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1. Introduction

Transmission of standard camera images using digital techniques requires a rela-
tively high bandwidth channel. The camera image has 512 horizontal pixels per line,
512 lines per frame and 8 bits of resolution per pixel. Its output rate is 30 frames per
second. Therefore, the bit rate for the channel is 60M bits/S. However, the low
bandwidth of the transmission channel being considered between a remotely-operated
High Mobility Multi-purpose Wheeled Vehicle (HMMWYV) and the Remote Command
Center (RCC) is about 16 Kbits/S. The compression ratio necessary to accomplish this
goal is nearly 4000 : 1. An additional constraint is that the reconstructed images must
retain essential information and reasonable fidelity for the mission. An operator must
be able to remotely control a vehicle from the RCC, and must be able to pass mobility
tests and survival tests using only the reconstructed image. Mobility tests include the
ability to make trafficability and movement decisions based on the detection of local
obstacles (craters, holes, depressions, etc.), the ability to classify local surfaces
(swampy or soft soil, concrete, sand, etc.) , and the ability to determine local surface
orientations. Moreover, he must be able to plan local paths and to follow landmarks.
Survival tests include the ability to detect enemy threats such as ground vehicles,
mines, air vehicles, etc. Weather and lighting conditions may affect the outcome of
these tests, and therefore it is important to conduct experiments under varying
environmental conditions. The objective of this paper is to report the state of image
compression technology, to describe image compression techniques and to select algo-
rithms which can be implemented on parallel image processing hardware for the pur-
pose of remote driving.

Adequate resolution of video data requires vast amounts of data to represent a
single image. In order to transmit video images in real-time using a low bandwidth
channel, the quantity of this data must be compressed. The maintainance of the qual-
ity of the reconstructed images is especially important in considering the low bit-rate
coding.



With this in mind, it becomes apparent that there is a need to establish criteria
with which the quality of compressed and reconstructed data can be rated. Certain
techniques may degrade the resolution of an image while others may decrease the con-
trast. A measure of the performance of a data compression method must express how
closely a reconstucted image correlates to the original. Section 2 discusses the tech-
niques commonly used to measure the fidelity of reconstructed images with both
subjective and objective criteria.

Many methods of image data compression and reconstruction have been
developed since 1960. The best compression ratio reached, 10:1 occurred in 1983.
This class of methods is known as first generation data compression techniques. Sec-
tion 3 overviews briefly first generation data compression schemes. It is not intended
to replace excellent well-known reviews by Pratt{Prat79], Netravali and
Limb{Netra81], or Jain[Jain82], but rather summarizes the major techniques in this
class.

Recent progress in the study of the properties of the human visual system has led
to a new class of image compression schemes capable of achieving compression ratios
as high as 70 : 1. This class of methods is known as second generation data compres-
sion. Section 4 describes these techniques. The details of the methods can be found in
Kunt et. al. [Kunt85], and Musmann et. al. [Musma85].

During the past few years there has been great interest in the transmission of
video images at very low data rates (64k bits/s). The main applications have been in
the video telephone conference field [Robin84], [Pear85], [Kanek87), [Gerke87],
[Kato87}, [Moorh87], [Nam87], [Santa87], [Chen87], [Koga87], [Elnah87], [Chiar87],
[Lee87], [Heiman87]. In addition, low data rate transmission is important in the fields
of remotel;” piloted vehicles (RPV) [Gonz77], and deaf communications[Pear82},
[Abram82]. In Section 5§ we present some examples of techniques which accomplish
this goal.

The focus in Section 6 is oriented to advances in digital coding of real-time appli-
cations for low bandwith transmission. Several second generation algorithms are
selected for implementation on the PIPE machine as preprocessing for HERDS. PIPE
is a high performance parallel processor with an architecture specifically designed for
processing video images at up to 60 frames per second. HERDS, developed by the
Honeywell Corporation, is an image warping system which can reconstitute
video/vehicle state data packets at 30 frames per second. It displays the warped pic-
tures which approximate the current vehicle scene.

2. Overview of Techniques for Evaluating Reconstructed Images

The usefulness of a transmitted image is directly related to how well it approxi-
mates the original scene. It becomes important to maintain the integrity of surfaces,
texture, and other features visible in the image. In order to determine how well the
reconstructed image correlates to the original image, the fidelity must be measured.



Human observers can subjectively rate the quality of a reconstructed image. However,
it is less time consuming and easier to generalize if an objective measure can be used.
In addition, this objective measure must accurately predict the subjective measure of
quality. An example of this is the visual fidelity criterion. Means of measuring fidelity
using all approaches are discussed.

2.1 Objective Fidelity Criteria

In some low data rate image transmission schemes, some distortion in the recon-
structed image can be tolerated. One type of fidelity criterion is a numerically-valued
measure of distortion. Several commonly used objective fidelity criteria [Jain81]
[Gonza77] are defined below. The following notation is used in the definitions of these
fidelity measurements :

Suppose that the input image consists of an N by N array of pixels f(i,j),
where i,j = 0,1,...N-1, and f(i,j) is the gray level value of pixel (i,j). The ouput image
consists of an N by N array of pixels g(i,j), i, j = 0,1,..N-1, and g(i,j) is the gray
level value of pixel (i,)).

The root-mean-square error (rms) is defined as :
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The square root of peak value of g(i,j) squared and the rms noise (SNR), is defined as :
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The average distortion D,,is defined as :
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2.2 Subjective Fidelity Criteria

When the reconstructed images are viewed by operators, as is the case with the
HMMWYV, it is more appropriate to use subjective fidelity criteria to evaluate the
images. As in Gonzalez[Gonza77) [Manno74], the same amount of rms error may
appear to have drastically different visual qualities to a viewer. The subjective quality
of an image can be evaluated by showing the image to a group of viewers and averag-
ing their evaluations. Two subjective fidelity criteria have been used in [Frend60] and
[Manno74]. The first method[Frend60] uses an absolute scale. Each viewer is asked to
evaluate an image based on a scale ranging from Excellent to Unusable. The score of
each image is the average value of its evaluations. The second method[Manno74] uses
a pair-comparison (bubble sort) method. The viewer repeatedly compares pairs of
images and arranges them in order of quality. Thus the best image bubbles to the top
ranking and the worst one to the bottom. By averaging the results of many viewers,
the first method results in an absolute scale for each image. However, some observers
may find it difficult to evaluate images during the course of looking at a large
sequence of images. The second method avoids this difficulty but yields only a rank
order of images.

2.3 Visual Fidelity Criteria

A visual fidelity measurement is a measure of distortion corresponds to the sub-
jective measurements of viewers. Several visual fidelity measurements have been
developed in recent years. Mannos and Sakrison [Manno74] found an objective
numerically-valued measure which is in reasonable correspondence with the subjective
measure of viewers. The objective measure evaluates a weighted mean-square error of
contrast in a image, e.g.,
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This measure is based on a spatial frequency response. Other measures based on spa-
tial domain characteristics such as visibility can be found in [Netra77][Netra80].

3. First Generation Data Compression Techniques

The need for data compression methods became crucial with the large amounts
of data needed for handling the transmision or storage of digital images. The
significant problem of how to compress data in order to use available channels or to
store it in an efficient manner gave rise to an entire class of compression techniques
known as first generation. This class of algorithms is characterized by the fact that
they are guided by information theory which does not take the human visual system
into account. They reach compression ratios of up to 10 : 1. In this section, five types
of first generation techniques are discussed.

3.1 The Coder Method

A simple error-free data compression method is the coder method. The coder
assigns each element of its input data to a unique code word. The coder input-output
relationship is one-to-one, hence the process is reversible. In order to achieve the
compression, the coder must use as few bits as possible. In theory, a lower bound on
the average number of bits required to code a set of input data cannot be less than the
first order entropy (which is defined below) if successive input elements are coded
independently. Compact code algorithms such as the Huffman coder, the B-coder, and
the Shift coder can be bounded by the first order entropy[Gonza77]. The concept of
the first order entropy is defined as follows :

Suppose we have a set of input grey level values v, vy, vy, . . ., vy, With proba-
bilities p(0), p(1), p(2), ......p(N-1). Then the first order entropy is defined as :
N-1
H = -3 p(i)Xogp(i)
i=l

Thus, the maximum entropy is obtained when the input grey levels have equal proba-
bilities. On the other hand, if p(0) = 1, and p(1) = p(2) = ... = p(N-1) = 0 then the
entropy will be zero. This situation results in an image where all pixels have the same



grey level. In general, the entropy ranges from O to log;¥N-1. As a result, the max-
imum bound on the compression ratios for the coder methods is log,N-1 : 1.

3.2 Quantization

From the previous section, the compression ratio for a coder is a function of N,
where N is the number of grey levels in an image. In order to achieve higher
compression, we may want to decrease N by quantizing the grey levels. A quantizer is
a device which reduces output to a lower number of possible grey levels.

Since quantization is irreversible, the distortion due to quantization must be
minimized. Several quantizer designs available offer various tradeoffs between simpli-
city and performance. These include the Lloyd-Max quantizer, the compressor-
expander, the optimum uniform quantizer, and the Shannon quantizer. Gish and Pierce
[Gish68] and Berger [Berge71] have found that the uniform quantizer is quite close to
the optimum based on entropy versus mean-square distortion ((SNR).,, ) criterion.
Combining a Huffman coder and the uniform quantizer may improve the compression
ratio of the coder and the quality of the output images. However, the maximum bound
on the compression ratios for the combining method is log;M-1 : 1, where M is the
number of grey levels in the quantized images.

3.3 Predictive Compression

The predictive compression methods make use of the property that values of adja-
cent gray levels are highly correlated for most images. The major predictive method is
called the Differential Pulse Code Modulation (DPCM). The DPCM method is used in
the following manner. Based on grey level v,_; of pixel i-1 and the correlation
between adjacent grey levels, the grey level v; of pixel i-1 can be predicted. Let v; be
the predicted value of v;; the difference 4; = v; - ¥; can be obtained. Assuming that the
predictions are reasonably accurate, the magnitude of the difference d; is usually
significantly smaller than the magnitude of grey level v;. Hence compression is
achieved since fewer bits are required to code the differences. The block diagram in
Figure 1 describes the DPCM method. A DPCM system contains a predictor, a quan-
tizer, and a coder. The maximum compression ratio achieved by this method is about
logaN @ 1, where N is the number of grey levels in the input images.

Another predictive method is the interpolative method. Most commonly used
interpolators are zero-order and first-order interpolators. However higher order polyno-
mials or splines can also be used. The disadvantage of these methods is their compu-
tational complexities. The maximum compression ratio for the interpolative methods is
the same as those of the DPCM methods.



3.4 Transformation Compression

Transformation compression is shown in Figure 2 and can be divided into three
modules. The first module, the transform, reduces the correlation between pixels in an
image. By processing the transformed coefficients independently, fewer bits are needed
to code the coefficients image than the original input image. The output of the second
module, the quantizer, is an image with fewer grey levels. Thus fewer bits are
required. The third module is a coder, such as Huffman coder, which may be used
to assign a code word to each quantized output.

The general form of the transform module can be illustrated as follows. The input
image is subdivided into a number of subimages. Each subimage is coded as a unit.
Suppose that each subimage consists of an M by M array of pixels f(i,j), where i,j =
0,1,.M-1, and f(,j) is the gray level value of pixel (ij). The tranformed subimage
consists of an M by M array of pixels gk,)), k, 1 = 0,1,...M-1, such that
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The inverse transformation gives each original pixel as a linear combination of the
coefficients, i.e.
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where the kemnels, t and T, depend on the types of transformations used. For example,
when using a Discrete Fourier Fransform, t is defined as :
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Other transform kemels used, such as the Karhunen-Loeve Transform, the Hadamard
Transform, the Haar Transform, the Discrete Sine Transform, the Discrete Cosine
Transform, and the Slant Transform, can be found in [Pratt79], [Netra80] and [Jain81].

The performance of a transform method depends on the transformation itself, the
dimension of the transformation, the quantization strategies and the subwindow size.
The Hotelling transformaton performs best from both a mean-square error and a sub-
jective quality viewpoint. However, the combination of a fast algorithm and the
Discrete Cosine transform is most commonly used. In general, two dimensional
transformations yield slightly better compression ratios than one dimensional transfor-
mations. Quantization strategies include rounding coefficients and quantizing
coefficients. For good quality reconstructed images, approximately half the coefficents
are obtained and quantized uniformly. Based on mean-square error measurements, the
performance increases as the subwindow size increases. However, the distance
between correlated pixels is about 20 pixels in most images. Hence, a subwindow
size of 16 or 32 is most commonly used in the literature.

If a subwindow size of n is used, m coefficients are retained, and k bits used to
code each coefficient, then there are a total of mk/n bits per pixel. The compression

ratio will be —5'"; : 1 (approximately 10 : 1).



3.5 Hybrid Coding Methods

Hybrid coding refers to methods which combine predictive techniques and
transform techniques. Habibi [Habib74] developed a hybrid coding method which
combines DPCM and one dimensional transformations such as the Hotelling, the
Hadamard, or the Discrete Cosine Transform. The hybrid coding method has the same
performance as two-dimensional transform coding methods but has the advantage of
being simple to implement.

4. Second Generation Data Compression Techniques

Second generation data compression techniques differ from first generation tech-
niques in two ways. Second generation techniques use the properties of the human
visual system such as the spatial impulse response of retinal cells and hierarchical
data structures resembling the human nervous system. Secondly, images are seg-
mented into physical entities such as contours and textures.

4.1 Pyramid Coding

The pyramid coding method is a hybrid method which also combines features of
predictive and transform methods. Burt and Adelson [Burt83] propose a fast algorithm
for this hybrid method. The algorithm first obtains the predicted value for each pixel
in the image by convolving a local weighted average, a 5 by 5 Gaussian-like kernel,
with the image. The result is a low-pass filtered image which can be represented by
fewer samples than the original. The first predicted error image is then the difference
between the filtered image and the original image. The predicted error image can be
quantized and coded with many fewer bits than the original. Recursively obtaining the
next predicted error image by using the same algorithm applied to the sampled low-
pass filtered image achieves further data compression. The original image can be
reconstructed by adding all of the expanded predicted error images. This algorithm can
achieve a compression ratio of 10 : 1. The algorithm has been implemented in the
PIPE and will be described in Section 6.3.

4.2 Anisotropic Non-Stationary Predictive Coding

The anisotropic non-stationary predictive coding method [Wilso83] [Knuts83] can
be classified as a hybrid method which combines the predictive and transform
methods. Lines and edges in an image provide key information. A gray scale image is
first transformed into two bias images by measuring these nonstationary linear features.
One bias image is a measure of edge magnitude and direction. The other bias image is
binary and indicates whether an anisotropic prediction should be used because edge
directionality varies rapidly from point to point or whether an isotropic prediction is



sufficient.

These two bias images control the anisotropic filter, which is an estimator defined
in terms of position (i,j) and angular frequency (p.8). The anisotropic filter is a non-
stationary linear combination of three estimations :

H@B;%;.85) = Hi@HBG J)1-YG J)Ha (0.8.8G j)HBG 4 )G J)H; (p)
where
H,(.) = stationary isotropic low-pass filter
H,(..,.) = nonstationary anisotropic high-pass filter
H;() = nonstationary isotropic high-pass filter
B(.) = edge magnitude
6(...) = edge direction
.) = binary function which indicates whether directional or isotropic estimation should
be used.

The predicted image can be obtained by using the estimator described above. Let
£ (@) be the predicted gray value in the predicted image :
. M-l =» R
FGJ) = X X HQPubuu)f (—kj-1)
k=l lm—n
Then, the reconstructed image g(i,j) of size M by M pixels can be written as a func-
tion of the predicted image and the difference between the original and the predicted
image described above as :
8GJ) = fiy+Dy
where D;, prediction error , is the difference between the original and the predicted
image for pixel i,j. Quantization of the control parameters .0,y provides for typical
compression ratio of 80 : 1 using a variable bit rate encoding scheme. By adding the
number of bits used to code the prediction error ( D;), a 35 : 1 compression ratio can
be obtained. This technique is optimal for images which contain significant line and
edge features. It does not perform as well on images with fine texture or low signal-
to-noise ratio.

4.3 Contour and Texture Coding

Contour and texture coding methods first segment the image into textured regions
surrounded by contours such that each contour represents one object in the image.
Kunt, et. al. [Kunt85] overviews several approaches for contour and texture segmenta-
tion algorithms. After the segmentation, the contour and texture in an image are coded
separately. Using this method, the compression ratio can be as high as 50 : 1.

4.4 Fractal Compression

A new method for data compression is the fractal compression technique
[Barns88]. An image is segmented into object elements such as ferns, leaves, clouds,
etc. Each object element in the image is then assigned a corresponding fractal in the



fractal database which contains relatively compact sets of numbers, called Iterated
Function System (IFS) codes. Hence the object elements can be reconstructed by using
their IFS codes. This method can achieve a compression ratio of 10,000 : 1.

5. Time Varying Image Compression Techniques

The transmission of data for remotely piloted vehicles, video conference images,
and video telephone images requires data compression of a sequence of images taken
over a period of time. Data integrity must be maintained at an acceptable level while
achieving the best compression ratio possible. The compression techniques which are
discussed in this section include frame-rate-reduction, motion-adaptive frame interpola-
tion and motion compensated prediction. When these methods are combined with
transformation methods or quantization, relatively high compression ratios can be
attained.

5.1 Remotely Piloted Vehicle

An important application of time varying image compression techniques is the
Remotely Piloted Vehicle (RPV). In military surveillance applications, RPVs are more
effective than piloted aircraft because they are smaller and cheaper. Each RPV may
contain a television camera which transmits images to a pilot in a Remote Control
Center (RCC) which is located some distance away. The pilot controls the RPV by
remote control signals. Because most RPVs are operated in a hostile (jamming)
environment, a significant data compression is required to transmit images over a rela-
tively low-band width (0.5M bits/second) transmitter. A compression ration of 60 : 1
is required.

One solution is a frame rate reduction; i.e. 9 out of every 10 frames are
dropped. This is equivalent to transmitting 3 frames per second, the minimum number
of frames per second required by the pilot to maintain and control the RPV. This solu-
tion achieves a compression ratio of 10 : 1.

The remaining 6 : 1 compression ratio can be achieved by encoding each
transmitted image using transformation methods (see Section 3.4) or hybrid methods
(see Section 3.5).

5.2 Airborn Television Camera

Lippmann [Lippm80] proposed a motion-adaptive frame interpolation scheme for
video transmission of airborn television images at reduced frame rates. He reduces the
frame rate at the coder from 25 frames per second to 1 frame per second achieving a
bit rate reduction factor of 25. The images between the first and the twenty-fifth



frame are approximated by linear interpolation. However, flat ground and the absence
of moving objects in the scene are assumed. In addition, two corresponding points
have to be measured. For a more accurate interpolation which includes the rotational
components of motion, five points of correspondence are needed{Roach80].

5.3 Video Conference and Video Telephone Images

In the cases of video conference and video telephone images, a bit rate of 64-384
Kbits/S has been established as a worldwide standard specification for the transmis-
sion of moving images. In order to achieve the required compression ratio of 3000-600
: 1, several researchers [[EEEJ87] have proposed a hybrid coding scheme which uses
motion-compensated prediction, followed by a Discrete Cosine Transformation (DCT)
and/or quantization. One constraint in this proposed method is that special hardware
may be required for real time applications.

6. Preprocessing System for HERDS

The Human Engineered Remote Driving System (HERDS) is a unique system
developed by the Defense Systems Group at Honeywell. It facilitates interactive driv-
ing of a vehicle from a remote location where the data link between the operator and
the vehicle is non-line of sight and low bandwidth. The narrow band radio frequency
link that is part of an exisiting communication system has the limitation of not being
able to provide full rate video. HERDS overcomes this limitation by transmitting a
compressed image frame at 3 seconds per frame along with more frequent vehicle
position information. Full rate video images can be provided to an operator at a
remote location by extrapolating images between transmitted frames. The dynamics of
the true scene are incorporated by using the vehicle position information to "warp” the
scene to reflect these changes.

Improvements can be made to the quality of the extrapolated results by decreas-
ing the transmission time latency between image frames. With less latency, the
"warped" images deviate less from the actual scene because the information they are
derived from is more current. A preprocessing system to HERDS that further
compresses image data so that it can be transmitted more frequently than 3 seconds per
frame would improve the quality of the information received.

6.1 PIPE machine

Parallel processing is especially applicable to low level image processing. The
data structure used at this level is relatively simple; it is the spatially indexed image of
points. All parts of the image are treated in the same way and, in general, no effort is
made to distinguish bétween different parts of it. Local operations depend only on



corresponding elements or on a neighborhood of eclements of the input and output
images (Figure 3) Computations tend to be straight forward arithmetic, algebraic or
logical operations, and typically a low number of computations per pixel is required.
Parallel processors are also suited to multi-resolution representations and processing
techniques.

Many local and neighborhood operation data enhancement techniques can be
implemented on the Pipelined Image Processing Engine (PIPE) developed at the
National Bureau of Standards and manufactured by Aspex, Inc. Some features of
PIPE are discussed here, but the reader is referred to [Kent 84][Lumia84] for a more
detailed description of the system. PIPE acquires its images in real-time from analog
sources such as television cameras, video tapes, and ranging devices, as well as digital
data sources. Its output can be directed to television monitors, symbolic mapping dev-
ices, and higher level processing systems. All inputs and outputs are synchronous with
the video rate of sixty fields per second.

The PIPE system is composed of up to eight identical modular processing stages,
cach of which contains two image buffers, look-up tables, three arithmetic logic units,
and two neighborhood operators (Figure 4). A forward path from one stage to the
next allows pipelined and sequential processing. A recursive path from a stage output
back to its input allows feedback and relaxation processing. A backward path from one
stage to the previous stage allows for temporal operations (Figure 5) . The images in
the three paths can be combined in arbitrary ways on each cycle of a PIPE program,
and the chosen configuration can change on different cycles. In addition, six video
buses allow images to be sent from any stage to any one or more stages.

Images can be processed in any combination of four ways on PIPE: point pro-
cessing, spatial neighborhood processing, sequence processing or Boolean processing
(Figure 6). Different processing can occur at individual pixels in the image by using a
region-of-interest operator. All methods can be considered local operations.

Point processing can be either a function of one or two input images and includes
simple arithmetic and logical operations such as scaling, thresholding, converting
number systems, etc. Look-up tables resident on each PIPE stage allow the user to
perform more complex arithmetic operations, trigonometric operations, comparisons,
rotations, etc.

PIPE can perform up to two 3 x 3 neighborhood convolutions on each stage in
parallel. Both neighborhood operators operate on the same image input, but can per-
form different neighborhood operations. Larger neighborhood convolutions can be
achieved by decomposing an odd-sized neighborhood mask into a sequence of 3 x 3
convolutions. The neighborhood operators can be cither arithmetic or Boolean and are
performed identically on all locations in the image unless a region-of-interest is
specified. Special features are provided to prevent inaccurate computations on the
image borders.

Multi-resolution pyramids can be constructed by selecting the "squeeze" or
"expand” options as an image is stored or written from a buffer. In the former case,
cach 2 x 2 neighborhood of the input image is sampled and written to the output
image resulting in an image half the resolution of the original. This process can be



repeated to generate successively smaller resolution images. Expanding an image
involves the opposite operation by pixel replication and generates successively larger
resolution images.

Sequential processing works on a set of multiple images, €.g. sequences of images
over time, a stereo pair of right and left images, or multi-resolution images. By taking
advantage of the inter-stage paths, images can be combined, compared, sampled or
differenced to extract the desired application dependent information.

When performing Boolean processing, each pixel of information is considered to
be composed of eight independent bit planes, which are operated upon simultaneously.
The neighborhood operators can be applied in a Boolean mode, where the output is the
combination of the 3 x 3 neighborhood using local operations on each of the eight bit
planes.

PIPE programs are written on a host computer using a software package which is
an iconic representation of the hardware to generate microcode. Programs are executed
by downloading the microcode instructions to PIPE. The software development tool,
ASPIPE, allows the user to code the spatial and temporal flow of the data through the
hardware to define the look-up tables and PIPE resources to be used. Programs can be
edited, saved, compiled, executed, and debugged in this environment. In addition,
ASPIPE generates a sequencer file that specifies which micro-operation is executing at
each time-cycle. This sequencer also controls branching and looping during microcode
execution.

A hardware interface between PIPE and a high level processor (HLP) has been
developed and software has been written to support this interface. In this manner, the
results of low level vision tasks are transferred to a sequential computer which can
perform high level vision tasks of image analysis, recognition, and general decision
making which require global information. Since the interface is bi-directional, the
HLP can download images or look-up tables directly to any buffer or table on any
selected PIPE hardware. In addition, the HLP can select PIPE algorithms by manipu-
lating the PIPE sequencer.

6.2 Image Compression on PIPE

A number of data compression algorithms have been developed and demonstrated
on PIPE. These include grey-level quantization, non-maxima suppression, foveal-
peripheral simulation, image differencing, histogram slicing, binning, and Laplacian
pyramids. The following section briefly describe each of these methods.

Grey scale quantization involves reducing the resolution of each pixel in the
image. As represented on PIPE, an image pixel contains 8 bits. However, image reso-
lution and contrast remain acceptable when three or even four low-order bits are
dropped. Thus the number of bits required to transmit an image can be reduced by
37.5% or 50% respectively ( Figure 7).

Histogram slicing and binning involve operations that are excuted both on PIPE
and a high level processor (HLP) since these methods require global knowledge.



Histogram slicing involves transmitting an image from PIPE to the HLP. The HLP
computes a histogram of the image and selects the eight most significant peaks (Fig-
ure 8). These values are used to create a look-up table consisting of only 3 bits per
pixel (0 - 7) which is then downloaded to PIPE. This method can be considered to be.
a special case of grey scale quantization.

Histogram binning is another grey scale quantization method. A histogram is
computed on the HLP and can be segmented either by an integral method in which
each bin contains an equal number of pixels or an uniform method where each bin
contains an equal number of grey levels (Figure 9). The results of the binning opera-
tion can be converted into a look-up table and downloaded to PIPE.

Non-maxima suppression is an image processing method which results in a binary
edge image in which all edges are one pixel wide. Figure 10 describes the computa-
tions. The compression ratio is very high for this technique since only one bit of
information is required to represent each pixel.

Image differencing is an effective compression technique when there is relatively
little motion between successive scenes in a sequence of images. In a difference image,
only moving objects are visible. Thus, very little information need be transmitted to
reconstruct the next image (Figure 11) . In practice, good results have been achieved

by transmitting a full image every 8 seconds and difference images every -3-16-th of a

second.

The foveal-peripheral simulation is based on the biology of the human vision. In
humans, there is a very small area of acute vision, surrounded by areas of degraded
vision. Two methods developed demonstrate this phenomenon. In the first (Figure 12),
a square window of the image is displayed with full 8-bit resolution. This square is
surrounded by concentric windows containing 6 bits, 4 bits, 2 bits, and finally 1 bit of
resolution. The full resolution window can be repositioned and resized to meet the
users’ requirements.

The second foveal-peripheral algorithm utilizes the concept of multi-resolution
image processing (Figure 13). In multi-resolution processing, a full sized image is suc-
cessively sampled and reduced in resolution by a factor of two . Thus a 256 X 256
image is reduced to a 128 X 128 image which is reduced to a 64 X 64 image, etc.
Using this technique, an arbitrarily sized and positioned square is displayed at its full
resolution. It is surrounded by information obtained from its next level of resolution,
(Figure 14) which in turn is sumrounded by information at the next level in the
pyramid. Each level of the pyramid is successively fuzzier, but requires fewer bits of
information.

The last method implemented an PIPE, briefly described in Section 4.1, involves
creating a pyramid of multi-resolution images. Each level of the pyramid represents a
difference of Gaussian filtered images at two successive levels of resolution. Each
level of the pyramid then contains unique frequency bands of information. Figure 15
and Figure 16 summarize the algorithm and the reconstruction of the original image
fro the filtered pyramid. Data compression ratios can be increased by using integral
binning on each level of pyramid. The theoretical basis for this method is described in



[Burt 83].

7. Conclusion

In order to accurately maneuver a remotely-operated vehicle, visual data must be
supplied to the operator as quickly and as accurately as possible. Due to the amount
of image information and the delay time in transmitting over a low bandwith channel,
data compression techniques must be incorporated. The methods used should provide a
compression ratio of 4000 : 1 as well as a reconstructed image that can be used to
operate a vehicle under variable lighting conditions and over varied terrain.

We have briefly overviewed major classes of data compression schemes and
have selected several algorithms which have been implemented on PIPE. These algo-
rithms can achieve the necessary data compression in real-time, and, when used as a
preprocessor for HERDS, can aid in achieving the goal of the remoting driving project.
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Grey Scale Quantization
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Histogram Slicing
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Histogram Binning
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Non-Maxima Suppression
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Foveal-Peripheral Vision

Figure 12




Multi-Resolution Pyramids

Figure 13



Foveal-Peripheral Vision
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Burt's Laplacian Pyramids
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