturing. A sct.txlpenor:ookﬁfor 4 TINY Z8 Controlier with 8 Channel A'D Converier
ining, instruction and continue Tightly packed on 8 1.7 x 6" PC board the ZB571 based controller offers a jumper.
education in the field of CNC-DNC-CAD- ﬁ&”?.i‘:ﬁ:&‘;ﬂ{%%‘:‘:ﬁ% mﬂgﬁ;ﬁ%ﬂ:
CAM-FMS-FPC-Robotics. i BASK the orotuct 4 Kad! 1o Gotbentod contl and dath sautomn. Power
tequirement is § Volts only.
Plsse crde now: O TS e e et Tt

@ BECKER PUBLISHING COMPANY, INC.

P.0.BOX 8396,NAPLES, FL 33941,USA °
@) rronE: (813) 947-4800 Kustem Data Services, Inc.

PO Doz 734, Franklin Park, NJ 08323 201-207-5388

26 ROBOTICS ENGINEERING May 1986 Circle 39 Circle 48

m

