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Abstract-In a unified approach, the virtual work equations in rate form and in incremental forms are
derived rigorously for elastic-plastic continuum subjected to large strains. T h e finite element p r d u r e s
for the analyses of clastic-plastic solid b a d on Lee’s theory and the Green-Naghdi theory arc presented.
Also, i t i s shown that transformations can be performed among the Eulerian, the Total-Lagrangian, and
the Updated -Lagrangian formulations, and among different forms of constitutive relations, without any
approximation.

1. INTRODUCTION

The variational principle, or the principle of virtual
work, for the analyses of solid mecahnics with large
strains involved has been treated extensively by
Washizu [I],and by, for example, Hill [2], Eringen [3],
Bathe [4], Malvern [SI, Oden [6], Hibbitt et al. [7],
McMeeking and Rice [8], Schamhorst and Plan [9],
Lubarda and Lee[IO], etc. T h e virtual work equa-
tions can be expressed in rate form and in three
incremental forms. In Sec. 2, i t i s shown that,
by starting from any one of the three forms of
Cauchy’s law of motion-the equilibrium equation, a
universal virtual work equation in rate form can be
derived rigorously. In Sec. 3, in a straightforward and
rigorous way, the Eulerian, Total-Lagrangian, and
Updated -Lagrangian forms of incrementa! virtual
work equations are derived, and it i s shown that the
three forms of incremental virtual work equations
can be transformed from one to the other without
any approximation. I t is shown also that the in-
cremental virtual work equations are exactly the same
as the virtual work equation in rate form in the
limiting case-the size of the incremental step a p
proaching zero. In Sec. 4, the finite element formu-
lations based on the Total-Lagrangian and the
Updated-Lagrangian incremental virtual work equa-
tions are made in detail for elastic-plastic continuum
divided into general, three-dimensional, solid ele-
ments. The emphasis is put on the calculation of
nodal forces, which i s an exact treatment. The calcu-
lated nodal forces are then taken as the basis to check
whether the equilibrium i s reached pointwise. These
formulations can then be applied to any theory of
elastic-plastic solid with large strains.’

Among numerous theories of elastic-plastic solid,
Lee’s theory[10-15] i s the most unique one in the
Sense that the decomposition of total deformation
into the elastic and the plastic parts is made at the
deformation gradient level, while Green-Naghdi’s
theory[1621] is the most general one-it allows

material anisotropy and various kinds of hardening
rules to be incorporated into the formulation. In Secs
5 and 6, the detailed iterative procedures are outlined
for Lee’s theory and Green-Naghdi’s theory,
respectively.

Throughout this paper, the standard tensor sum-
mation convention is adopted: the rectangular
Eulerian coordinates, x,(k = 1,2,3), and Lagrangian
coordinates, X,(K =I,2,3), are employed; an index,
k or K, after a comma indicates a partial
differentiation with respect to the coordinate, x, or
XK; a superposed dot indicates the material time
derivative; and some standard notations appearing in
Eringen’s book [3] are utilized.

2. VIRTUAL WORK EQUATION
IN RATE FORM

The equilibrium equation may be written in one of
the following forms [3]:

Cy,, + PL = 0

where: uq is the Cauchy stress tensor; p and po are the
mass density in the deformed and the undeformed
state respectively; L i s the body force per unit mass;

i s the deformation gradient; and the firs1 order
and the second order F’iola-Kirchhoff stress tensors
are defined respectively as

In eqns (4) and (S), J is the Jacobian of the trans-
formation between the deformed configuration and
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the undeformed configuration, i.e.

JE det (xI.K).

and XK., is related to as
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where the Kirchhoff stress tensor is defined as

(6) T,, = Ju,,, (14)

I t i s noticed that, in this work, attention is focused on
the static problems, although the formulations could
be extended to the dynamic cases without major
difficulty.

If eqn (1) is differentiated with respect to time and
then multiplied by the virtual velocity 60, and then
integrated over the deformed volume, the following is
obtained:

Similarly, from eqns (2) and (3), one may have the
following:

the Jaumann stress rate tensor is defined as [IO]

and wV is the spin tensor.
I t should be noted that eqn (13) i s the same result

as that obtainable from the Hill’s variational prin-
ciple [2,8, lo]; also, the second term on the left-hand
side of eqn (13) indicates that the follower type
loading is automatically incorporated in the formu-
lation. I t should be emphasized that the virtual work
equation in rate form, eqn (11) or eqn (13), is as
general and exact as the equilibrium equation, eqns
(l),(2), or (3). However, the rate form may not be
practical at the problem-solving level, but i t can and
will be used as a basis to check the validity of the
virtual work equation in incremental forms, which
will be formulated in the next section.

3. EULERIAN AND LACRA’ICIAN
FORMULATIONS

By multiplying eqn (1) by the virtual displacement

may obtain the virtual work equation in the following
dr [(TKLx,.L)], K + p,,j, 6t:dV =O. (IO) 6u, and integrating over the deformed volume, oneSI“

form:
After some mathematical manipulations, eqns (8)-
(10) are all reduced to the same virtual work equation
in rate form as follows:

where: s+ is part o f surface surrounding 1; over which
the surface traction, defined as T,= uunJ

(n, is the unit
outward normal of the surface), i s specified; da

J
is the

differential area vector; d,, i s the deformation rate
tensor; and the Truesdell stress rate tensor i,,is
defined as 122,231

where the infinitesimal strain tensor, e,, i s defined as

et] E (’#,I-k uJ.C)/2’ (1 7)

I f either eqn (2) or eqn (3) is multiplied by the virtual
displacement bu, and integrated over the undeformed
volume, the virtual work equation is obtained as

i.~u(d,vL+ U N . L ) ~ U N ~ A K

+ pJK6URdV = TKLBEKLdV, (18)s s
where dA, is the differential area vector in the
undeformed state; the Green-Lagrangian strain
tensor, EKL, is defined as

Also, one may readily show that eqn (1 1) can be
rewritten as

uK andj, are respectively the displacement vector and
(13) the body force vector expressed in the Lagrangian
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coordinates, i.e

where b,, i s the direction cosine between the Eulerian
coordinates, x,, and the Lagrangian coordinates, X,.

Suppose the solutions a! state 1 are known; the
solutions at state 2 can be expressed as the sums of
the solutions at state I and the incremental solutions,
e.g.

Ta(2)= Ta(l)+ATKL. (21)

Then, eqns (16) and (18) can be rewritten as

+ P(2)Lf,(l) + A m A 4 do (2)J
= J[u,](l) + Au,]bAe,,dc(2)

6. + ATKL1[6NL + uN.L(l)

+ AUN,L]~AUNdAK

+ POVK(l) + A/K1bAuKdVJ
=J[T,(l) +AT,]bAE,dV.

I t is worthwhile to mention that, in deriving eqns (22)
and (23), in other words, in the process of seeking the
incremental solutions, the variations of the solutions
at state I are vanishing.

The incremental Truesdell stresses and the in-
cremental Washizu strains are defined as [l]:

AE: ~X K,;(I)zY~,j(l)A€a. (25)

Combining eqn (24) with cqn (9, it can be readily
shown that

u,.(l) + Aa;

u
J
(2) all( 1) + Auo

where

Eringen [3] has shown that

(29)
TKLE lim-A TKL = JX,,,X,.~ t,,.

AI-O AI

Combining q n (24) with eqn (29), i t is seen that

AaI:
6, = lim-

AI-o A I ’

which indicates the meaning of the incremental
Truesdell stresses. The incremental Washizu strains
are the incremental Green-Lagrangian strains taking
state 1 as the reference state, and it has been shown
that [11

Also, it should be noted that

which indicates the meaning of the incremental
Washizu strains.

Starting from either eqn (22) or eqn (23), one may
prove that the virtual work equation can be expressed
as

+ P(l)Lf,(l) + A L P 4 dr(1)f
=J[o,(l)+Au:~bA~:d.(l). (33)

I t i s noticed that the integrations of eqns (22), (23)
and (33) are to be performed, respectively, on the
configurations of state 2, initial state, and state 1;
therefore, Eulerian, Total-Lagrangian, and Updated -
Lagrangian formulations are named for eqns (22),
(23) and (33), respectively. I t should be emphasized
that these three equations are nothing but the same
virtual work equation expressed in different in-
m e n t a l forms and, during the process of deri-
vation, no approximation has ever been made.

I t i s straightforward to show that eqn (33) can be
written as

1A.t 666: do (1) + a,,( 1)Au,.,(l Auk.,(1) dr (11i
= f~(l)A/;dAu, dv(l)
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where

Nm=
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N, 0 0 N2 0 0 . .
0 N, 0 0 N2

0 . '

0 0 N, 0 0 N 2 . .

as

In view of eqn (16) and by recalling that uJl) and
p(1) are the solutions at state 1 subjected to the body
forceJ(1) and the surface traction u,,(l)n,(l) on s*,
i t is concluded that R is vanishing. Then, with the
following equalities

it can be shown that

which means, in the limiting case, the virtual work
equation in incremental form is exactly the same as
the virtual work equation in rate form. Therefore, the
validity of the incremental virtual work equations,
eqns (22), (23) and (33) is established.

4. FINITE ELEMENT FORMULATIONS

Let a solid body be devided into many elements;
each element consists of Nnodal points. Correspond -
ingly, there are N shape functions, N,,
y = 1,2,3, . . .,N, so that the Eulerian coordinates of
a generic point (x,y,z) within the element can be
linked to the nodal point coordinates (Z7,1,. 2,) in the
following matrix form:

x; = N,f,, (39)

where:

. . .

. . . ? j N 1 .
0 0 NN

. . .

Similarly, in Lagrangian coordinates, the counterpart
of eqn (39) can be written as

where is the nodal point coordinate vector in the
undeformed state expressed in Lagrangian coordi -
nates, and N, has the same form as N,. Also. the
displaaments and incremental displacements of a
generic point within the element can be linked to the
counterparts of the nodal points as

Through a very standard procedure (4,24,25], the
displacement and the incremental displacement
gradients can be expressed as

where B is a (3 l 3 l3N) matrix than can be obtained
through the shape functions and the nodal point
coordinates.

In the Updated -Lagrangian approach, suppose the
solutions at state 1 are obtained; then eqn (16) written
in the following form has to be satisfied:

{u,,(l 1de,(l) dc (1 1- P(l)f,(l)6u, dr (1)I
c

which can be rewritten as

6u, [la,(l) B,U) do (1) - ~ ( 1If,(1) N, dc (11I
-I e IuJl) N,, da,(l)t 6u, F. = 0. (46)

I t is noticed that F. is the nodal force vector of a
generic element. Ifeqn (46) i s summed over all the
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elements of the solid body, one may obtain the
following:

buiF;=O [=1,2,3 ,... Nd, (47)

where Nd stands for the number of degrees of free-
dom of the entire solid body. Because eqn (47) should

- be valid for arbitrary 6u; except for those components
which are specified through displacement boundary
conditions, therefore, one may conclude that: (1) for
all the components where the displacements are
specified, the reactive forces are obtained through the
calculations indicated in eqn (46); and (2) for all the

. other components, Fi =O, which means the equi-
librium is reached pointwise. The calculation of nodal
forces may now be expressed by

F; = a, B,, dr. - pAN, dt. - uvN, da, . (49)s s 6.
Similarly. in the Total-Lagrangian approach, recall
eqn (19) and notice that the variation of the
Green-Lagrangian strains can be expressed as

For the calculation of nodal forces, the counterpart
of eqn (49) can be written as

E F$?) d Aus, (56)

where~7;~~specifies the constitutive relation for the
elastic-plastic solid, i.e.

The detailed expression of a;", will be indicated in the
next section. Now, the governing matrix equations
for a generic element become

[K$ + K$]Au a =F!," +FZ')+F:". (58)

In order to solve for the incremental solution using
the Total-Lagrangian approach, first, the incremental
Green-Lagrangian strains can be found, by using eqn
(191, as

where

In order to solve for the incremental solutions using
the Updated -Lagrangian approach, the terms in
eqn (33) are treated as follows:

Define AGKL and AH,, as
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Now, the terms in eqns (23) are treated as

where AUMW specifies the following constitutive
relation of the elastic-plastic solid.

The detailed expression of A,,, will be indicated in
Sec. 6. Now, the governing matrix equations for a
generic element assume the same form as eqn (58).
When the matrix equations for all the elements in the

solid body are summed up, the grand matrix equa-
tions of the entire mechanical system are obtained.
After the displacement -specified boundary conditions
arc imposed, one may solve for the incremental nodal
point displacements. I t should -be emphasized that
whether a set of solutions is acceptable or not sepends
on whether the equilibrium of nodal forces, the
calculation of which is an exact treatment, is reached
or not; therefore, the approximations made in deriv-
ing eqns (53), (56), (62) and (65) in order to obtain
the incremental solutions in an iterative process do
not imply that the final accepted solutions are ap-
proximated ones. The point will be seen clearly in the
following sections.

5. ITERATIVE PROCEDURES
FOR LEES THEORY

Lee and his co-workers[10 -15] have formulated a
theory of plasticity based on the exact nonlinear
kinematics of elastic and plastic deformations.
Among all the existing theories of plasticity, Lee’s
theory is a very unique one. Instead of assuming that
the total strain is the summation of the elastic strain
and the plastic strain, Lee’s theory begins with the
fact that the deformation gradient is the product of
the elastic and the plastic defonnation gradients.
Therefore, it i s worthwhile to demonstrate how the
finite element formulations derived in the previous
sections can be applied for Lee’s theory.

To begin with, let Lee’s theory be briefly described
in the following [IO].First, let the deformation gra-
dient x, ,~be expressed as

where F and FP may be named, respectively, as the
elastic part and plastic part of the deformation
gradient and F specifies the mapping from the un-
stressed plastically deformed configuration to the
elastically -plastically deformed configuration. How -
ever, the decomposition as indicated in eqn (67)
is not unique because any arbitrary local rotation
in the unstressed state gives another unstressed
configuration. Therefore, further restrictions have to
be imposed on F, namely, F is symmetric and has
the same principal directions as the stress tensor and
the plastic part of the deformation r a t e tensor. These
restrictions imply that the material under consid-
eration is isotropic and obeys the isotropic hardening
rule. Define FI and F P to be the inverse of P and FP,
respectively, i.e.

The elastic and the plastic parts of the deformation
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I t can be shown that

a,, +dP, (74)

CO,,=CO~+I/t(r,oRF;-Fs~oa,FF:,), (75)

where eqn (74) indicates that the deformation rate
tensor is not just the sum of the elastic and the plastic
parts-a difference between Lee's theory and other
theories of plasticity. Then, Lubarda and Lee [IO]
obtained the constitutive relation between the
Kirchhoff stress tensor and the elastic Cauchy-Green
tensor as

l a
zar
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where Z is the Helmholtz free energy density and

c, EFfkFjk . (77) I t i s noticed that

Since the material i s isotropic, Z must be the function btp, =bMiJ= bJUW7= b tpmn 9 (90)

and, also, b is a function of e. In view of eqn @I),b
can be transformed to be a function of the stresses.

(78) For the plastic part of the constitutive relations, let
the yield function be

(79)

of the three invariants of c,,, which are defined as

1,= c,, ,

1 2 = (1:- cyc,,)/2,

the
tion
un-
the

(67)
tion
ssed
le to
has
and

'hese
nsid-
ning
3 FP,

ow-

f =3/2z,;z;-s2,
I,-5 I / 6 e , ~err, E, C,, Ck, = det (C). (80)

Then, eqn (76) can be written as
where S is the current yield strength and 7,; i s the
Kirchhoff stress deviator, defined as

where The loading rate, L, defined as

(93)

can be shown to be
I t is noticed that cqn (81) does imply that the
Kirchhoff stress tensor and the elastic Cauchy-Green
tensor, defined in eqn (77), have the same principal
directions. With the equality

L = 37:/?,,.

Upon loading, defined as

(94)

(69)

ation '8,
E

. 'kJ +',&'kJ f = O . L > O , (95)
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i t i s assumed that the following equality:

which can be rcwritten as

dP,=94~:17 - f~, (97)

where qcan be a function of the invariants of r,,. Due
to the requirement of continuity in plastic
loading [161,

3x
S' = 3/27; 5,; (98) = 2F, Fh7

0C.J

dZ
holds for the entire loading process. In unloading,
defined as f < O or L <O, and in neutral loading,
defined as /= 0 and L = 0, i t i s assumed that

= 2c, -= Tf, 9 (106)
ac,

and, also, FP can be only an orthogonal trans-
(99) formation matrix, which meansdE=$=O.

From eqn (97) it is noticed that c,, =I,,

df:=O,

which means that the plastic strains do not contribute
to volume change, Drucker's normality condition i s
imposed126,271, and the
principaldirections as dj;. combining
(97) with eqn (74), one obtains

det (C) =I,. (107)

has the Same This implies that, for elements still in the elastic
eqns (84) and region, T!, can be calculated as if i t is an elastic solid

without even changing the form of the Helmholtz free
energy density.

The finite element procedures for large strain
('0

1
) elastic-plastic solid based on Lee's theory can now be

',J ='tPW8 7

outlined as follows:

Step 1
where u , ~is the inverse of

6,p, = 6,,,,, + 9qr;,~- (102) Based on the current stresses, the elastic
Cauchy-Green tensor c , ~can be calculated according
to eqn (81) and then b,,,,,,, and u$," are calculated
according to eqn (85) and eqns (102)-(104) re-
spectively. B, is calculated based on the current

= 1/2(6,"6, + 6,6,). (103) geometry. Then, the element stiffness matrices, K"'
and K"', and the forcing terms, F"', F"),and F'l), are
obtained by using eqns (53) and (54) and eqns
(54)-(56) respectively.

and 6,
J

,,,,, i s the inverse of b,,, i.e.

Now, defining o : ~as

Step 2

The grand matrix equations can be formed as

KAu = F.

then the Truesdell stress rate tensor b,, can be related After the disphcement -specified boundary con-
to the deformation rate tensor dm as ditions are imposed, one may solve for Au, the nodal

point incremental displacement vector.

i,,= a&dm. (105) Step 3

T h e incremental Washizu strains are calculated as
Also, i t i s noticed that, in the neutral loading or
unloading case, aIpn =b,,,,, . At this moment, for those A&: = 1/2[Au,, + Au,,, +Auk., Auk,]
elements which are still in the elastic region, i.e. no
plastic strain has occurred, i t is worthwhile to prove 1 / 2 [ 8 r p + B p s + klg AUg BkpIAuz. (109)
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Step 4

cqn (1051, by
Approximate the constitutive relation in rate form,

u, +u, + Aua

UiJ +-Uij(2).

Then, the B,n matrix should be u@ated also and all
the other quantities, i f needed, can be updated.

- where StepI

The nodal force vector is now calculated according
to cqns (48) and (49). i f the calculated nodal force
vector indicates that the equilibrium i s not reached
pointwise, then, in view of qns (49), (M), (55) and
(56). the nodal force vector, F, indicated in eqn (48),
actually serves as the forcing term for further iter-
ation, namely, one should go back to Step 1.

If the equilibrium is reached pointwise, or, at least,
the error i s within certain given error tolerance, one
may change the applied loading, or even the
displacement -specified boundary conditions, and go
back to Step 1 to seek the solutions at the next
incremental level.

This is actually the first approximation made in this
paper. Also, in view of eqns (30) and (32), i t i s noticed
that, in the limiting case, eqn (I10) approaches eqn
(105). Then, recall eqn (27) and rewrite i t as

I t i s seen that eqns (1 10)-(112) involve iterations.
Let SI and S, be defined as

6. I T E R A W E PROCEDURES FOR
THE GREEN-NAGHDI THEORYS:E 3/2rb(l)rb(l)

S i E 3/2 132) rk(2). Green and Naghdi [16,17] formulated a very gen-
eral theory for elastic-plastic continuum. Later,
Casey and Naghdi [18-2IJ addressed further issues
related to that general theory. Since the
Green-Naghdi theory has been referenced by many
researchers in the field of plasticity, i t has been
decided to demonstrate how the finite element fonnu-
lations derived previously can be applied for that
theory.

The basic constitutive relations, with the thenno-
mechanical coupling being neglected, of the
Green-Naghdi theory are listed in the following [161:

I f S,IS or SI= S and S, 2 S, let

strain
3W be I f SI< S and S, > S, let

:lastic
xding
dated
$) re-
went
s, K"'
"), are

eqns

+ ~ ~ ~ ( 8 ( 2 ) ) ( S , - S ) ~ / ( S , - ~ , ) ,(115)

where P and i*are the inverse of e and a*, re-
spectively.

Step 5

For those elements which never experience plastic
deformation, Step 3 and 4 should be bypassed.
Instead, the following will be calculated.

Eu=EL -+ EP,

Z = Z(E')

as

(108)

y con-
e nodal =1 L (loading)

aTKL
I t is noticed that this step does not involve the
approximation made in eqn (1 10).

Step 6

Update the geometry, the displacement field, and
the stress distributions as

" '('+A%=
af )L (loading) (127)

lated as

k&= K = 0 (neutral loading or unloading), (128)

where E' is the elastic Green-Lagrangian strain; E P is
the plastic Green-Lagrangian strain; F=0 specifiesfa+ f, + Au,
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the yield surface; K may be called the hardening
parameter; L i s the loading rate; the case of loading
is defined as F= 0 and L >0; the case of neutral
loading i s defined as F= 0 and L = 0; and the case
of unloading i s defined as F< 0 or L < 0. I t i s seen
that, first, the decomposition of elastic and plastic
parts is made at the strain level, instead of at the
deformation gradient level as in the Lee's theory.
Second, the yield function, f,and the hardening rule,
eqn (127), are more general than the counterparts in
the Lee theory-this means the size and the location
of the yield surface in the stress space can be changed
during the loading process. Third, the Green-Naghdi
theory is not restricted to isotropic material with
isotropic hardening rule. Also, i t i s noticed that the
continuity condition is imposed by eqn (127). i.e. in
loading,

and the Drucker's normality condition is imposed by
eqn (126), in which 1can be a function of Tu and
EL.

Equations (123) and (126) can also be written as

a2x .fKL = ELN 5 BuMN EL,,. (130)
aE; aE;,

Combining eqns (130) and (131) obtains

Step I

Based on the current stresses, plastic strains, and
displacements, the element stiffness matrices K" )and
K'2) are calculated according to eqns (62) and (63) and
the forcing terms, F"), P2)and F") are calculated
according to oqns (63)-(65).

Step 2

T h e grand matrix equations can be formed as

KAU = F. (136)

After the displacement -specified boundary conditions
are imposed, one may solve for AU, the nodal point
increment displacement vector.

Step 3

The incremental Green-Lagrangian strains are cal-
culated, according to eqn (59), as

AEU= 1/2(BG + 6,,)AU,

+ 1/2 B,,, BMLp AU, AU, . (137)

Step 4

Calculate E'(1) according to eqn (123) as

Let E'(2) be E'(1) + AE and then calculate the follow -
ing:

IfF SO, then Tu is updated and go to Step 6;
otherwise, go to Step 5.

where A is the inverse of Step 5

(A) Make an educated guess for Tu(2), and calcu-

(B) Calculate 6&(2) according to

E BUM, + A--a' '' (I33) late E; according to eqn (I39).aTKL arMN

and B i s the inverse of BH". In case of neutral
loading or unloading, A,, = BUMN. In finite ele- k.pKL(2)= EL(1)+E&(l)+ AE,, -Et(2). (141)
ment analysis, the following incremental constitutive
relation i s needed: (C) Calculate the following:

A ~ M N[T(2), EP(2)1J. (135)

Now, the finite element procedures for large strain
elastic-plastic solid based on the Green-Naghdi
theory can be outlined as follows.

@) If fI = K and f2 > K, let

A = 1/2[A(1) + A(2)]
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and if be expressed by any one of the following:

and
md
and
lted

let

and then they can be transformed from one to the other
by the following rules.

136)

where A stands for the inverse of A.
(E) Calculate TL(2) as

ions
oint

+ 5, u,,,, + a,,,, a, + a,, a,). (1 56)

The linearizations made in eqns (53) and (56) or in
eqns (67) and (65), in order to evaluate the stiffness
matrix and the forcing term, do not present approx -
imations for the overall formulation because the
validity of the solutions is based on the equilibriums
of the nodal forces which are calculated exactly. Also,
i t is noticed that the follower -type forces are incorpo -
rated automatically into this formulation. On the
other hand, it should be mentioned again that the
following approximations,

I f TKL is approximately equal to Tu(2), within a
given error tolerance, then update the following:

137)

and go to Step 6; otherwise, go back to (A).

Step 6

Now the nodal point displacements are updated as

,I38)

llow-

and, also, 8, should be updated according to eqn
(52). Calculate the nodal force vector according to
eqns (48) and (51). If the equilibrium is not reached
pointwise, or the error i s not within a given error
tolerance, then in view of eqns (SI), (63), (64) and
(as), the calculated nodal force vector actually serves
as the forcing term for further iteration, namely, one
should go back to Step 1; otherwise, one may change
the force and/or displacement specified boundary
conditions and go back to Step 1 to seek the solutions
at the next incremental level.

have been made for Lee’s theory and the Green-
Naghdi theory, respectively. However, this kind of
approximation perhaps cannot be avoided if the
incremental finite element procedures are employed.
I t i s believed that, in view of eqns (I14) and (I15) or
eqns (144) and (145), this approximation is reason-
able and accurate. Besides, this approximation is not
employed for all those elements which have never
experienced plastic deformation, in Lee’s theory, and
for all those elements in the process of neutral loading
or unloading (including elastic theory), in the Green-
Naghdi theory. Actually, for realistic problems, the
majority of the elements are in that category. On
the other hand, i t i s recognized that the solutions for
elastic-plastic solid are path-dependent, if the in-
cremental step is too large, and even if the stable
solutions are obtained, the path-dependency intro-
duced numerically may not be acceptable. On the
other hand, if the size of the incremental step is
reduced, say, to half, and no appreciable difference is
observed, then the doubt can be eliminated.

alcu-

1. DISCUSSION

T h e virtual work equation in rate form, eqn(I1) or
eqn (13), is obtained exactly. The virtual work equa-
tions in incremental forms, namely, the Eulerian, the
Total-Lagrangian, and the Updated -Lagrangian for-
mulations, are rigorously derived to be eqns (22), (23)
and (33), respectively. Actually, the three incremental
forms can be transformed from one to the other
without any approximation. Besides, in the limiting
case, the incremental forms and the rate forms are
identical. Also, i t i s noticed that if the constitutive
relation, in rate form, of any theory of plasticity can
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