World Modeling for Sensory Interactive
Trajectory Generation

L. Kelmar, R. Lumia
National Institute of Standards and Technology, Gaithersburg, MD 20899

1. Abstract

A major consideration in the design of sensory interactive trajectory
generation software for a Flight Telerobotic Servicer (FIS) is the availability
and maintenance of a cument model of the manipulator’s world. The
NASA/NBS Standard Reference Model for Telerobot Control System
Architecture (NASREM}, which has been adopted by NASA for control of
the FTS, provides a logical computing architecture for telerobotics. It defines
a hierarchical control system in which complex tasks are decomposed into
progressively simpler subtasks, or objectives. It contains a hicrarchy of
world modeling modules which maintain the system’s internal model of the
manipulator and its world by continucusly updating the model based upon
sensory data. Each world modeling modunle containg support processes or
functions which simultaneously and asynchronously support sensory
processing and task decomposition. This paper discusses the role of world
modeling in support of trajectory generation and execution.

This paper discusses the world modeling modules of a hierarchical control
system which facilitate sensory interactive trajectories by decoupling and
supporting the sensory and manipulator planning processes. We define the
types of information which should be included in the interfaces to the
moduies, as well as the modules’ structure and function. Finally, we discuss
the implementation and results of a particular sensory interactive algorithm
performed in our laboratory.

2. Introduction

This paper describes the interfaces, structure, and function of the world
modeling modules which support trajectory generation for a hierarchical control
system for telerobots. As shown in Figure 1, the NASREM telerobot control
architecture [ALB87] contains separate hierarchies of sensory processing,
world modeling, and task decomposition modules. Sensory processing acquires
and processes information about the state of the world, which may include data
from position, force, tactile, vision, range, and other sensors. The task
decomposition hierarchy decomposes high-level goals into simpler and simpler
subgoals, and accomplishes them by planning and executing appropriate
actions. The world model consists of modeling processes and a global data
system; it serves as an intermediary between the sensory processing and task
decomposition hierarchies. The world modeling processes perform calculations
based on manipulator, object, and environment models to provide estimates of
current and future world states. The operator control provides a means by which
a human operator can access status information, supervise, and directly control
the telerobot at any level of the system.

We are implementing the NASREM control architecture in our laboratory.
Our telerobot system consists of a manipulator and a camera. The processing
modules, for this subset of the NASREM architecture, can be recombined

SENSORY WORLD TASK OPERATOR
PROCESSING MODELING DECOMPOSITION CONTROL

il >] SERVICE
N P =1 WM, [TD¢ | Mission
1 — Y
Gé.g% iu" SP, e = WM, ™5 |servicemay
SYSTEM L] P W
SP, fe— WI:Q “— .TI?4 TASK
X —WMI—“": A e |
5?3 — " = .11?3 E-MOVE
- x Y | & eerei— |
WM »
SP, E:i; M == TD, |provITIVE
¥ I
sP, [WM, 2" TD; [SERVO
—-—r—‘ ===1—

v SENSE ACTION

Figure 1. A Hierarchical Telerobot Control System Architecture.

according to their function in the system, as shown in figure 2. The system
consists of two main branches; the left branch contains the perception processes
and the right branch contains the manipulation processes. The perception
processes provide sensory feedback from the camera; the manipulation
processes plan and execute manipulator trajectories. Note that while the two
branches decompose tasks independently within each branch, communication
between processes, both within a branch and across branches, occurs via the
global data system., The perception and manipulation branches cooperate during
trajectory generation and execution.

The second level of the task decomposition hierarchy is called the Primitive

Level (Prim). It generates dynamic motion and force commands from a static
description of the desired behavior of a device. Prim creates the time sequence

LEVEL 4 TASK
LEVEL 3 E-MOVE
LEVEL 2 PRIM
LEVEL 1 SERVO

Figure 2. Perception and Manipulation Branches for a NASREM Sub-system.

of attractor sets needed to produce a dynamic trajectory and sends these as
commands to the Servo level of the task decomposition hierarchy [WAV88].

Real-time trajectory generation based on sensory feedback, such as vision
and proximity, allows performance of tasks based on sensed data rather than a
priori knowledge. This provides for robustness of task execution amid
incomplete or uncertain knowledge of the environment. Robot positioning
systems base their corrective motions on the difference between the desired, or
reference, joint positions and the actual ones. Because of possible errors in the
manipulator kinematic model and/or the locations of object in the workspace, the
relative position of the end-effector and the object may be in error. With the
addition of perceptual sensory feedback, the conwrol system can more reliably
relate the relative pose of the manipulator’s end-cffector to objects in the world.

The discussion in this paper focuses on the world modeling modules
highlighted in figure 2: one which supports the manipulator trajectory generation
module (Prim) and one which supports visual perception. In the following
sections we characterize the algorithm information passed to the support
modules and the corresponding modeling information which is returned.
Algorithm independent interfaces, which allow for both pre-planned and sensory
interactive trajectories, will be defined. We also introduce the role of the
operator interface for initializing perception processing. Section 6 discusses a
particular sensory interactive algorithm executing on our system and shows how
the modules defined accommodate the algorithm.

3. World Modeling to Manipulator Prim Task Decomposition Interface

To be able to perform tasks, FTS manipulators must be controlied by a
motion generation system which enables the specification, planning, and
execution of a wide range of dynamic trajectories. The task decomposition servo
and trajectory generation software modules most affect these behaviors.
Together, the modules define what types of trajectories, or large dynamic
motions, the manipulators can perform (trajectory generation), and how well the
manipulator will be able to perform these motions (servo) [LUMS9].

The Prim task decomposition module generates and executes plans for
dynamic trajectories for a manipulator [WAV88]. The plans may give explicit
velocity, and acceleration profiles as a function of time. Altematively, the plans
may specify the shape or characteristics of the trajectory, without explicitly
defining the path. For example, when using vision data in real time to perform a
trajectory toward a moving object, the path that the manipulator follows in space
is determined as the trajectory is being performed. In such cases, it may be
more appropriate to simply command a goal state which defines whar is to be
achieved, along with an algorithm specification that defines how to achieve it.
These types of algorithms perform what is referred to here as sensory-
interactive trajectory generation. The world modeling modules provides the
necessary connection between the manipulator and the perception sensory
processing.

The goal of this section is to characterize the algorithm information computed
and maintained by the Prim world modeling module. The information listed
below is not specific to any one algorithm; it defines the module which supports

a wide range of trajectory generation algorithms [KEL89]. We begin with
support for the Prim in planning trajectories.

* Forward and Inverse Kinematics - The manipulator configuration
specification may be the desired Cartesian end-effector pose or velocity, or it
may include additional manipulator configuration parameters. For example, if
the manipulator is redundant, it may be desirable to specify the configuration
of the manipulator’s elbow, as well as that of the end-effector.

¢ Current (Actual) Arm Position and Velocity - Prim bases its future
movements on the current position and velocity of the manipulator.

¢ Actuator Limits - Prim requires the torque and acceleration limits, which
are a function of the manipulator configuration (joint angles). Also, world
modeling must provide the joint position limits for the manipulator.

* Arm and Payload Dynamics - The manipulator dynamics must be
considered in order for the full capabilities of the manipulator to be available
and to prevent it from exceeding actuator limitations. When the manipulator
carries an object, the dynamic model should reflect the additional mass.

* Gain Information - Prim requires gain information for various motions.
The information may be constant and stored in the global data system, or may
be adjusted based upon experimental or run-time results. Often, the choice of
gains is strictly task dependent and is maintained Prim.

* Object Data - The world modeling support module must be able to provide
Prim with a variety of object data. Object data may be available in the
database or may be the result of etrapolation or prediction by world
modeling. For example, the position of an object may be constant or may be
predictable based upon the velocity profile of the object. The exact nature of
the data supplied by the world modeling support module depends on the
algorithms implemented. The interface between Prim and its world modeling
support module must be rich enough to support Prim in planning and executing
trajectory generation algorithms. It should include the position and velocity of
the object(s) of interest, as well as any tolerances and kinematic constraints
for mating objects.

During execution of a trajectory, world modeling supplies Prim with various
sensed values. The exact sensory information passed from world modeling to
Prim depends on both the particular algorithm being executed and the sensors
available in the system. Typically, sensory interactive algorithms require that
world modeling provide continuously updated readings. For example, force and
torque readings provide important feedback when the manipulator performs
contact tasks, such as inserting a peg in a hole. The data used by Prim enable
manipulation when a priori information is not sufficiently recent or precise to
complete the task. Sensor data may include:

* Input Device Information - For teleoperated control, the manipulator

trajectory is guided by an input device, such as a master or joystick. The

values from the input sensor, such as desired manipulator joint velocities, are
transformed (if necessary) and made available by World Modeling.

* Manipulator Position and Velocity - The Execution module requires the

position and velocity of the manipulator as feedback. The values may be in
joint or Cartesian space.

« Object or Feature Position (relative displacement) - Often the precise
location of an object cannot be known with sufficient accuracy prior to
execution of the task. For such situations, sensory feedback during task
execution can enable successful completion of the task.

« Force and Torque Values - Feedback from manipulator force and torque
sensors can be used to detect a manipulator’s contact with the environment.
The reading, together with knowledge of how to make corrective motions,
also can improve the performance of manipulators in assembly operations.

Each World Modeling module also interfaces to Sensory Processing. The
Manipulator Prim World Modeling module interfaces to the Manipulator Level 2
Sensory Processing module, as shown in figure 2. Manipulator sensor data
includes readings from manipulator Sensors, such as joint encoders, force/torque
sensors, and proximity sensors. At this time, it appears that only one level of
sensory processing is necessary for manipulator sensor data; it is filtered and
stored at Level L.

4. World Modeling to Level 2 Perception Sensory Processing Interface

The Level 2 sensory processing module for. image data extracts features
from iconic information received from Level 1 and converts the features to
symbolic representations. The types of features include edges, comer points,
centroids, and moments. The features are entered into the global data system
to be used by a manipulator control module, by higher level sensory processing
modules for scene interpretation, or by both. World modeling maintains a
history of recent readings which it uses for filtering out spurious readings. The
world modeling support module also provides predictions of expected features.
The predictions may be based upon the histories of readings, the knowledge of
the camera’s location with respect to the object of interest, as well as
knowledge of how the object and/or camera is moving.

For example, consider the task of tracking a ball moving on a planar surface.
In one approach, Level 1 image sensory processing acquires two sequential
images and subtracts them. The resulting iconic representation, of the difference
in intensities between the images, represents the area of motion. Level 2
sensory processing computes the centroid of the difference image. If the ball is
the only object which changes position between successive images, then the
algorithm successfully locates the ball. However, if the integrity of the scene
cannot be guaranteed, a model should be employed to isolate the motion of the
ball from possible motion of other objects. World modeling supports sensory
processing by providing a window of interest around the expected location of the
ball in each image. The predictions are based upon previous reading(s) and
knowledge about the movement of the objects between sampling instants.

5. World Modeling to Operator Interface

The operator interface provides a means by which human operators can
observe, supervise, and directly control the system [ALB87]. The interface
includes such input devices as a joystick, a mouse, and a keyboard. Operator

interaction may be used in the absence of a complete world model. For example,
the operator can indicate safe pathways or the location of an object to be
manipulated. The transformation from the manipulator or world reference frame
to the object of interest would be computed and stored in the world model.
Similarly, the operator can assist the perception processing modules, especially
during initialization of a task. Consider the task of tracking an object. The
object, or features, of interest can be indicated via the operator interface.
Thereafter, tracking the object can be accomplished autonomously by sensory
processing (with windowing and predictive support from world modeling).

6. Current System Setup and Experimental Results

In this section we discuss an initial task performed in our laboratory
involving the lowest two levels of the NASREM control hierarchy. The
demonstration successfully integrates the sensory processing, world modeling
and task decomposition modules, thus closing the sensory feedback loop. In the
experiment, a small ball is released at the top of an inclined board which
contains randomly placed pegs, as shown in figure 3. As the ball rolls down the
board it is tracked by the single camera vision system and then caught by the
manipulator at the bottom of the board. Our manipulator is a seven degree of
freedom arm. The vision processing is performed by a real-time pipelined image
processing machine, PIPE (Pipelined Image Processing Engine), which is
commercially available through Aspex, Incorporated. The software is written in
Ada and runs on 68020 processors!. This section details the role of the world
modeling modules in closing the feedback loop between sensory processing and
manipulation; figure 3 shows the world modeling computations for the task.

The Operator interface facilitates initialization of the system. The board is
placed within the workspace of the manipulator. Its location is then determined
by "teaching" the position of three corners of the board with the manipulator,
From the three points, the position and orientation of the board, with respect to
the manipulator, are computed. The camera is placed at the start of the task; the
only constraint on its placement is that the entire face of the board must be in
the field of view. The camera’s location is determined using a four coplanar
point algorithm [YEHS88]. The transformations from camera to board and from
manipulator to board are stored in the world model. After initialization, all
computations are performed by cyclically executing processes which
communicate via global read-write interfaces [FIA89].

The vision algorithm used for the experiment determines the location of the
ball using the difference of successive images. The PIPE machine acquires
successive images every 1/30 second. After smoothing the images, PIPE
differences the entire images in one cycle. The resulting differenced image is
thresholded and then passed to Level 2 for additional processing. At Level 2,
the centroid of the area in the differenced image is computed for use by Prim
world modeling. Currently, world modeling does not supply a window of interest
around the expected location of the ball.

1Producrs named in this paper are listed for purposes of information only. There is no implied -
endorsement of any products or implication that they are the best available for the purpose,

Figure 3. Ball Catching Task Setup.

The centroid value, as supplied by sensory processing, is a 2P centroid in
image space; Prim requires a 3P position with respect to the manipulator. World
Modeling performs several computations to transform the 2P centroid data to a
value usable by Prim. First the location of the ball’s centroid in the image is
represented as a 3P point on the camera’s image plane. The ball’s position on
the inclined board is computed by projecting a ray from the camera’s optical
center through the point on the image plane. The intersection of the ray with the
inclined board represents the ball’s location. World modeling then filters out
spurious or invalid data points corresponding to locations beyond the boundaries
of the inclined board. Finally, world modeling transforms the point to a
convenient coordinate system for Prim, using the pre-stored transform.

The actual position of the ball, as computed from the image, is of little use to
Prim. In order to catch the ball, the manipulator must move toward predicted
locations of the ball. The algorithm world modeling uses to predict the location
of the ball extrapolates linearly from the current and the last readings. No
attempt is made to model the ball’s collisions with the pegs on the board. Thus,
the first order predicted ball position (X_;,,) sent to Prim is computed from the

two most recent ball locations (X-ball) by:
X-pally;;y = X-ball,; + (X-ball, ; - X-ball,_;),

where t represents the sampling instant. The Prim algorithm computes the
projection of the (predicted) ball position on the base of the board. As the ball
nears the bottom of the board, Prim also must determine how far out from the
bottom of the board to catch the ball. The faster the ball is rolling, the further out
from the board it must be caught. -Prim sends the desired location (X)), as well

as the position and velocity control gains (Kp’ K,) for the move to Servo. The

gains are adjusted to maintain the smoothness of the servo algorithm, as well as
to increase the response of the manipulator as the ball nears the board’s bottom.

The manipulator Servo level computes the control torques based upon errors
in Cartesian space according to [FIA90]:

=17 ;
T=1"[K, (Xg-X) - K, X0+ Toraviey + Tfriction’

whe;e Toravity ANd Tricrion are computed from models of the gravity and friction
forces, respectively, acting upon the manipulator in any given configuration.

PERCEPTION

[] Cyclically Executing Process
O Global DataInterface

Figure 4. Level 2 World Modeling Support for Ball Catching Task. '

Upon sending the control torques to the manipulator, Servo completes the
sensory feedback loop. Thus we demonstrate the integration of the sensory
processing and task decomposition hierarchies via world modeling.

7. Conclusions

This paper has given a description of Prim world modeling for a hierarchical
manipulator control system. The function and interfaces of the world modeling
module have been described. Algorithm independent interfaces, which allow for
both pre-planned and sensory interactive trajectories, have been defined.
Finally, we demonstrated how a sensory interactive trajectory generation
algorithm is accommodated by the modules’ structure and interfaces.

8. References

[ALB87] Albus, I.S., McCain, H.G., Lumia, R., NASA/NBS Standard Reference Model
Telerobot Control System Architecture (NASREM}, NASA Document SS-GSFC-(027,
June 18, 1987.

[FIA89] Fiala, ., "Note on NASREM Implementation,” NIST, Gaithersburg, MD, Dec. 1989.

[FIA90] Fiala, J. and Wavering, A., "Implementation of a Jacobian-Transpose Algorithm,"
ICG Note #23, NIST, Gaithersburg, MD, Jan. 1990.

[KEL89] Kelmar, L., "Manipulator Primitive Level World Modeling,” NIST Technical Note
1273, NIST, Gaithersburg, MD, Oct. 1989,

[LUM89] Lumia, R., Wavering, A., "Trajectory Generation for Space Telerobots,” Conference
on Space Telerobotics, Pasadena, California, Jan. 30, 1989.

[WAV88] Wavering, A., "Manipulator Primitive Level Task Decomposition," NIST Technical
Note 1256, NIST, Gaithersburg, MD, Oct. 1988.

[YEHS88] Yeh, P.S., Barash, S., Wysocki, E., "A Vision System for Safe Robot Operation,”
Proceedings of the 1988 IEEE Int’'l Conference on Robotics and Automation, pp. 1461-
1465, April 24-29, 1988,

