NASREM: ROBOT CONTROL SYSTEM AND TESTBED

Ronald Lumia, John Fiala, Albert Wavering
Intelligent Controls Group
National Bureau of Standards

The problem of robot control is approached from a systems
standpoint where a complete control system must include all of
the aspects involved in moving a robot, not just the algorithms
in the classic controls literature. The NASA/NBS Standard
Reference Model for Telerobot Control System Architecture
(NASREM) provides the framework for a complete manipulator
control system. It is composed of three hierarchies: task
decomposition, world modeling, and sensory processing. The task
decomposition hierarchy divides tasks into smaller and smaller
subtasks. In order to achieve the desired decomposition, the
task decomposition hierarchy must often access information stored
in the world modeling hierarchy, which contains a workspace

representation, object descriptions, robot models, etc. The
sensory processing hierarchy constantly fills the world model
with processed sensor information. In the process of building

NASREM, a great deal of effort has been spent in the definition
of the interfaces between levels of the hierarchy so that the
majority of robot control and sensory processing algorithms in
the literature can be implemented. This allows the realization
of the NASREM architecture to serve the dual purpose of a robot
controller and a testbed for robot control algorithms. This
paper describes the purpose and overall organization of NASREM.
Then, two examples of NASREM task decomposition modules are
discussed in terms of function as well as interface requirements.

1.0 INTRODUCTION

In spite of the fact that research in robotics has been
progressing for many years, there are surprisingly few systems
which can be used to compare different algorithms experimentally.
There has not been a major ground swell to develop testbeds
although most researchers seem to agree that this is probably the
only viable method for comparing two approaches. Instead,
researchers have tended to promote one particular approach at the
expense of alternatives blaming the problem on efficiency,
computer resources, manpower limitations, and myriad other
excuses.

The problem of the scarcity of testbeds is further exacerbated by
the "institutional biases" injected into solutions. If the
engineers like Company X microcomputers, it is most unlikely that

other alternative computers have a chance of being chosen unless
it is obvious from the start that Company X microcomputers cannot
do the job. This is true for any institutional bias: expert
systems, blackboards, whiteboards, hierarchical control.
Nevertheless, the scientific approach compels the scientist to
conduct an unbiased exploration of the alternatives.

There are many approaches to controlling robots [1-8]. One would
hope that it is possible to develop a robot control system that
can serve as a sophisticated robot controller as well as a
testbed. Built on nearly 10 years of work in an Automated
Factory environment [9], the third generation NBS controller
(with the institutional bias of hierarchical control), NASREM, is
under development. It was conceived to bridge the gap between
the algorithm centered approaches and the testbed concept. The
primary contribution revolves around the proper definition of the
levels in the hierarchy and the careful specification of
interfaces so that the wvast amount of 1literature in robotics is
supported.

2.0 NASA/NBS STANDARD REFERENCE MODEL FOR TELEROBOT CONTROL
SYSTEM ARCHITECTURE (NASREM)

One way to view a robot control system is as a two level
hierarchy [10]. The upper level is concerned with the robot
actions which are task dependent but robot independent while the
lower level 1is concerned with the robot actions which are task
independent but robot dependent. If each of these levels is
examined more closely, more resolution can be obtained, resulting
in the fundamental paradigm of the NASREM shown in Figure 1. The
control system architecture is a three-legged hierarchy of
computing modules, serviced by a communications system and a
global data system [11]. The task decomposition modules perform
real-time planning and task monitoring functions; they decompose
task goals both spatially and temporally. The sensory processing
modules filter, correlate, detect, and integrate sensory
information over both space and time in order to recognize and
measure patterns, features, objects, events, and relationships in
the external world. The world modeling modules answer queries,
make predictions, and compute evaluation functions on the state
space defined by the information stored in a global data system.
The global data system is a database which contains the system's
best estimate of the state of the external world. The world
modeling modules keep the global data system current and
consistent.

2.1 Task Decomposition (Plan, Execute)

The first leg of the hierarchy consists of task decomposition

modules which plan and execute the decomposition of high level
goals into low level actions. Task decomposition involves both a
temporal decomposition (into sequential actions along the time
line) and a spatial decomposition (into concurrent actions by
different subsystems). Each task decomposition module at each
level of the hierarchy consists of a Job Assignment Manager, a
set of planners, and a set of Executors. These decompose the
input task into both spatially and temporally distinct subtasks
as shown in Figure 2.

The control system architecture described here is a six level
hierarchy. At each 1level in this hierarchy a Dbasic
transformation is performed on the goal. Each level of the
hierarchy has a fundamental philosophy which describes its
behavior. These simple descriptions of the purpose of each level
help the designer in organizing algorithms into the correct place
in the control hierarchy.

Servo Level performs motions which are small in a dynamic sense.

Primitive Level (Prim) performs motions which are large in a
dynamic sense.

Elemental Move Level (E-Move) transforms goals described from a
task point of view (currently in a geometric fashion)
into goals from a manipulator point of view.

Task Level is the "man-equivalent level." Goals are planned
based on a geometric description of the world,
incorporating "common sense" physics.

Service Bay Level coordinates groups of task level robots.

Mission Level sets priorities for the activities.

2.2 World Modeling (Remember, Estimate, Predict, Evaluate)

The second leg of the hierarchy consists of world modeling
modules which model (i.e. remember, estimate, predict) and
evaluate the state of the world. The "world model" is the
system's best estimate and evaluation of the history, current
state, and possible future states of the world, including the
states of the system being controlled. The "world model"
includes both the world modeling modules and a knowledge base
stored in a global data system where state variables, maps, lists
of objects and events, and attributes of objects and events are

maintained. By this definition, the world model corresponds to
what is widely known throughout the artificial intelligence
community as a "blackboard" [12]. The world model performs the

following functions:

1. Maintain the global data system knowledge base by
accepting information from the sensory system.

2. Provide predictions of expected sensory input to the
corresponding sensory processing modules, based on the
state of the task and estimates of the external world.

3. Answer "What is?" questions asked by the executors in
the corresponding level task decomposition modules. The
task executor can request the values of any system
variable.

4. Answer "What if?" questions asked by the planners in
the corresponding level task decomposition modules.
The world modeling modules predict the results of
hypothesized actions.

2.3 Sensory Processing (Filter, Integrate, Detect, Measure)

The sensory processing hierarchy modules recognize patterns,
detect events, filter and integrate sensory information over
space and time, and report this information to the world model to
keep it in registration with the external world. At each level,
sensory processing modules compare world model predictions with
sensory observations and compute correlation and difference
functions. These are integrated over time and space so as to
fuse sensory information from multiple sources over extended time
intervals. The sensory processing modules also contain functions
which can compute confidence factors and probabilities of
recognized events, and statistical estimates of stochastic state
variable values.

2.4 Operator Interfaces (Control, Observe, Human 1I/0)

The control architecture has an operator interface at each level
in the hierarchy. The operator interface provides a means by
which human operators, either in the space station or on the
ground, can observe and supervise the telerobot. Each level of
the task decomposition hierarchy provides an interface where the
human operator can assume control. The task commands into any
level can be derived either from the higher 1level task
decomposition module, or from the operator interface. Using a
variety of input devices such as a joystick, mouse, trackball,
light pen, keyboard, voice input, etc., a human operator can
enter the control hierarchy at any 1level, at any time of his
choosing, to monitor a process, to insert information, to
interrupt automatic operation and take control of the task being
performed, or to apply human intelligence to sensory processing
or world modeling functions.

The sharing of command input between human and autonomous control
need not be all or none. It is possible in many cases for the

human and the automatic controllers to simultaneously share
control of a telerobot system. For example a human might control
the position of the robot's end effector while the robot
automatically maintains the wrist orientation.

3.0 Servo Level Task Decomposition Module

The Servo Level task decomposition module for controlling a

robotic manipulator is described in this section. Servo is
responsible for controlling small dynamic motions of the
manipulator. Large motions, i.e. trajectories, are obtained by

concatenating these small motions as described in the next
section.

Figure 3 shows the basic structure of Servo task decomposition.
Also depicted are the interfaces to the module from Primitive and
Operator Control. Servo can be commanded by Primitive task
decomposition (autonomous mode), by the operator through
joysticks or master arms (teleoperated mode), or by a combination
of Primitive and operator inputs (shared control mode). It is
the task of the Job Assignment module to produce a coordinated
output from the two input sources. The output of Job Assignment
commands the Planner module for the manipulator. The Planner
feeds periodic data points to the Executor module. The data
points are used by the Executor as attractors for the manipulator
state. That is, the Executor module cyclically computes control
signals for the actuators of the telerobot based on the
difference between the current state and the desired state given
by each Planner data point. Through this technique, the
manipulator is moved along the desired trajectory.

The Primitive input to Servo consists of several parameters which

will be described briefly here. The parameter C, indicates the
servo coordinate system. The options for C include joint
coordinates, (Cartesian) world coordinates, and (Cartesian) end
effector coordinates. The attractor set for the manipulator,
formed by the vectors Zg » 29 - 28 + 24 - fd , and f4 , gives the
desired position, velocity, acceleration, Jerk, force and force
rate for the manipulator. These vectors are in servo
coordinates.

The K's are the gain coefficients which multiply the error
vectors in the control equations. The parameters S and S' are
selection matrices used to select different control modes for
different axes of the servo coordinate system. The
Servo_algorithm selects the specific control algorithm to be used
by Servo in approaching the given attractor. The Status
parameter informs Primitive of the status of the Servo module.

A similar interface exists for the operator command input. In
this interface, the parameter C, specifies the servo coordinates
desired by the operator. The parameter R, indicates how

redundancy resolution is to be performed during shared control
when C, 1is underspecified with respect to C, . The attractor
set from Operator Control is { Zn s Z;m s Zqm s fm }. The K's and
S's from Operator Control are similar to the parameters found in
the Primitive command. The Op_algorithm selects the algorithm
desired by the operator. This parameter also determines overall
control mode, 1i.e. teleoperated, autonomous, or shared.
Op_status returns status to Operator Control.

The interfaces for Servo task decomposition allow a large variety
of servo control algorithms to be used with the architecture. A
large number of examples from the literature are detailed in
[13].

4.0 Primitive Level Task Decomposition Module

As stated previously, the Primitive Level task decomposition
module determines manipulator behavior for motions which are
"large in a dynamic sense." The function of the module is to
transform a static description of a desired motion into a time
sequence of closely-spaced Servo goal points, or attractors.

There are a number of different ways in which motions may be
specified in a time-independent manner. For example, the desired
end effector path may be specified as a function of a single
parameter which indicates the fraction of the path traveled.
Desired forces along a path may also be commanded for constrained
motions. Instead of a path specification, it may be more
appropriate to simply indicate the desired direction of movement,
along with some conditions which indicate when the motion should
be terminated. This type of motion specification is useful for
generalized damper motions, for example. A third class of
motions consists of those for which the important goal is the
final state, and the exact path to be followed in achieving the
desired goal state is impossible to specify a priori. An
example of this type of motion command is a vision-servoed move
to attain a position relative to a moving object.

The structure and interfaces of Primitive task decomposition
(Prim) are shown in Figure 4. Prim receives commands from the
Elemental Move Level (E-move) task decomposition module, or from
the Operator Control. The input command interface includes
provisions for specifying the trajectory generation algorithm,
the coordinate system of the position and/or force command
descriptions, the names of the objects being manipulated, and the
termination conditions for the motion. Important factors for
Prim to take into account in generating the trajectory are
indicated in an objective function to be minimized, and a
redundancy resolution specification is included to direct the use
of redundant manipulator degrees of freedom. A priority is given
to the manipulator for the motion to help resolve conflicts over
shared workspace during trajectory execution.

In common with the other task decomposition modules, Primitive
consists of Job Assignment, Planner, and Executor submodules.
These submodules are cyclically executing processes which
together perform the trajectory generation functions of Prim.
The Prim Job Assignment module manages the gqueue of input
commands from E-move and the operator, and coordinates the
transition between autonomous and manual operation. An input
command queue is necessary at the Prim level so that smooth
transitions between consecutive path segments may be planned.

The Prim Planner performs trajectory planning according to the
algorithm and parameters specified in the input command. For
motion along a desired path segment, the Planner determines time
functions of manipulator position, velocity and acceleration to
perform the path. In doing so, the Planner must take into
account such factors as manipulator and payload dynamics,
actuator limitations, and allowable path error. The Planner also
determines trajectory parameters to use with sensory-interactive
and other non-preplanned movements, and Servo feedback gains to
achieve appropriate manipulator impedance.

The Prim Executor module computes the small intermediate motions
which are commanded to Servo to execute a trajectory. The
Executor module does this by evaluating the planned trajectory
functions, or by executing the proper sensory-interactive
trajectory algorithm. The Executor module also monitors sensor
states to determine when termination conditions have been
achieved, and performs several functions to ensure that the
commands to Servo will be valid.

The interfaces to Prim, and the operation of the Prim Job
Assignment, Planner, and Executor modules for a number of
different trajectory generation algorithms are discussed further
in [14].

5.0 Conclusions

This paper has described the NASREM architecture in terms of its
purpose and overall organization. It was shown through the
examples of two of the task decomposition modules that the NASREM
concept is sufficiently flexible to act as both a robot
controller and a testbed for robot control algorithms.

REFERENCES

[1] J.S. Albus, "Control Concepts for Industrial Robots in an
Automated Factory, " SME Technical Paper MS77-745, 1977.

[2] R.A Brooks, "A Robust Layered Control System for a Mobile
Robot, IEEE Journal of Robotics and Automation, vol. 2-1,
1986.

(3l

[4]
(5]

[6]

[7]
[8l

(9]

[10]

[11]

[12]

[13]

[14]

E. Byler, J. Peterson, "High Performance Architecture for
Robot Control, Proc. of Workshop on Space Telerobotics,
Pasadena, 1987.

J.L. Crowley, "Navigation for an Intelligent Mobile Robot,"
IEEE Journal of Robotics and Automation, vol. 1-1, 1985.

V. Hayward, R.P. Paul, "Introduction to RCCL - a Robot
Control C Library," IEEE Conference Robotics and Automation,
Atlanta, 1984.

A. Meystel, "Nested Hierarchical Controller with Partial
Autonomy, Proc. of Workshop on Space Telerobotics, Pasadena,
1987.

G.N. Saridis, "Intelligent Robotic Control," IEEE Trans. on
Automatic Control, 28, 1983.

A. Schenker, R. French, A. Sirota, "The NASA/JPL Telerobot
Testbed: An Evolvable System Demonstration," IEEE Int.
Conf. on Robotics and Automation, 1987.

A.J. Barbera, J.S. Albus, M.L. Fitzgerald, "Hierarchical
Control of Robots Using Microcomputers," 9th Int Symp. on
Industrial Robots, 1979.

R.P. Paul, "Problems and Research Issues Associated with the
Hybrid Control of Force and Displacement," Proc. of
Workshop on Space Telerobotics, 1987.

J.S. Albus, R. Lumia, H.G. McCain, "NASA/NBS Standard
Reference Model For Telerobot Control System Architecture
(NASREM)," NBS Technical Note 1235, Also available as NASA
document SS-GSFC-0027

A. Barr, E. Feigenbaum, The Handbook of Artificial
Intelligence, (Los Altos, William Kaufman, 1981).
J. C. Fiala, "Manipulator Servo Level Task Decomposition,”
Technical Note, Robot Systems Division, National Bureau of
Standards, Gaithersburg, MD, April, 1988.

A. J. Wavering, "Manipulator Primitive Level Task Decomposi-
tion," Technical Note, Robot Systems Division, National
Bureau of Standards, Gaithersburg, MD, May, 1988.

"SOOIYIA, 1UST[[IIU] JOJ AUINIIANYDIIY WANSAG [0IIU0D) [BOIYIIBIdNH V T dIndiyg

NOILOV aSN3s >

OPERATOR INTERFACE

] |}]
OAH3S | |,
WHO4SNVYHL lH Iw 1))
31VYNIQYOO0D . E—
I
>
JAILINIYG CH (4" (4]
-———
T] [
JAON-3 €H W £
——————{ —————
v S3114 NYHOOHd
_ L . SNOd4 NOLLYNIVA3I
——0
WSVL 4;] 4] vo S318VIHVA 3LVIS
[S1Si1103rgo
3 SdVW
| I {
AVE 3DIAH3S SH | g Sw ’ So
o pt——————
1 L
NOISSIW | —>
3DIAH3S 9H o« 9N e« 99 Aowad
7 leqoi9
1voo
31n23x3 31VNIVA3 J1VHOILNI
NV1d 1300W 19313a
NOILISOdWO023a ONIT3AON ONISS3IO0Hd

ASVL ajuom AYOSN3S

-uonisodwooap Jerodwa) e uuoprad (f) Xg s10IM09%3

pue (N4 siouuerd ay], "sel 2y Jo uonisodwooap [eneds e suuoprad v juswudisse qol YL T 3angdiy

-—

JobBeuew
juewubyssy qor

NOILISOdINODAd MSV.L

Servo Task Decomposition Interfaces

C; K's i
7, 2,22 5,8 |
e d 7d "d “d Servo_algorithm Operator
Primitive/Servo f4 f4 Time_stamp Status | Control
_In_ier_tzlce_ ______________ _A _ | Interface
— Op_status
e | c,
I R,
] K's
| S,§
| Op_algorithm
2 Zm Z'm
Y 1 * | %m fm
i
%% %6 »| Job Assignment !
JA(1) |
]
Zd 24 24 %4
f d f d Algorith
orithm
World K's Tir%]e stamp
Modeling S, S Status—
Servo
Support
24 %4 %d %4 Planning
i PL(1,s)
24 29 %29 24
fq fq
K's Algorithm
77 S, S’ Status
fZ
- Avoidance torques .
Ty Execution
Dynamic terms EX(1,s)
Tact
Actuator Interface
motor command

Figure 3. Servo Level Task Decomposition.

PRIM TASK DECOMPOSITION MODULE

E-move/Prim
Task
Decomposition
Interface

Task
Decomposition/
World Modeling
Interfaces

Coordinate system
Prim Algorithm

Redundancy resl. spec. l

Position and velocity of all
arms in vicinity
Manipulator dynamics terms
Actuator limits
Constraint frame position
Inverse kinematics
Object data:
position and velocity
friction characteristics
stiffness
held by other manipulator?
tolerances and fits
assembly force limits
Sensed position and velocity
Sensed force
Operator command velocity
Operator single-step command

Prim/Servo
Task
Decomposition
Interface

—

Command number

Prim algorithm

Coordinate system

Position command description
Force command description
Held object

Destination object
Termination condition(s)
Redundancy resolution spec.

Job Assignment status
Planning command number
Planning status

Execution command number
Execution status

Desired position

Desired velocity

Desired acceleration
Desired jerk

Desired force

Desired time deriv. of force
Servo loop gains
Position/force sel. matrices
Servo algorithm

Time stamp

Priority Execution status basis
Objective function Estimated termination time
l— ——-E—> Operator status
i | Operator command spec
(same variables as
| autonomous)
' Input device identification
Job Assignment !
I
J, f | Operator
| Control/Prim
Task
Planning | Decomposition
| Interface
v { |
Execution Prim level
Task
Decomposition
Coordinate system Status

Figure 4. Primitive Level Task Decomposition Module.

