NISTIR 89-4190

REmen

NISTIR 89-4190

GRAMPS
MULTIPROCESSOR
- OPERATING SYSTEM

Peter Mansbach

U.$. DEPARTMENT OF COMMERCE
National instituts of Standards
and Technology

Robot Systems Division

Sensory Intelligence Group

Bidg. 220 Rm. B124
Qailthersburg, MD 20899

October 1989
Issued January 1990

YN
)

U.S. DEPARTMENT OF COMMERCE
Robert A. Mosbacher, Secretary

Lee Meroes, Deputy Under Secretary
for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

Raymond 9. Kammes, Acting Director

1/9/90

OVERVIEW OF THE ‘GRAMPS’ MULTIPROCESSOR OPERATING SYSTEM

Peter Mansbach
Nationa! Institute of Standards and Technology
Bldg. 220/Rm. B-124
Gaithersburg, MD 20899

ABSTRACT

GRAMPSisanopemingsystundmigmdforusebyanumbc of independent functionally-divided
processars which communicate via common (shared) memory. It achieves high speed, simplicity,
and ready adaptability to users’ individnalneedsbybeingwimmilyasingb-mkingsym.and
addEgptmemboudswhenommmtopaaﬁmdwian\ﬁmiltdmsﬂdeswhwm
cost for known hardware cost

mmﬁmmmmﬁmmmwmmmm
includeasuofUnix-compaﬁbhaﬂs,nammmbedebuuadinaUuixemirmmemand
simplym-ﬁnkedtomnonamboud. GRAMPS allows individual processors to be stopped and
mmwmmmmmmgwmummmm-
tion. Theopulﬁngsymminduduahstdwnlmdﬂ.amitu(inmom,mdmmyof
ing tools. GWvaidumuuemlyfm:ymfadngl&mﬁngmulﬁph-pmcm
applicaﬁons.mdmemnlﬁ-mhinsapd:ilityaswen. It is cumently running on Motorola 680x0
micmproeesmandhsalsonmmlmlw's.

kqwmmmmummm communications protocol; functionally-divided processes;
Gm;mummmmmmsym;mmmm.

OVERVIEW OF THE ‘GRAMPS’ MULTIPROCESSOR OPERATING SYSTEM

1. Introduction

plled on a Unix host, may be linked 1 the standard Unix library and debugged on the host. The same pro.
grammaybete-linkedwiﬂnheGMMPSlibmyanddomﬂoadedtodlelnrgeLOnﬂwhostﬂw"imﬂpro-
c&sor"cmnmunicaﬁontakesplaoeﬂnoughﬁlwmﬂmﬂmnmmmmanory.

GRAMPS allows Mvidualprocemmbeswppedmdmsm without interrupting the other
processors, and allows single processors to be run in isolation.

GRAMPSwasoriginaﬂydwigncdwhaveeachmsormnasingletask. In this mode the operat-
ingsystemexwuusonlywhmmqmdbyﬂnusupmcm.lhispuuﬁmmehwﬁdualmmsesto
achicve their full speed potential. Also, the absence of multi-tasking allows great simplicity in the operat-
ing system, compared to "time-sharing" systems, and in patticular in the writing of input/output device
drivers.andintiwuseofintanw.

Functions have since been to allow simple m}nﬁ-tasting opuauon System calls to activate

Most of the GRAMPS code is written in C. Some of the basic routines--the message-passing primi-
tives, terminal J/O, block moves, etc.—-are in assembly language, as are portions of the PROM.

2. Background
TheGRAMPSopetaﬁngsysmwasdevelnpedbydlewﬂmudwNaﬁonaleuofStandards.

Thiswmtwasdoneinsuppmofambotvisionsysumwhichwasiniﬁaﬂycommnctedwilhﬁvelmel

8086nﬁcmpmceminaMulﬁbmbackplme[l,2.3]. Memory was provided that was accessible to all

1 Comnﬂdmmmmmhdhmm-mmowpmnhmmdmmhimmimyrmmandaﬁm

or endorsement by the Neional instiwie of Smndards snd Technsiagy, ner does it imply thet the equipment identified is necessarily the best available
for the purposs.

memory, by having the processor that generated the information write it into common memory, and hav-
ing each processor that needed that information read it when required. Mutual exclusion, to prevent one
stage from reading data while another was still writing, and vice versa, was to be provided by the operat-
ing system.

Commercial operating systems available at the time did not support multiprocessor data passing.
(We use the term multiprocessor to refer o systems with two Or more processors, as distinct from multi-
tasking, where several tasks may execuie on the same CPU.) Since data-passing between processors was a
central requirement for our vision system, it seemed appropriate o write a simple operating system of our
own. In addition, for a research project with unanticipated requirements there is a substantial advantage 10
writing one’s own operating system, and thereby having both the source code and the expertise to modify
it readily available. 'I‘heswtemisﬂwneasilyadaptedmﬂwncedsofﬂlepmject.

We adopted the following design requirements for the GRAMPS operating system:

Support for multiple processors

Efficient data passing via shared memory, often large blocks of data
Support for both synchronous and asynchronous communication
Unix-like /0 calls

Ability to restart one process while others continue uninterrupted
Abilitytomnsinglepmcmwithomothetspesmt
Speciﬁcidemifyingmasagﬁforallerrminsyswmcode
Dynamic common memory allocation

Task-switching capability

2.1. Other Multiprocessor Systems

Since that time a number of other systems have become available with, or have added, multiproces-
sor capabilities. These include GEM [4], Harmony (51, Meglos (6], MTOS (7], POPEYE (83, pSOS [3),
VRTX [10], and VxWorks [11].

GEM (developed at Ohio Staie) envisions a process architecture quite different from ours, with
processes being dynamically assigned t0 processors, and containing "micro-processes” which can be tumed
on and off by other micro-processes. Harmny(NalimalRthouncil.Camda)isinmeways
similar to GRAMPS, but has more highly developed multi-tasking facilities, However, the Harmony system

developed by Bell Labs.

MTOS (Industrial Programming Inc.), pSOS (Software Componenis Group), and VRTX (Hunter &
Ready)areallsystemsinitiallydesignedtobemulﬁ-taskingonasinglepocm,whichhavenowbeen
extsnded to allow multiprocessor operations as well. MTOS additionally offers dynamic load-balancing
among the processors. POPEYE (j Mellm)isaeompleﬁevisionsym,includmgadsooo-based
operaﬁngsymwidlmanyfmﬁmﬂarmc;ms. However, there is no mention in the cited refer-
enoeofeomnu:ﬁcaﬁm&omonepmmbmdtomom. And, finally, VxWorks (Wind River Sys-
wms)nmsusingVRIXulheopuaﬁngsysmnfa‘uchboard.andusestheUnixsocketfoma]ismto
implementinwcommuniuﬁons.

3. Major Components of the Operating System
The full GRAMPS operaﬁngsystancmsistsofﬁvephysically distinct parts: kernel, downloader,
PROM, SYS (system process), and debugging tools.

31.1. Kernel

Tbemajou'panofthesystemcodeisﬂwhmel.whichisaooﬂecﬁmofwbmuﬁmsresidmtinme
GRAMPS run-time ﬁbmy.ﬂmsnbrmﬁncsmincludedbymeﬁnka,andmusbecmnepmofmh

2 Unix is a trademark of AT&T/Bell Laboratoriex.

Note that the C language promises that initialized variables start out with the values specified by the
programmer, but these valges may change during program execution. Thus, to allow a program to be res-
tarted, the GRAMPS kernel saves these initial values the first time the program is executed after being
downloaded, and subsequently restores them ¢ach time the process is restarted. It is not necessary 1o re-
download the program to restart it.

3.2, Downloader

The downloader is resident on the host computer, and sends iully compiled and linked programs (o
the target processor boards for execution thcre.Thmprommsaresmtﬁrsttoaninwrfaceboardonthc
target computer. From there the destination processor copies them to its on-board memory under control of
its PROM. Clearly the choice of host computer is not important to the rest of the GRAMPS system, and

The download program is independent of the device hardware, except tha: it calls different device
drivers for different hardware. It has been run using standard serial RS-232 non-login lines, and alterna-
tively using 16-bit parallel J/O ports. This last is particularly fast. The download program could also vse a

sendin;gitw)mehonmdevebpmentcompuur,mimrfmcﬁonsfordhwdyexamhﬁngmgismand
memory, and other basic debugging aids. Anonboardﬁmerchip,ifomexists.canbeselecwdto
automaticallyﬁmesecﬁmsofoode.Ahdpcommandreviewsdleavaihblemmnrcmnmmdsandfm-

In addition to the usnal monitor commands (display, substitute, go, go to breakpoint, single step,
move, fill, find, scan, compare, reset, exc), we have added a go next n command, that goes through the
next breakpoint (n-7) times before finally stopping on the ath time.

Anodiernieefeamre.indeROM’swakwpproeedme.isMitdoesnotauﬁomaﬁmﬂywaitfor
input from the terminal. Rad:uitcyclieaﬂypolhﬂtewminal.ﬂwpuaudmmeseﬁa!ﬁqkwﬂwhosa

receivethecmnmmd,enuamhwﬁmhﬁ:?koumatcoi:immecodeﬁmﬂwhuufacebwd’scom-
mon memaory Mmﬂwnrgetbomd’sbulmunory,md(ifsommmmded)mexecuﬁngmepmgmm.
Thisismﬁelyamﬁc.andhmspmscmasinghdombadcommdtypedmﬂnm

34. SYS

The system process, SYS, consists primarily of initialization functions, including setting up the mes-
sage buffer directory in common memory, writing out a table of system-wide parameters (such as the

camera calibration parameters used in the vision system), and zeroing buffer areas for easier debugging.
During execution, other processes’ status can by monitored by SYS, which then reports to the operator on
exceptional situations such as the death of a process. Currendy, the SYS initialization code is included in
one of the other processes, and the monitoring functions are not performed.

3.5, Debugging Tools

The debugging fools are provided to assist in program development. These provide user-friendly
displays of the state of the common memory buffers and related system flags, allow variables to be exam-
ined and/or changed by name, obtain a stack trace (listing the sequence of nested subroutine calls), remove
or restore named subroutines or execute them in isolation, and set debug flags which release additional
output during program execution.

4. Protocol for Interprocessor Communications

Central to the GRAMPS operating system are the inter-processor communications, which are imple-
mented as follows.

Data are passed from one processor on the bus to another via common memory {memory accessible
toboth;xocessots).medataamﬁmtwrinenintooommonmemorybydwmepmcwsor.andmenread
by the other. It is the principal task of the operating sysiem’s CoOmmunications programs o assure first
thatthedataisnotreaduntilthewﬁtﬁisﬁnisbedwﬁﬁng,andthmthatmememyisnotwrimnm(by
some other processor) until the reading is complete.

Toachievethis,mhseparatedmbuffaincommonmcmoryisaccessedbymeuserasthoughit
were a Unix file, which must be explicitly opened and closed. (We use the word "file" interchangeably
with“buffer“.toemphasizethesimﬂaritywithvnixﬁlcmanipulaﬁon.)mmisoneimponantrulewhich
mesystunmfmces:on!yoneusermhaveaccasmaparﬁcularbﬁcratanyonem. This is gen-
emllyarusmnblerequjmment:ifonepumissﬁnwﬁ&ngabuffet.ﬂleothersluﬂdn‘tbereadmginif
he’snotstillwriting.heshmﬂdmlinquishthebuffer(closeit).Thisrequitementisrelaxedinaderivaﬁve
pmtoooldesm'ibedbelowinsectiomlj.

Buffers are permanently assigned areas in commof memory. The buffer names (filenames), their
common memyaddresses,legiﬁmawmas.ew,mspeciﬁedinanalbﬂcsmy maintained by the sys-
tem, and resident in the system buffer parmfile. Enchpmcess.atiniﬁalimﬁon.exmctsﬁmnﬁwaﬁﬁlzs
arraydnhfmnaﬁonmmﬁngﬂmbuﬁenfmwﬁchhkakgiﬁmmm.msmfmpadonhmed
imemallyinmeptms’sownon-bowdﬁksmy.sothatitisavaihbleforusedningmal-ﬁmepmcﬁs-
mgwimommudedbmnfﬁcmdmﬁmemmmmmm;ﬂwsyswmcopy. The crea-
ﬁonofﬂwﬁksmyisdombyﬁesys&mﬂhebeginﬁngofmhmcm.aﬁismsparmtwﬂw
user. mmmmgemmiscmmhmdschuneismachmgeswmebu&ﬂasﬁmmmedbemade
ordymallﬁks.andusummsdonotneedmbemompﬂodaﬁusmhchanges.

4.1, Unix Framework

Mbasicsubrouﬁnecalls(opm,cm:.read.write) have been chosen to be identical to the
cmrespnndinaCIUnix(SymV)symalls. This is a convenient and widely known quasi-standard.
Manyptogtnmwmbefunﬂhrwimmcm.mdwﬂlﬁndmeGMPSmdmmyw
mmw.m,mmmmnumﬁmmmmumwmmwmg
changswhenmpmﬁngmemﬁumgetbwd.

Mbaﬁccm&funyanﬂownthemespondingcmls,m:

file_descriptor = open(filename, mode);
number_of_chars = read(file_descriptor, buffer, count);
number_of_chars = write(file_descriptor, buffer, count);
return_code = close(file_descriptor);

Nomemmﬂwbrﬁcrugmnmtabovemfusmmeaddrm.wiﬂﬁnmemm,matmrwdsintoorwrites
from. The common memory buffer is specified by the filename argument.

qur conditions are flagged by -1, and should be checked for as in Unix. However, error messages
(and optionally stack traces) are pnnted by the system, so the user need not add additional code to print

be turned off, to achieve optimum speed, once a program has been sufficiently debugged. Similarly, an

4.2. Protocol Implementation

The open() and close() functions are implemented by means of a one-byte flag associated with each
buifer.'I‘hisﬂagiszerowhenthebufferisclosed,mdizx%(bit?set)whenﬂwbuﬁcrisopen. When a
particu]aruserattemptshoopenﬂwhffer(pma]inbit?oftheﬂag),hcdoessobymemsofatest—
and-set (TAS) instruction (Figure 1), This instruction, on the 680x0, first fetches bit 7 of the specified
address(ﬂxeone—byteﬂag),andﬂwnsetsbit?(stmesal init).allthcwhilclockingodleruselsoutofme
bus.Thisprcvemsmyoneelseﬁ'omchangingmeﬂagmmeﬁmebetweenmefemhammestoreportims
of the instruction.

mus:notchangemythinginmebuﬂ‘eroritsasmcimdﬂags. He may wait and try again, in the case of
open(), or continue processing, in the case of openn().

Ifhefetchedao.onﬂlcodmhand,thismmsﬂlebuﬁermclowd.Itisnowwentomisusa-.
sincehehﬁchangedbiﬂoflheﬂagml. Heimmediatelypulshis“uaulb‘indnadjacentbyw.called
the previous_user byte.

(sec next section), Inaddiﬁm.dleprmbm_mrbmlmmmuseﬁﬂ‘wmﬁuﬁonsmnsin
asceminingwhedwrdauis"old"(Iastopenedbylheinquﬁingpmess),or"new'(lmtopuwdbymc
omerusu).TheymaIsoinvaluableindebugging,foremplemseewhoinfacthstused.andperhaps
is not relinquishing, a given buffer, Tofmheraiddebugging,d:esystemmainlainsﬂwtimoflastopen
and last close, for each buffer. Nhimanceofﬂmeﬁmeenuiescanalsobemwlndoﬂ’oncemeym
no longer needed,

Nowﬂla(dnﬂagxneednotbeadjmemtothehﬂmdmselm In fact, in our vision application
wehavechoaennhcmﬁmﬂngsaﬂtogetbu.sodm:hemofaﬂofﬂ:esym’sbuﬁmmaybe
seen at a single glance. Thisisnobngu—impomnnsincemewolsmwincludeadhplaysystemﬂags
command. ?

43. Execution Time mmmkmm&wmmmmmaaam
microprooessu,nmningwithaZSm-lzclock.Mopenandclmepimiﬁves(inchdingmainminingthe
"previous user” byte) run in 4.5 and 22 usec, respectively. The complete debug versions, including run-
ﬁmechecksonthemmelarsandonﬂwinmﬂﬁksmy.min 100 and 40 psec, respectively. (These
muﬁnesarewﬁneninCmdﬂxekexecuﬁontimeiscompihr—depuﬂan)

BQWMWMTMMMMMMQMM;&WMW“MM&
boards.lnsud:mes.hﬁﬁmb;hﬂ'mmhhuumthumeymdhudwmoummmmmhm:.

These timings may be compared with values quoted in a recent article [14] on a multi-tasking robot
operating system. That system required 913 and 353 usec, respectively, for message send and message
receive system calls.

4.4. Buffer Initialization

Initializing the flags at startup requires care. The design requirements state that any process may be
started up independently of the others. That is, any process may be reset and restarted while the others
are running; and processes may be started in any order. Achieving this goal required that each buffer

have one additional parameter, its owner. In cases where it is not otherwise clear which process is respon-
sible for cleaning up a buffer’s fiags, the owner is designated to do the job. _

Specificaily, when a process is first started, it looks at each of its buffers (this occurs in the system
prologue that is automatically linked to the user’s program). If the previous_user byte of a particular
buffer contains that user’s own ID, it initializes the buffer. If the previous user was another user assigned
1o the buffer, the job is left to that other user. ('nmothausermayhavejustwriumgooddma, for
example, or he may have crashed and been restarted—this user doesn’t know, only the other user knows.)
Otherwise, the flags arejunk(smhasmeFFFFthatoftmappwsatpower.up). If this process is the
owner, it cleans up the flags; otherwise it does nothing. This algorithm identifics one and only one pro-
cess to initialize any given buffer and its flags. No determination of "who gets there first” needs to be
made,

Dmingbufferi:ﬁtialimtion,ﬂwreisonecascmwhichausermustwﬁtcwaﬂagbufferv.rimout
havingﬁrstformallyopenedmebuffer.lhisoocumwhcnmeusuistheowner.andﬁndsmebuffer's
OPEN/CLOSED flag set to OPEN, but the previous_user byte is garbage (i.e. not a valid user of that
buﬂ’er).Hegoestoopmthebuﬁu.Thepmblemis.itmaybethanheOPENﬂagisvalidlysetinme
courseofanomausu‘sopenofthebtﬂ'er.bmtheothumethasnotyupmhisownuseridinthc
previous_user byte. The solution is not to allow any user to open a buffer with a garbage previous_user
byte.oragsrbageﬂagformatmaaer.lfmeinitialimﬁonp'ocmSYS(seeSecﬁon3)isnm.nobuffers
are left uninitialized.

Anevenmaeinsidiwscmcanoecm‘ifapmcesswakesupmﬁndaﬂagsetmOPFN,wimme
previom_usersetmmeprocm'sownusaiiHmagain,itmaybeﬂmmodwmisindnpmcmof
openinsthebuffer,andhassetmeﬂaglnOPENbuthasnotyetpmhisusexidinmeprevious_userbyte
(compmthiswithﬂwmwhmorelikelysinmion.thatthisuocesshaddiedwhikdwﬁlewasopenm
hhn).mptesmeotﬂﬁsusu’suseﬁd.althmghthisusuisjustnowinitializing,canbeexplaimdas
ooming&una"previousinwnaﬁm‘,i&befuehewassmppedandmﬂ&nsoluﬁmmﬂﬁsambi-
guity.lmweverinelogant.isfotﬂwpmcmjustsmﬁngupwgomsxeep,andmenre-awakenmdseeif
theﬂaghmclmngedornot.Ifnot.heﬂ:mmnnesitwbeindeedopenwhimandiniﬁalizesandclm
the buffer.

Buﬁusmwodﬁhi&limﬁoﬂW&wm,ﬁM’sdm&cmddngﬂwhiﬁﬂMgofthe
ﬂay.mwmmmmam.mvmhiﬁﬂiﬁngﬁmcﬁmsmcdbdbyabrou-
tinemain,whichismmaﬁcaﬂyhnhxledbyﬂ:eﬁnherandmwdbynadownhadaIPROMThisini-
tialization is transparent to the user.

4.5. Multiple-Reader Buffers

muﬁmdum'bedabovemaymmynumbuofumpumimdwxoessm.mﬂwpmm-
wljustdmibe&howm.oﬂywemispemiuedmmagivmﬁleumymeﬁme.Ausu.even
ifheisuﬂyrudins.shunomomammthmewboueahowaiﬁngonlymm

Multipte—readerbugﬁrs.onlheoﬁuhmd,allowsevemlwadusmhaveaﬁleopen.fmr@ding
only.atthesametime.Forwriﬁngintotheﬁle.howevar,ausumdmsiﬂbememﬂyommhaveﬁwﬁle
open.

Mfactmatabufferpamitsmulﬁplereadersismnspnrentmdww. He still uses open or
openntoopenabuffer,andcloumcloseit Pﬁshltanalﬁle:amyismhmged.exceptﬂmtnowﬂw
entry multiple is set o TRUE.

The multiple-reader protocol is implemented by adding a fiag called rdusers, which lists users to
whom the file is currently open. Each bit in rdusers is assigned to a user, and is set if that user has the

open the message buffer.

To the system, the open flag (and also the previous_user byte) are taken 1o refer to just the faghuf
structure, rather than the whole buffer. That is, only one process may write into or read from the flaghuf
Structure at a time, namely that process that has the flagbuf structure open, and whose name therefore
appears in the previous_user byie. The same open/close protocols are used, but they refer to the fagbuf
Structure as the entity being opened or closed.

Once the flaghuf structure is opea (0 you, you may modify the-rdu.s'ers vector (the open call does
this automatically) to add or delete yourself as a current reader, or you may request write privileges. If

so the multiple-reader facility should not be used fq- all files. The advantage of this protocol accrues when

The "multiple-reader” capability is a switchable option.
4.6. Dynamic Common Memory Allocation

AtthispointAistheonlypmommatknowsabmn(hasmeaddtessot)thisblockofmemory. He
goesaheadandwﬂmhisdataﬂme;hedmnothavemopeuitlikeahﬂer,sincemodnrp'ocmeven
knows of its existence. Whenheisdmewﬁﬁng,hepasaesapoinwrmdwblocklotheappmpﬁate
processes, B, C, and D. (Healsonoﬁﬂes&esystmdmheisdonewithdleblock.)

Thepoinmmmntmmcmdymmedhmmofmeﬁnd.d«cdbedquuﬁngopem
and closes--see section 4.2). Because of the specially simpie nature of the messages (just a 32-bit address),
the special calls readheader and writeheader are available to open, read (or write), and close with a single
call. Wemﬁcipatemodifyingﬂlispmweolﬁm.sothaﬂwbuffusdwmsdvawﬂlvanish,mmc
four-byte pointers will be placed directly in the flaghuf structure. Finally, with the advent of 32-bit wide
bushardware,:heopensandclouscanbeelinﬁmwd,sincethewﬂlingot’the(32-bit)poimerwillbe
done in a single, indivisible bus cycle; thereadu'willalwaysreadthelalcstpohm:.andwﬂlmverget
garbage (i.e. 16 bits of new pointer, and 16 bits of old).

In GRAMPS, the dynamic common memory allocation is implemented as part of the kernel, which
is resident on each process. There is no centralized system process to perform such allocation for the
whole bucket. Instead, each process is given a region in common memory from which to carve out alloca-
tion blocks for himself, as needed. The alternative, of having the SYS process handle all allocation
requests, has not been pursued. This choice is transparent to the user: he simply calls the system function
allocem() and receives a pointer to memory in returmn.,

5. Additional Functions

The system also provides //O services to and from the CRT, including getchar, putchar, prinsgf, and
readnl. In each case it first checks to see whether a CRT is in fact hooked up. This allows the user o
include diagnostic pringf statements in his program, while still being able to run in real-time (i.e. without
the slow terminal J/O) simply by unplugging the terminal from the computer board.

A system clock is created by the SYS process, and continues to run on one board, interrupt driven
and therefore transparent to the user. This clock may be read by any user by calling a function systime();
as currently implemented, it ticks once each millisecond. A sleep(n) function puts the process to sleep for
approximately n milliseconds. abori{message} and exit(n) perform as expected.

A PROC (per process) array, maintained in common memory, provides a snapshot of the current
state of each process. A tools command displays this information on request.

Every error detected by the system gives rise to a message 1o the CRT (if there is one) including the
name of the subroutine and the error, and relevant parameters. If the debug fiag is set, a stack trace is also
automatically printed. Thus, while a user must check for a -J error retum, he need not bother coding an
error message. (The system error messages may be disabled, if desired, by clearing a flag.)

The same buffer protocol as described above has also been implemented for host-target data
transfers, to allow programs to be debugged on the host, or to permit the host to influence execution on
the target. Since the host cannot directly lock the bus, the CPU on the interface board (running code in
its PROM) accepts a request from the host to do the test-and-set on the host’s behalf, and to return the
result to the host.

Additional buffer ("file”) functions are provided, such as readran and writeran, which provide ran-
dom access, and autoread and ausowrite, which include the open and close functions automatically, and so
result in fewer programmer emrors. Open_synch, together with the global variables synchr_base and
synchr_incr, allows the user to require that message passing be done at fixed times only (synchronously).

These and other functions are described, and directions for their use is given, in The GRAMPS
Operating System: User's Guide [12]. Details of how w0 set up the files arrays, user IDs, etc, will be
presented in The GRAMPS Operating System: Administrator's Guide (13].

6. Application

GRAMPS -- an earlier, less developed version -- was used as the operating system in the vision sys-
tem component of the National Burean of Standards Automated Manufacturing Research Facility (AMRF),
The AMRF is a fully-automated machine-tool shop designed as a demonstration and test-bed facility. The
vision system was built and tested in 1982-1985, and continues in operation today. Hardware consists of
five CPU boards running /nzel 8086 microprocessors in a Multibus backplane, and a separate host com-
puter consisting of an 8086 CPU board in an S-J00 backplane, communicating with the Multibus bucket in
real-time as discussed in the previous section.

Program execution in the vision system was data-driven. Each processor performed a different func-
tion on the image. One did run-length encoding of the image (see Ref. [3]), the next performed segmenta-
tion, the third extracted features such as corners, etc. Images arived from the camera 30 times each
second. Each image was processed by the first processor. The output of this stage was then passed (via the
GRAMPS operating system) to the next, etc. The receiving processor is always available (at its
programmer’s discretion) to deal with the incoming data. There is never any concern that it might be
swapped out of memory, or when it will again gain control of the processor, or how to preserve the data
unti] it is again running. Interrupts were not used; each process simply checked to see if new data was
available, at appropriate points in its code. The operating system's responsibility is simply to provide

bookkeeping for the data passing, and to assure that there are no collisions. GRAMPS does this with low
overhead, and what overhead there is occurs at points explicitly recognized by the user, i.e. during a call
to read or write.

Since then GRAMPS has been converted to run on 680x0 processors, and its capabilities have been
greatly enhanced. Three processes of the AMRF vision system were transported to three 68010's, where
they ran under GRAMPS as before. Other programs were written to test some of the new capabilities of
GRAMPS, and they demonstrated the usefulness of these new feamres. GRAMPS has thus proved itself to
be dependable, as well as fast, on both 8086°s and 680x0’s.

7. Acknowiledgments

The author wishes to acknowledge the following people for their valuable help and their contribu-
tions to the development of GRAMPS: Jonathan Brickman, Emie Kent, Mark Rosol, Wally Rutkowski,
Mike Shneier, and Tom Wheatley, and to thank those others who used GRAMPS before it was fully
debugged, and by so doing, helped to debug it.

REFERENCES

[1] Kent, Ernest W., and Albus, James ., "Servoed World Models as Interfaces between Robot Control
Systems and Sensory Data”, Robotica 2, pp. 17-25 (1984),

{2] Shneier, Michael O., Lumia, Ronald, and Herman, Martin, "Prediction-Based Vision for Robot Con-
trol”, Computer Magazine, August 1987, pp. 46-55.

[3] Albus, J., Kent, E., Mansbach, P., Nashman, M., Palombo, L, and Shneier, M., "Six-Dimensional
Vision System”, SPIE 336, pp. 142-153 (1982).

[4] Schwan, Karsten, Bihari, Tom, Weide, Bruce W., and Taulbee, Gregor, "GEM: Operating System
Primitives for Robots and Real-Time Control Systems", Proc. IEEE Intl. Conf. Robotics, pp. 807-813
(1985).

(5] Gentdeman, W.M., Using the Harmony Operating System, ERB-966 (NRCC No. 24685), National
Research Council of Canada, Ottawa, Ont. (1985).

(6] Gaglianello, Robert D., and Katseff, Howard P., "A Distributed Computing Environment for Robotics",
Proc. IEEE Inil, Cory' Robotics and Automaaon, pp. 1890-1896 (1986).

[7) MTOS-UX User's Guide for the 680XX, Industrial Programming Inc., Jericho, NY (1984 rev. 1986).

{8] Bracho, Rafael, Schlag, John F., and Sanderson, Arthur C., POPEYE: A Gray-Level Vision System for
Robotics Applications, Teclmical Report CMU-RI-TR-83-6, Camegic-Mellon Univ., Pittsburgh, PA
(1983).

[9]1 pSOS-68K User's Manual, and pRISM-68K User’s Manual, Software Components Group, Inc., Santa
Clara, CA (1986).

(10) VRTX/86 User's Guide and Multi-Processor Applications Using VRTX, Hunter & Ready, Inc., Palo
Alto, CA (1984).

[11] VaxWorks Overview and VxWorks: A Real-Time Partner for Unix, Wind River Systems Inc., Emery-
ville, CA (1986).

{12] Mansbach, Peter, and Shnoeier, Michael, The GRAMPS Operating System: User's Guide, NBSIR 88-
3776, National Bureau of Standards, Gaithersburg, MD (1988).

(13] Mansbach, Peter, and Shneier, Michael, The GRAMPS Operating System: Administrator's Guide,
National Bureau of Standards, Gaithersburg, MD (o be publ.),

[14] Lee, Insup, King, Robert B., and Paul, Richard P,, "Kemel for Distributed Multisensor Systems”,
Computer Magazine pp. 78-83 (June 1989).

10

"uondnISuL (135 pue 15A) gy Jo weadewq 1 Iy

payoo; sAeis snq

108N S|y ' k|
o) pouedo 0=2muq
Oeyy omebou seop
———— —— : 9 Ajenu e
- MqQ | B ai0ois Ha 0 oyl Ydio) 1 poeso) neniuy 4
o 3.3% .3 T :uedo Aemut oy
NI R YyrTry— : reniut oy
(pue 1) oy (wers 18) oy
|]

uoplonisul (198 pue 1s9)) gy

NBS-T1dA tREV. 2.8¢)

U.5. DEPT. OF COMM, 1. PUBLICATION OR 2. aufmming Organ. Report NoJ 3. Publication Date
BIBLIOGRAPHIC DATA REPORT NO.
SHEET (See instructions) NISTIR 89-4190 January 1990

4. TITLE AND SUBTITLE
Overview of the "GRAMPS" Multiprocessor Operating System.

§. AUTHOR(S) :
Peter Mansbach

&. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Granc No.
NATIONAL BUREAU OF STANDARDS T P e TS -
U.S. DEPARTMENT OF COMMERCE - Trp epo iod Covers
GAITHERSBURG, MD 2089

3. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, Z/P)
Naticonal Bureau of Standards
Robot System Divisian
Building #220, B~124
Gaithersburg, MD 20899

18. SUPPLEMENTARY NOTES

m Document describes a computer program; SF-185, FIPS Software Summary, |s attached,

mRACT (A 200-word or less factuol summary of most significont information, 1f document includes o significont
bibliography or literature survey, mention it here)

GRAMPS is an operating system designed for use by a number of
independent functionally divided processors which communicate via
common (shared) memory. Three mechanisms of asynchronous data
communication between processors are provided. These include a
set of Unix-compatible calls, s0o a program can be debugged in a
Unix environment and simply re-linked to run on a target board.
GRAMPS allows individual processors to be stopped and restarted,
without interrupting the other processors, and allows single
processors to be run in isolation. The operating system includes
a fast downloader, & monitor (in PROM), and an array of debugging
tools. GRAMPS provides an extremely fast system for single-
tasking multiple-processor applications snd some multi-tasking
capability as well. It is currently running on Motorola 680x0
microprocessor, and has also run on Intel 8086's.

12, KEY WORDS (5ix to twelve entries; aiphobetical order; copitalize only proper nomes; and separate key wards by semicofons)
asynchronous commnication; communications protocol; functionally-divided processes;
GRAMPS; multi-processing; multi-processor; multiprocessing; multiprocessor; operating
system; real-time; robot vision; vision

13. AVAILABILITY 14. NO. OF
PRINTED PAGES
X Unlimited
] For Official Distribution, Do Not Release to NTIS 14
0 Ord.;-me Superintendent of Domfl. U.S. Govemmaent Printing Office, Washington, D.C. 15. Price
(3] Order From National Technical Information Service (NTIS), Springfisid, VA, 22161 AD2

USCOMM-DC $043-PR0

