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Abstract—In a unified approach, the virtual work equations in rate form and in incremental forms are
derived rigorously for elastic-plastic continuum subjected to large strains. The finite element procedures
for the analyses of elastic—plastic solid based on Lee's theory and the Green—Naghdi theory are presented.
Also, it is shown that transformations can be performed among the Eulerian, the Total-Lagrangian, and
the Updated-Lagrangian formulations, and among different forms of constitutive relations, without any

approximation.

1. INTRODUCTION

The variational principle, or the principle of virtual
work, for the analyses of solid mecahnics with large
strains involved has been treated extensively by
Washizu [1], and by, for example, Hill [2], Eringen [3],
Bathe [4], Malvern [5), Oden [6), Hibbitt er al. [7],
McMeeking and Rice [8], Scharnhorst and Pian [9],
Lubarda and Lee({10], etc. The virtual work equa-
tions can be expressed in rate form and in three
incremental forms. In Sec. 2, it is shown that,
by starting from any one of the three forms of
Cauchy’s law of motion—the equilibrium equation, a
universal virtual work equation in rate form can be
derived rigorously. In Sec. 3, in a straightforward and
rigorous way, the Eulerian, Total-Lagrangian, and
Updated-Lagrangian forms of incremental virtual
work equations are derived, and it is shown that the
three forms of incremental virtual work equations
can be transformed from one to the other without
any approximation. It is shown also that the in-
cremental virtual work equations are exactly the same
as the virtual work equation in rate form in the
limiting case—the size of the incremental step ap-
proaching zero. In Sec. 4, the finite element formu-
lations based on the Total-Lagrangian and the
Updated-Lagrangian incremental virtual work equa-
tions are made in detail for elastic—plastic continuum
divided into general, three-dimensional, solid ele-
ments. The emphasis is put on the calculation of
nodal forces, which is an exact treatment. The calcu-
lated nodal forces are then taken as the basis to check
whether the equilibrium is reached pointwise. These
formulations can then be applied to any theory of
elastic-plastic solid with large strains.’

Among numerous theories of elastic-plastic solid,
Lee’s theory [10-15] is the most unique one in the
sense that the decomposition of total deformation
into the elastic and the plastic parts is made at the
deformation gradient level, while Green-Naghdi’s
theory [16-21] is the most general one—it allows

material anisotropy and various kinds of hardening
rules to be incorporated into the formulation. In Secs
5 and 6, the detailed iterative procedures are outlined
for Lee’s theory and Green-Naghdi’'s theory,
respectively.

Throughout this paper, the standard tensor sum-
mation convention is adopted: the rectangular
Eulerian coordinates, x,(k = 1, 2, 3), and Lagrangian
coordinates, X (K = 1, 2, 3), are employed; an index,
k or K, after a comma indicates a partial
differentiation with respect to the coordinate, x, or
Xy; a superposed dot indicates the material time
derivative; and some standard notations appearing in
Eringen’s book {3] are utilized.

2. VIRTUAL WORK EQUATION
IN RATE FORM

The equilibrium equation may be written in one of
the following forms [3):

O',J'J'*‘ pf;=0 (‘)
Tyx+pofi=0

(Trex )+ pofi=0,

0d]
3)

where: o, is the Cauchy stress tensor; p and p, are the
mass density in the deformed and the undeformed
state respectively; f; is the body force per unit mass;
x, x is the deformation gradient; and the first order
and the second order Piola-Kirchhoff stress tensors
are defined respectively as '

Ty, =JXy ;0 @

TKLEJXK.iXL,/Uij' (5)

In eqns (4) and (5), J is the Jacobian of the trans-
formation between the deformed configuration and
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the undeformed configuration, i.e.
J = det (x, ), 6)
and Xy, is related to x, x as

Xk Xk, =6 Xy.iXip =0 U]

s
It is noticed that, in this work, attention is focused on
the static problems, although the formulations could
be extended to the dynamic cases without major
difficulty.

If egn (1) is differentiated with respect to time and
then multiplied by the virtual velocity év;, and then
integrated over the deformed volume, the following is
obtained:

j% lo,,+ pfilov,dv =0. (8)

Similarly, from eqns (2) and (3), one may have the
following:

j[( Tl(i)9 I pofi]&'idV =0 9

d
J{-d—l (Twx; )} x+ Puf,}él’, dv =0. (10)

After some mathematical manipulations, eqns (8)—
(10) are all reduced to the same virtual work equation
in rate form as follows:

jpf,.év,- de +'[ E (g,da,)dr,
»dr

= J.[&,-jé d, + o,r, ;01 Jde, (11)

where: s* is part of surface surrounding v over which
the surface traction, defined as T, = g;n;(n; is the unit
outward normal of the surface), is specified; da, is the
differential area vector; d; is the deformation rate
tensor; and the Truesdell stress rate tensor &, is

defined as[22, 23]
G, =0,— 0,0, — 04, + 00 . (12)

Also, one may readily show that eqn (11) can be
rewritten as

J‘pj‘iévi de +j i (0’,-1' da,)év,
o dr

= J' J[2,6 d,— 21, d,;6 d;

+ 1,0, ;00, ]dv, (13)

where the Kirchhofl stress tensor is defined as
1, =Joy, : (14)
the Jaumann stress rate tenso;' is defined as {10]
1= T — Wy Ty + Tuwy, (15)

and w, is the spin tensor.

It should be noted that eqn (13) is the same result
as that obtainable from the Hill’s variational prin-
ciple [2, 8, 10]; also, the second term on the left-hand
side of eqn (13) indicates that the follower type
loading is automatically incorporated in the formu-
lation. It should be emphasized that the virtual work
equation in rate form, eqn (11) or eqn (13), is as
general and exact as the equilibrium equation, eqns
(1), (2), or (3). However, the rate form may not be
practical at the problem-solving level, but it can and
will be used as a basis 10 check the validity of the
virtual work equation in incremental forms, which
will be formulated in the next section.

3. EULERIAN AND LAGRANGIAN
FORMULATIONS

By multiplying eqn (1) by the virtual displacement
éu, and integrating over the deformed volume, one
may obtain the virtual work equation in the following
form:

J o,0u,da, + pr,«éu,- dv = J.a,-/&e,] dv, (16)

s*

where the infinitesimal strain tensor, ¢,, is defined as
e, = +u,)2. amn

If either eqn (2) or eqn (3) is multiplied by the virtual
displacement éu, and integrated over the undeformed
volume, the virtual work equation is obtained as

J Tyo (Opp + tin  Youy dAy

+IpJK6uKdV=fTKLéEKLdV, (18)

where dA4, is the differential area vector in the
undeformed state; the Green-Lagrangian strain
tensor, Ey, , is defined as

Ey, = (X g X0 — 051 )/2= (Cyp — 6x,)/2
= (U + Uy g+ Uy ka1 )2 (19)

uy and f; are respectively the displacement vector and
the body force vector expressed in the Lagrangian
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coordinates, i.e.

U, =buy  Ji (20)

= OuxSrs
where §,, is the direction cosine between the Eulerian
coordinates, x,, and the Lagrangian coordinates, X.
Suppose the solutions at state 1 are known; the
solutions at state 2 can be expressed as the sums of
the solutions at state 1 and the incremental solutions,

e.g.
T =Tyu(l)+ ATy, . @

Then, eqns (16) and (18) can be rewritten as
J. [o,(1) + Ao ;}6 Au,da,(2)
+'[p(2)[f,-(l)+Af,]6Au,du(2)

= J [6,(1) + Ac,16Ae, dv(2) (22)

J" [Ty (1) + ATy, Yon, + un o (1)

+ AuML]é Au,v dAk

+ J.Po[fx(]) +Afx]6AugdV

=J'[T,u_(l) + AT 16AE, dV. (23)

It is worthwhile to mention that, in deriving eqns (22)
and (23), in other words, in the process of seeking the
incremental solutions, the variations of the solutions
at state | are vanishing.
The incremental Truesdell stresses and the in-
cremental Washizu strains are defined as [I]:
Aoy = x.x(1)

X, (1) ATy, @49

1
J()
Aef =X (1) X (1) AE,,. 25

Combining eqn (24) with eqn (5), it can be readily
shown that

oij(l) + AU;
J(])’ (DX (DT + ATy ] (26)
0(2) = 0,(1) + Ac;

[5 + Ay, (D16, + Au, (1]

J(2)
x [0,(1) + Ao ], @n

where
Au, (1) = o4, (28)

ax,(1)’
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Eringen [3] has shown that
. AT .
Ty= llmo = = JXk. X, ;0, (29)

Combining eqn (24) with eqn (29), it is seen that

= lim —2 Asj

% Ar=0 A! G0

which indicates the meaning of the incremental
Truesdell stresses. The incremental Washizu strains
are the incremental Green—Lagrangian strains taking
state 1 as the reference state, and it has been shown
that [1}

A} =[Au, (1) + Au; (1) + Ay, (1) Ay, (D]/2. (31)
Also, it should be noted that
Ae}
A‘:m.—AT—EKLXKlXLJ_dy’ (32)

which indicates the meaning of the incremental
Washizu strains.

Starting from either eqn (22) or eqn (23), one may
prove that the virtual work equation can be expressed
as

J [o,(1) + Ao} )[0, + Au, ()]0 Au, dal(1)
+fp(’)M(l)+AL]5Auidz>(l)

J-[au(l) +Ad}16Ac} dv(l). (33)
It is noticed that the integrations of eqns (22), (23)
and (33) are to be performed, respectively, on the
configurations of state 2, initial state, and state 1;
therefore, Eulerian, Total-Lagrangian, and Updated-
Lagrangian formulations are named for eqns (22),
(23) and (33), respectively. It should be emphasized
that these three equations are nothing but the same
virtual work equation expressed in different in-
cremental forms and, during the process of deri-
vation, no approximation has ever been made.

It is straightforward to show that eqn (33) can be
written as

JAGU'-&A&U‘ dv(l)+ja,-j(l)Au,‘_,-(l)éAuk‘i(l)dzr(l)
=fp(l)Af,-6Au,dv(l)
+ J‘ [Ao} + 0,{1)Au, ,(1))6 Ay, da,(1)
»

+I Ao} Au, (1)6Au, da(l)+ R, (34)
P
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where as
. | NN O 0O N 0 0
R=fpum(l)«mu.-dv(1> Ne=0 N 0 0 N o
0 0 N 0 0 N,
" f 0,(1)8u,da (1)
o N, 0 0
_Ia,,(l)aAe,,dv(l). (35) 0 My 0. GO
0 0 Ny

In view of egn (16) and by recalling that ¢,(1) and
p (1) are the solutions at state 1 subjected to the body
force f(1) and the surface traction g;(1) n(1) on s*,
it is concluded that R is vanishing. Then, with the
following equalities

d .

Y (0;da)) = (6,+ o,,r,;) dg, (36)
i {808, Be3. Buy Bu B
a0 | A1’ At At At’ At

={6,; d; v, vs fi}, D
it can be shown that

eqn (34)

lim .
Ar-

Ar-0

=eqn (11), (38)

which means, in the limiting case, the virtual work
equation in incremental form is exactly the same as
the virtual work equation in rate form. Therefore, the
validity of the incremental virtual work equations,
eqns (22), (23) and (33) is established.

4. FINITE ELEMENT FORMULATIONS

Let a solid body be devided into many elements;
each element consists of N nodal points. Correspond-
ingly, there are N shape functions, N,,
y=1,2,3,..., N, so that the Eulerian coordinates of
a generic point (x,y,z) within the element can be
linked to the nodal point coordinates (X, y,, Z,) in the
following matrix form:

x;= N_%,, (39)
where:
x=(x, 5 2)7;

s & 3 3\T.
s Xns PreZn)s

and N, is a (3 * 3N) matrix which can be expressed

ilE(il’ih z.l,x-z,iz.ZZ. e

Similarly, in Lagrangian coordinates, the counterpart
of eqn (39) can be written as

XK-_.NKa’?u (41)

where X, is the nodal point coordinate vector in the
undeformed state expressed in Lagrangian coordi-
nates, and N,, has the same form as N,. Also, the
displacements and incremental displacements of a
generic point within the element can be linked to the
counterparts of the nodal points as

u | _ U,
Au,| | Ay,
Uy U:
=N . 4
Aug ke AU,I (42)

Through a very standard procedure [4, 24, 25], the
displacement and the incremental displacement
gradients can be expressed as

(w,; Au, )T = B (u,; Au,)” (43)
(ux.r5 Aug, )" = By, (U AU, (44)
where B is a (3 + 3 « 3N) matrix than can be obtained
through the shape functions and the nodal point
coordinates.

In the Updated-Lagrangian approach, suppose the
solutions at state 1 are obtained; then eqn (16) written
in the following form has to be satisfied:

J.a”(l)‘se’!'(])d”(])"J.P(l)f,-(l)éu,dr(l)

—j- 6,(1) éu;da (1) =0, (45)
-
which can be rewritten as

6u.[.[a.-,-(l) B.-,-.(l)dv(l)—J.p(l)f.-(l) N,dv(l)

-'[ o, (1) N, da,(l)] =6u F,=0. (46)
Ead

It is noticed that F, is the nodal force vector of a
generic element. If eqn (46) is summed over all the
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clements of the solid body, one may obtain the
following:

ouF,=0 (=123,...N @n
where N7 stands for the number of degrees of free-
dom of the entire solid body. Because eqn (47) should
be valid for arbitrary du;, except for those components
which are specified through displacement boundary
conditions, therefore, one may conclude that: (1) for
all the components where the displacements are
specified, the reactive forces are obtained through the
calculations indicated in egn (46); and (2) for all the
other components, F, =0, which means the equi-
librium is reached pointwise. The calculation of nodal
forces may now be expressed by

F= 5 F

elements

(48)

F= J.GUB,/, dv — pr,-N,, dv — -[ o;N.da,. (49)
s*

Similarly. in the Total-Lagrangian approach, recall
eqn (19) and notice that the variation of the
Green-Lagrangian strains can be expressed as

OEy; = 1/2(Byya + Byys + Buxs U Bupa
+ By U’ Bo,)6U,. (50)

For the calculation of nodal forces, the counterpart
of eqn (49) can be written as

Fi= j.TxLéu,dV—J-Pokax:dV

- J‘ Txr(Opsr + Brrg Ug) Ny d Ay, 51
-

where
By, = By, + Buyxs U By, (52)
In order to solve for the incremental solutions using

the Updated-Lagrangian approach, the terms in
eqn (33) are treated as follows:

‘[Aa,j dAey dr(l) = .[a;m(l) Ae}, 6Ac} dv(1)

~ Ja;‘,,,,,(l) Ae,, 0 Ae, dr (1)

= 6 Auy Au, Ja;,,,,,(l) B, Bde(1)

= 5Auy Au, K'))

(33)
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J.o,-,-(l) 6Acd de(l)

= Ja,,(l) 6Ae, dv (1)

+ J‘a,-j(l)AukJéA“A.idl‘(l)

= [ ja,,-(]) B, dv(l)]éAu,

+ 8Aug Au, fa,-j(l) B, B, dr(l)

= —F'6Aug+ 8Aug Au, K (34)

Jp(l)[.ﬁ(l) +Af)6Au,dr (1)

=[JP(1)[ﬁ(l)+Aﬁ]N,ﬂ dv(l)]éAu,,

= FPéAu, (55)

J' [o,;(1) + Ac 3]0, + Au, ;}6 Au, da,(l)
~ j [6,;,(1) + A, )6 Au,da,(1)

= 5Auﬁj [o,(1) + Ao, INsda,(l)

= F‘(BS) éAuﬂ, (56)

where a,, specifies the constitutive relation for the
elastic—plastic solid, i.e.

6,=ak, 4., 57
The detailed expression of a 3., will be indicated in the
next section. Now, the governing matrix equations
for a generic element become

[KY + K)Auy = FO+ FP + FP. (58)

In order to solve for the incremental solution using
the Total-Lagrangian approach, first, the incremental
Green—Lagrangian strains can be found, by using eqn
(19), as

AE,; = 12[Auy; + Auy x+ uy g Auyy

+ Uy Ay + Auyg g Auyg . (59)

Define AG,, and AHy, as
AGy, = Aug, + upy x Buy = By, AU, (60)
AHy, = 1/2Auy, By, . (61)
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Now, the terms in egns (23) are treated as

J.ATxLéAEK,_dV

:JAMN(I)AE,~6AEudV

= [ Axun(1) AGpp 8AGy, AV
=8AU, AU, jAnMN(l)EMN,éu,dV
=8AU, AU, KY

(62)

J.Tu(l)éAE,u_dV

=UTKL(1)EKL,dV]aAU,

+6AU,AU,JTH(1)BMK= By pdV

= — F 6AU,; + 6AU, AU, K& (63)

Jpolfk(l) + Af)6Au,dV

=6AU; J.Po[fk(l) + AfxINg dV

=5AU, FP (64)

J [T (D) + ATy Wop + upg (1)
»

+ AUM,L]‘S AuM dAk

=f [Te (1) + ATy )

X [pp + un 1 (1)16Au,, d A4,
= BAU,J. [T (1) 4+ ATy, ]

X [8pr + Bur, U,(1) Ny dA,

=6AU, FY, (65)
where A, .» specifies the following constitutive
relation of the elastic—plastic solid.

Tu = Axun Emv- (66)
The detailed expression of A, ,» will be indicated in
Sec. 6. Now, the governing matrix equations for a
generic element assume the same form as eqn (58).
When the matrix equations for all the eclements in the
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solid body are summed up, the grand matrix equa-
tions of the entire mechanical system are obtained.
After the displacement-specified boundary conditions
are imposed, one may solve for the incremental nodal
point displacements. It should -be emphasized that
whether a set of solutions is acceptable or not sepends
on whether the equilibrium of nodal forces, the
calculation of which is an exact treatment, is reached
or not; therefore, the approximations made in deriv-
ing eqns (53), (56), (62) and (65) in order to obtain
the incremental solutions in an iterative process do
not imply that the final accepted solutions are ap-
proximated ones. The point will be seen clearly in the
following sections.

S. ITERATIVE PROCEDURES
FOR LEE'S THEORY

Lee and his co-workers [10-15] have formulated a
theory of plasticity based on the exact nonlinear
kinematics of elastic and plastic deformations.
Among all the existing theories of plasticity, Lee’s
theory is a very unique one. Instead of assuming that
the total strain is the summation of the elastic strain
and the plastic strain, Lee's theory begins with the
fact that the deformation gradient is the product of
the elastic and the plastic deformation gradients.
Therefore, it is worthwhile to demonstrate how the
finite element formulations derived in the previous
sections can be applied for Lee’s theory.

To begin with, let Lee's theory be briefly described
in the following [10]. First, let the deformation gra-
dient x, x be expressed as

Xix = F::" 13-’1(’ 67

4

where F° and F” may be named, respectively, as the
elastic part and plastic part of the deformation
gradient and F* specifies the mapping from the un-
stressed plastically deformed configuration to the
elastically—plastically deformed configuration. How-
ever, the decomposition as indicated in eqn (67)
is not unique because any arbitrary local rotation
in the unstressed state gives another unstressed
configuration. Therefore, further restrictions have to
be imposed on F*, namely, F* is symmetric and has
the same principal directions as the stress tensor and
the plastic part of the deformation rate tensor. These
restrictions imply that the material under consid-
eration is isotropic and obeys the isotropic hardening
rule. Define F* and F* 1o be the inverse of F" and F’,
respectively, i.e.

FyFu=FyFy=6, (68)
F{K Fim = 6km
Fu Pl =6y, (69)

The clastic and the plastic parts of the deformation
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rate tensor and the spin tensor are defined as

= 12(Fy Fi;+ F FL) (70)
w:jEl/z(F;kF;j—F;kF;i) an
df = 1/2(F& F4;+ Fo F%) (72)

ol =120 Fiy = Fic Ffo). 3)

It can be shown that

d;=d5+ 1/2(F 00, F,

+F, 0, Fi)+d
=d,+d (74)
w, =4+ 12(F, 05, F, - F, 0% F:), (75)
where eqn (74) indicates that the deformation rate
tensor is not just the sum of the elastic and the plastic
parts—a difference between Lee’s theory and other
theories of plasticity. Then, Lubarda and Lee[10]
obtained the constitutive relation between the
Kirchhoff stress tensor and the elastic Cauchy-Green

tensor as

0z

o (76)

T,;= 20,

where X is the Helmholtz free energy density and
c;=Fi Fi. ()]

Since the material is isotropic, £ must be the function
of the three invariants of ¢,, which are defined as

"
L=c,, (78)
L= —c;c)2, 9
I =1/6e, e, c, c;, ¢, = det (c). (80)
Then, eqn (76) can be written as

1;=2Jyc;+ (I ¢~ ciei) + I 1 6], 81)

where

é

™M

J; (82)

oY
o~

It is noticed that egn (81) does imply that the
Kirchhoff stress tensor and the elastic Cauchy-Green
tensor, defined in egn (77), have the same principal
directions. With the equality

¢y=d,c,+cud, (83)

one can show that
fij = bl'jmn amn ) (84)

where ¢; and 7, are the Jaumann rates of ¢, and 7
respectlvely, and the detailed expression of b;

ipmn
b n = Iy @joun + ) iy = B ijun + 4 ;Cy
= 2Cim iy — 204 Cp)
+ 47,16, @0, + 4J)1CiCn
+4J8,8m +4J33136,0,,
+4J[ci8mn + a8y
+4J: Lle ;6 + Cnady))
+4J53 50,80 + 0mgy], (85)
in which
o’z
g = EIITJ, (86)
g,=lc;—cucy, (87)
W ipn = G Cp + 6, € + 8, i + 8, C (88)
Bijmn = 0umCit Chn + 8, iy
F O Cit Can + 0,0 Cit Ch - (89)

It is noticed that
bijmn = bmm'j = bjimn = bijmn s (90)

and, also, b is a function of ¢. In view of eqn (81), b
can be transformed to be a function of the stresses.
For the plastic part of the constitutive relations, let
the yield function be

f=32;1,-8, 1)

where S is the current yield strength and 7] is the
Kirchhoff stress deviator, defined as

1) 1/3'[“6,! (92)

U

The loading rate, L, defined as

L= g%} i 93)
can be shown to be
L=3t,1,. 94)
Upon loading, defined as
f=0, L>0, 95)
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it is assumed that

of
P =qg—
d’; "az,.,"’ (96)
which can be rewritten as
db=9g1;1,,1,.,, o

where g can be a function of the invariants of 7,. Due
to the requirement of continuity in plastic
loading [16},

S?T=3/21;1; (98)
holds for the entire loading process. In unloading,
defined as f <0 or L <0, and in neutral loading,
defined as f=0 and L =0, it is assumed that

d,=8=0. 99

From eqn (97) it is noticed that
dar=0, (100)

which means that the plastic strains do not contribute
to volume change, Drucker’s normality condition is
imposed [26, 27], and the stress tensor has the same
principal directions as d7. Combining eqns (84) and
(97) with egn (74), one obtains

2, = G mnd (101)

ipmn “mn >

where a,,, is the inverse of

a-ljmn = 5ipml + ng:/r:vm (102)
and b, is the inverse of b,,,, i.e.
a a
e = 120,6,+8,8,).  (103)
ymn |0 {mapg

Now, defining a},, as

ar, =l = (6,6, + 0,0,

+6,,6,+0,,0,)/2, (104)

then the Truesdeli stress rate tensor 4, can be related
to the deformation rate tensor d,,, as

&= lup - (105)

Also, it is noticed that, in the neutral loading or
unloading case, a,,,, = b,,. At this moment, for those
elements which are still in the elastic region, i.e. no
plastic strain has occurred, it is worthwhile to prove

-
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the following equality:

ox X odc
2%, g X; = = 2F¢ FP F? F?, —— — 2
L Tom K nL e 6Cx,

= 2F, F,FixF?,

() >

x Fo Fo ——
rd Ly
Ocpg

=2F;, F, 5‘15

(>

ocy,

=2F% F°,

= 2c,, =1, (106)

and, also, F? can be only an orthogonal trans-

formation matrix, which means

Cxx =1,
(CKXCLL - CKLCKL)/Z =1,

det (C)=1,. (107)

This implies that, for elements still in the elastic
region, t,; can be calculated as if it is an elastic solid
without even changing the form of the Helmholtz free
energy density.

The finite element procedures for large strain
elastic—plastic solid based on Lee’s theory can now be
outlined as follows:

Step 1

Based on the current stresses, the elastic
Cauchy—Green tensor c¢,; can be calculated according
to eqn (81) and then b,,, and a4}, are calculated
according to eqn (85) and eqns (102)-(104) re-
spectively. B, is calculated based on the current
geometry. Then, the element stiffness matrices, K"
and K®, and the forcing terms, F¥, F, and F*, are
obtained by using eqns (53) and (54) and eqns
(54)—(56) respectively.

Step 2

The grand matrix equations can be formed as

KAu=F. (108)

After the displacement-specified boundary con-
ditions are imposed, one may solve for Au, the nodal
point incremental displacement vector.

Step 3
The incremental Washizu strains are calculated as

Ac? = 12[Au,, + Au,; + Auy | Au, ]

= ]/2[8,‘1, + Bj,', + kip Au,; BkR]All,.

(109
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Step 4

Approximate the constitutive relation in rate form,
eqn (105), by

Adl =cy, Acl,, (110)

- where

Cimn = average {af, (a(1)), aln.(@(2))}. (111)

This is actually the first approximation made in this
paper. Also, in view of eqns (30) and (32), it is noticed
that, in the limiting case, egn (110) approaches eqn
(105). Then, recall eqn (27) and rewrite it as

J (1) (B + B, A, )(8,, + B,y Auy)
det [‘Skk + (uk + Auk )K]

ai}(z) =

X [, (1) + Ack,). (112)

It is seen that eqns (110)-(112) involve iterations.
Let S, and S, be defined as

Si=3/27,(1) 7))
§3=3/21;(2) 1, (D). (113)
IfS,<SorS=Sand S,=8, let
Comn = 1/2{@}m, (6(1)) + a3, (6(2))}.  (114)
If S;<Sand S;,> S, let
Cimn = {@ n(@ (D)(S —~ S})

+ @5 (6 (2)(S; - $)}/(S; = S), (115)
where € and &* are the inverse of ¢ and a*, re-
spectively.

Step 5
For those elements which never experience plastic
deformation, Step 3 and 4 should be bypassed.
Instead, the following will be calculated.
Xk = Oy + (e + Awy ) ¢
= Ok + [Nig(u, + Au, )] & (116)

2 ¢
0,(2)= ._IECTK: Xik XL~ (117

It is noticed that this step does not involve the
approximation made in eqn (110).

Step 6

Update the geometry, the displacement field, and
the stress distributions as

%, %+ Au, (118)

CAS 283G

Uy, U, + Au, (119)
6, 6,(2). (120)

Then, the B, matrix should be updated also and all
the other quantities, if needed, can be updated.

Step 17

The nodal force vector is now calculated according
to eqns (48) and (49). If the calculated nodal force
vector indicates that the equilibrium is not reached
pointwise, then, in view of eqns (49), (54), (55) and
(56), the nodal force vector, F, indicated in eqn (48),
actually serves as the forcing term for further iter-
ation, namely, one should go back to Step {.

If the equilibrium is reached pointwise, or, at least,
the error is within certain given error tolerance, one
may change the applied loading, or even the
displacement-specified boundary conditions, and go
back to Step 1 to seek the solutions at the next
incremental level.

6. ITTERATIVE PROCEDURES FOR
THE GREEN-NAGHDI THEORY

Green and Naghdi[16, 17] formulated a very gen-
eral theory for elastic—plastic continuum. Later,
Casey and Naghdi[18-21] addressed further issues
related to that general theory. Since the
Green-Naghdi theory has been referenced by many
researchers in the field of plasticity, it has been
decided to demonstrate how the finite element formu-
lations derived previously can be applied for that
theory.

The basic constitutive relations, with the thermo-
mechanical coupling being neglected, of the
Green—Naghdi theory are listed in the following [16]:

E, =ES + E% (121)
I=2X(E) (122)
X
= = ‘ 1
Th EL, T (EY) (123)
F=f(T,E)-K (124)
2
_, 9f .
Eg =12 T L (loading) (126)
. of of )
K= (l + 4 T, 3Eh)L (loading) (127)

E%, = K = 0 (neutral loading or unloading), (128)

where E° is the elastic Green—Lagrangian strain; E” is
the plastic Green-Lagrangian strain; F = 0 specifies
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the yield surface; K may be called the hardening
parameter; L is the loading rate; the case of loading
is defined as F =0 and L > 0; the case of neutral
loading is defined as F =0 and L = 0; and the case
of unloading is defined as F <0 or L <0. It is seen
that, first, the decomposition of elastic and plastic
parts is made at the strain level, instead of at the
deformation gradient level as in the Lee's theory.
Second, the yield function, f, and the hardening rule,
eqn (127), are more general than the counterparts in
the Lee theory—this means the size and the location
of the yield surface in the stress space can be changed
during the loading process. Third, the Green—Naghdi
theory is not restricted to isotropic material with
isotropic hardening rule. Also, it is noticed that the
continuity condition is imposed by eqn (127), i.e. in
loading,

O

_9 O pp g
. Of of :

and the Drucker’s normality condition is imposed by
eqn (126), in which 4 can be a function of T, and
EZ,.

Equations (123) and (126) can also be written as

Ty= o’z E4n = Brin ES 130
u-aE'xLaEeuh MN = DKIMN L~ MN ( )
af éf
b =A== . 131
EKL }'aTKL aTMN TMN ( 3 )
Combining eqns (130) and (131) obtains
T:u. = Ayiun Emvs (132)
where A is the inverse of
of of
A = _—
xen = By + 4 3Ty 3T (133)

and B is the inverse of By, . In case of neutral
loading or unloading, 4,y = By, yx- In finite ele-
ment analysis, the following incremental constitutive
relation is needed:

ATy = A unAEyn, (134)
and it is proposed to approximate 4 by
Axern = average { Ay [T(1), E2(1)),
AunT(2), EP2)]}.  (135)

Now, the finite element procedures for large strain
clastic-plastic solid based on the Green-Naghdi
theory can be outlined as follows.

James D. Lee

Step 1

Based on the current stresses, plastic strains, and
displacements, the element stiffness matrices K" and
K are calculated according to eqns (62) and (63) and
the forcing terms, F, F® and F™ are calculated
according to eqns (63)—(65).

Step 2

The grand matrix equations can be formed as

KAU=F. (136)

After the displacement-specified boundary conditions
are imposed, one may solve for AU, the nodal point
increment displacement vector.

Step 3

The incremental Green—Lagrangian strains are cal-
culated, according to eqn (59), as

AEy, = 1/2(By + BLe)AU,

+ 1/2 Byy, By s AU, AU, (137)
Step 4
Calculate E(1) according to eqn (123) as
Ty (1) = Ty (E(1)). (138)

Let E4(2) be E°(1) + AE and then calculate the follow-
ing:

Ty (2)= Ty (E°(2)

F=/[TQ2), E*(D]-K.

If F<0, then T, is updated and go to Step 6;
otherwise, go to Step 5.

Step 5

(A) Make an educated guess for Ty, (2), and calcu-
late E}, according to eqn (139).

(B) Calculate £%,(2) according to

(139)

(140)

Er(2)= Efy(1) + Ef (1) + AE,, — Ef,(2). (141)
(C) Calculate the following:

Ji=STT(D), E1)],

fi=/T(2), En2) (142)
Arien(D) = Agaan[T(), EX(1)]
Axun(@ = 4an[TQ), B22)].  (143)
(D) If f,=K and f,> K, let
A=12[A(1) +A(2) (144)
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and if
Si<K and f,>K,
let
C={A)(K-1)+AQ) (- K}~ fi) (145)
and
Ayxe Crann = 12(0ps b5+ 815 85y),  (146)

where A stands for the inverse of A.
(E) Calculate Ty, (2) as

Ty@=TyM)+ f‘iKLMN AE,y. (147)

If Ty, is approximately equal to Ty, (2), within a
given error tolerance, then update the following:

Ty Q)= Ty (2) (148)
K«f, (149)
EL ()« EL(2), (150)

and go to Step 6; otherwise, go back to (A).

Step 6
Now the nodal point displacements are updated as

U, U, + AU,, (151)

and, also, B, should be updated according 1o eqn
(52). Calculate the nodal force vector according to
eqns (48) and (51). If the equilibrium is not reached
pointwise, or the error is not within a given error
tolerance, then in view of eqns (51), (63), (64) and
(65), the calculated nodal force vector actually serves
as the forcing term for further iteration, namely, one
should go back to Step 1; otherwise, one may change
the force and/or displacement specified boundary
conditions and go back to Step 1 to seek the solutions
at the next incremental level.

7. DISCUSSION

The virtual work equation in rate form, eqn (11) or
egn (13), is obtained exactly. The virtual work equa-
tions in incremental forms, namely, the Eulerian, the
Total-Lagrangian, and the Updated-Lagrangian for-
mulations, are rigorously derived to be eqns (22), (23)
and (33), respectively. Actually, the three incremental
forms can be transformed from one to the other
without any approximation. Besides, in the limiting
case, the incremental forms and the rate forms are
identical. Also, it is noticed that if the constitutive
relation, in rate form, of any theory of plasticity can

be expressed by any one of the following:

fij = ai]m dmn (152)
8= Qs (153)
TKL = Axrun E.wv, (154)

then they can be transformed from one to the other
by the following rules.

Apun = Ja;-mxl..-xuxu.mxn.n (155)
ate, =118y~ 1/2(5,,0,,
+ 0 Oim+ 06+ 6,0,,). (156)

The linearizations made in eqns (53) and (56) or in
eqns (62) and (65), in order to evaluate the stiffness
matrix and the forcing term, do not present approx-
imations for the overall formulation because the
validity of the solutions is based on the equilibriums
of the nodal forces which are calculated exactly. Also,
it is noticed that the follower-type forces are incorpo-
rated automatically into this formulation. On the
other hand, it should be mentioned again that the
following approximations,

cymn = average {ak.. [6(D], ak. [0 (2]} (157)
Agwan = average {4y, [T(1), E°(1)],

Aun[TQ2), EPQ)]}, (158)

have been made for Lee’s theory and the Green-
Naghdi theory, respectively. However, this kind of
approximation perhaps cannot be avoided if the
incremental finite element procedures are employed.
It is believed that, in view of eqns (114) and (115) or
eqns (144) and (145), this approximation is reason-
able and accurate. Besides, this approximation is not
employed for all those elements which have never
experienced plastic deformation, in Lee’s theory, and
for all those elements in the process of neutral loading
or unloading (including elastic theory), in the Green—
Naghdi theory. Actually, for realistic problems, the
majority of the elements are in that category. On
the other hand, it is recognized that the solutions for
elastic-plastic solid are path-dependent, if the in-
cremental step is too large, and even if the stable
solutions are obtained, the path-dependency intro-
duced numerically may not be acceptable. On the
other hand, if the size of the incremental step is
reduced, say, to half, and no appreciable difference is
observed, then the doubt can be eliminated.

REFERENCES

1. K. Washizu, Variational Methods in Elasticity and Plas-
ticity, 2nd Edn. Pergamon Press, Oxford (1975).



w N

1.
13.

14.

1.

. R. Hill, J. Mech. Phys. Solids 7, 209 (1959).

. A. C. Eringen, Mechanics of Continua. Krieger, Hunt-
ington, NY (1980).

. K. J. Bathe, Finite Element Procedures in Engineering
Analysis. Prentice-Hall, Englewood Cliffs, NJ (1982).

. L. E. Malvern, Introduction to the Mechanics of a
Continuous Medium. Prentice-Hall, Englewood Cliffs,
NJ (1969).

. J. T. Oden, Finite Elements of Nonlinear Continua.
McGraw-Hill, New York (1972).

. H. D. Hibbin, P. V. Marcal and J. R. Rice, Int. J. Solids
Struct. 6, 1069 (1970).

. R. M. McMeeking and J. R. Rice, Int. J. Solids Struct.
11, 601 (1975).

. T. Scharnhorst and T. H. H. Pian, Int. J. Numer. Meth.
Engng 12, 665 (1978).

. V. A. Lubarda and E. H. Lee, J. appl. Mech. 48, 35

(1981).

E. H. Lee, J. appl. Mech. 36, 1 (1969).

. E. H. Lee, Int. J. Solids Struct. 17, 859 (1981).

E. H. Lee, In Numerical Methods in Industrial Forming

Processes (Edited by Pittmann, Wood, Alexander and

Zienkiewicz). Pineridge Press, Swansea, UK. (1982).

E. H. Lee and R. M. McMeeking, Int. J. Solids Struct.

16, 715 (1980).

E. H. Lee, Constitutive Equations: Macro and Com-

putational Aspects, p. 103. ASME, New York (1984).

16.
7.

21.

25.
26.
27.

James D. Lex

A. E. Green and P. M. Naghdi, Archs ration. Mech.
Analysis 18, 25] (1965).

A. E. Green and P. M. Naghdi, in Proc. IUTAM
Symposium on Irreversible Aspects of Continuum
Mechanics and Transfer of Physical Characieristics in
Moving Fluids (Edited by Parkus and Sedov). Springer,
Berlin (1966).

. J. Casey and P. M. Naghdi, J. appl. Mech. 48, 285

(1981).

. J. Casey and P. M. Naghdi, Quart. J. Mech. appl. Math.

37, 231 (1984).

. J. Casey and P. M. Naghdi, Constitutive Equations:

Macro and Computational Aspects, p. 53. ASME, New
York (1984).

J. Casey and P. M. Naghdi, J. appl. Mech. 50, 350
(1983).

. C. Truesdell, Comm. Pure appl. Math. 8, 123 (1955).
23.
24,

C. Truesdell, J. Rat. Mech. Anal. 4, 83 (1955).

L. J. Segerlind, Applied Finite Element Analysis. John
Wiley, New York (1976).

O. C. Zienkiewicz, The Finite Element Method, 3rd Edn.
McGraw-Hill, London (1983).

D. C. Drucker, Proc. Ist U.S. National Congr. Appl.
Mech., p. 487. ASME, New York (1951).

A. C. Palmer, G. Maier and D. C. Drucker, J. app!.
Mech. 34, 464 (1967).




