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ABSTRACT

In order to accurately maneuver a remotely-driven
ground vehicle, visual data must be supplied o the operator
as quickly and as accurately as possible. Unfortunately, high
data rate communication channels are often not feasible for
this task. To accomplish remote driving using a low data
rate channel, video compression techniques must be incor-
porated. This paper discusses the remote vehicle driving
problem and describes several video compression algorithms
that have been implemented on PIPE, a real-time pipelined
image processing machine.

1. Introduction

The remote vehicle driving scenario involves an operator who sits
at a remote control center and views video images that are transmitted
from one or more cameras mounted on the vehicle. The operator drives
the vehicle by means of driving controls such as a steering wheel, brake
pedal, accelerator pedal, etc. Full-rate video transmission from the vehi-
cle 10 the operator requires about 60 megabits/second for 512 x 512
images with 8 bits/pixel at 30 frames/second. However there are several
problems with using the wide communication bandwidth required for
such transmission. First, wide bandwidth radio communication requires
direct line of sight between the transmitter and receiver. This is not
feasible in realistic outdoor scenarios where vehicles are likely to be
driven behind hills and mountains and therefore hidden from direct view
by the operator station. Wide bandwidth links are also relatively expen-
sive. Further, even if such a link were available, full-rate video would
use up a large part of the bandwidth allocations. This would be particu-
larly true if there were many vehicles being operated simultaneously,
where full-rate video might fill up the entire communication spectrum.
Wide-bandwidth fiber optic links also have several problems, including
limijted ruggedness, difficulties in deployment and retrieval, and the prob-
lem of repairs.

Many of these difficulties can be overcome by utilizing narrow-
band radio links (perhaps 100 kilobits/second). Since the full video
required for teleoperation cannot be provided using the narrow band
links, efficient and effective techniques of video compression offering
compression ratios of 500:1 to 1000:1 must be developed.

2. Requirements on Vision for Remote Driving

A vision system that is used for remote driving can be evaluated in
terms of how well it permits the remote operator to perform vehicle
mobility and, in threatening situations, to provide for vehicle survival.
There are various factors that affect vehicle mobility. The first is the
ability of the operator 1o make trafficability and movement decisions.
These include:

1. Local obstacle detection. The vision system should allow the opera-
tor to detect local obstacles.

Local surface classification. The vision system should allow the
operator 10 determine the kinds of surfaces surrounding the vehicle.
3. Local surface orientation. The vision system should allow the slope
of the local terrain to be determined visually.

Local path planning. The vision system should provide enough
information for the operator 10 perform local path planning. This
involves not only the ability to detect local obstacles or classify the
local surface, but also the ability to obtain spatial relations among
the obstacles and the surface.

5. Local path following. The vision system should provide enough
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information so as to be able to follow terrain features such as roads
Or rivers.

A second factor that affects vehicle mobility is the ability for the
operator 10 mainiain & sense of the global vehicle location relative to the
background and landmarks. These include the sbility to identify land-
marks and the background, as well as the ability to track landmarks over
time. A third factor that affects vehicle mobility is the ability of the
operator to maintain a sense of speed of the vehicle.

In order to satisfy the requirements set forth above, two additional
requirements gshould be met. First, the video images should be displayed
in real time. This means that the operator should have the appropriate
visual information quickly enough so that he can drive the vehicle
interactively. Driving is typically a servoing operation which requires a
fast Joop involving transmitting driving commands to the vehicle, getting
instantaneous visual feedback, and using this feedback to transmit addi-
tional driving commands. A second requirement is that the video
sequence that appears on the operator’s monitor should seem natural
(e.g.. smooth and continuous).

3. Image Compression Background

This section provides a brief survey of image compression tech-
niques. Most of these techniques have not been developed in the context
of remote vehicle driving, and therefore many of them are not applicable
to this problem. One of the goals of our study is to determine which
ones might be applicable. The effectiveness of a transmitted image for
remote vehicle driving is directly related to how well it approximates the
original scene, how fast it can be generated, and the compression ratio.

A class of methods known as first-generation data compression
techniques achieve compression ratios of about 10:1. One such method is
the coder method, 8 simple error-free data compression method which
has a one-to-one input-output relationship. In order to achieve the
compression, the coder must use as few bits as possible. In theory, a
lower bound on the average number of bits required to code a set of
input data cannot be iess than the first order entropy of input data if suc-
cessive input data is coded independently [2]. (Entropy will be described
in more detail in a later section.) In general, the entropy ranges from 0
to gL where L is the number of input data values. As a result, the
maximum bound on the compression ratio is log,L : 1.

The compression ratio for a coder is a function of N, where N is
the number of grey levels in an image. One way to achieve higher
compression is 10 decrease N by quantizing the grey levels. This is
called a grey-level quantizer. Another method is to spatially quantize
data by sampling. This is called a spatial quantizer. Since quantization is
irreversible, the distortion due to quantization must be minimized. The
Lloyd-Max quantizer, the compressor-expander, the optimum uniform
quantizer, and the Shannon quantizer offer various tradeoffs between
simplicity and performance. However, the maximum bound on the
compression ratios for the grey-level quantizer is N:M, where M is the
number of grey levels in the quantized image. The compression ratio for
a spatial quantizer is a function of the sampling interval -- the larger
the interval, the worse the distortion. In the case of remote driving,
choosing the interval is an important issue.

Another class of methods, predictive compression methods, makes
use of the property that values of adjacen: grey levels are highly corre-
lated for most images. The major predictive method is called
Differential Pulse Code Modulation (DPCM). The maximum compres-
sion ratio achieved by this method is about log,N : 1, where N is the
number of grey levels in the input images. Another predictive method is
the interpolative method. Most commonly used interpolators are 2ero-
order and first-order interpolators. However, higher order polynomials or



splines can also be used. The maximum compression ratio for the inter-
polative methods is the same as those of the DPCM methods.

Transformation methods reduce the comrelation between pixels in
the image by transforming the image into another domain. The perfor-
mance of a transform method depends on the type of transformations
used, the dimension of the transformation, the quantization strategies and
the sybwindow size. Many transformation methods have been developed.
The Hotelling transformation performs best from both a mean-square
error and a subjective quality viewpoint. However, & fast discrete cosine
transform is most commonly used. The compression ratio for the
methods are approximately 10:1.

Recent progress in the study of the properties of the human visual
system has led to a new class of image compression methods capable of
achieving compression ratios as high as 70:1. This class of methods is
known as second generation data compression. We describe these tech-
niques below.

Burt and Adelson [1) have proposed a fast algorithm called the
pyramid coding method. The method is a hybrid method which combines
features of predictive and transform methods. The algorithm first obtains
the predicted value for each pixel in the image by convolving a 5 x 5§
Gaussian-like kenel with the image. The result is a low-pass filtered
image which can be represented by fewer samples than the original. The
first predicted error image is then the difference between the filtered
image and the original image. The predicted ermor image can be
quantized and coded with many fewer bits than the original. Recursively
obtaining the next predicted error image by using the same algorithm
applied to the sampled low-pass filtered image achieves further data
compression. The original image can be reconstructed by adding all of
the expanded predicted error images. This algorithm can achieve a
compression ratio of 10:1. The algorithm has been implemented on the
PIPE and will be described in a section below.

The anisotropic non-stationary predictive coding method [5, 10}
can be classified as a hybrid method which combines the predictive and
transform methods. Lines and edges in an image provide key informa-
tion. A grey scale image is first transformed into two bias images by
measuring these nonstationary linear features. One bias image is a meas-
ure of edge magnitude and direction. The other bias image is binary and
indicates whether an anisotropic prediction should be used because edge
directionality varies rapidly from point to point or whether an isotropic
prediction is sufficient. These two bias images control the anisotropic
filter, which is an estimator defined in terms of pixel position and its
edge angular frequency. The typical compression ratio for the method is
35:1.

Contour and texture coding methods first segment the image into
textured regions surrounded by contours such that each contour
represents one object in the image. Kunt et al. [6]) overviews several
approaches for contour and texture segmentation algorithms. After the
segmentation, the contour and texture in an image are coded separately.
Using this method, the compression ratio can be as high as 50:1.

Image compression techniques for real time applications in
remotely piloted vehicles, video conference images, and video telephone
images, have been developed. In onder to achieve a relatively high
compression ratio and meet the real time requirement, the techniques are
combined with other previously discussed methods. For example, the
remotely piloted vehicle application combines the transformation method
and frame-rate-deduction (quantization method) to achieve a compression
ratio of 60:1. Lippmann [7] proposes a motion-adaptive frame interpola-
tion method which combines frame-rate-deduction (quantization method)
and the linear interpolative method (the predictive method) for video
transmission of airbomn television images. The most commonly used
method for video conference and video telephone images combines
motion-compensated prediction, discrete cosine transformation, and
quantization.

In order 10 meet the requirements of remote vehicle driving, a
hybrid method will be used, as described in the next section.

4. Approach
Our approach to performing video compression for remote driving
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is to use a hybrid method which combines image processing techniques
(ie.. techniques whose input is an image and whose output is a
compressed image), transform techniques (such as the discrete cosine
transfonm), and temporal frame rate reduction (i.c., transmitting fewer
than 30 images per second). The sequence of events as they would occur
in the system is as follows. Images are obtained from one or more cam-
eras mounted on-board the vehicle. These images then undergo compres-
sion using the hybrid technique. After the compressed code is transmit-
ted over a communication link to the operator station, it is decompressed
90 as to result in a sequence of full size images. The compressed images
will be transmitted over the communication link at a rate of at most a
few per second. However, we want the images to be displayed on the
operator’s monitor at 30Hz. This requires an extrapolation procedure,
which will be provided by a real-time image warping processor.

Our plan for this project has been to first implement video
compression algorithms on the PIPE real-time image processing machine
(to be described in more detail below). PIPE is excellent for quickly
developing, testing and modifying algorithms. PIPE was then integrated
with a remote control vehicle system and the algorithms were evaluated
on real-world remote driving tests. Initial results of these tests are
described in a companion paper [3]. Aficr & subset of algorithms have
been chosen based on such tests, they will be reimplemented on special-
purpose image processing boards which will reside on-board the remote
vehicle.

The remainder of this paper will describe the PIPE machine and
will discuss compression algorithms implemented thus far on PIPE.

5. PIPE

PIPE (Pipelined Image Processing Engine) is a multi-stage, multi-
pipelined image processing device that was designed for real-time robot
vision applications. PIPE was conceived and designed at the National
Bureau of Standards {4), It is currently commercially available through
Aspex, Incorporated. PIPE will accept images from & video camera at
field rates ~ 60 times per second. PIPE’s basic cycle rate is 1/60 second.

The PIPE system is composed of up to eight identical modular pro-
cessing stages, each of which contains two image buffers, five look-up
tables, three arithmetic logic units, and two neighborhood operators.
Images are transferred from stage to stage at field rate (60 images per
second) by three concurrent pathways. The forward path allows tradi-
tional pipelined and sequential processing. The recursive path from a
stage output back 10 its input allows feedback and relaxation processing.
The backward path from one stage to the previous stage allows for tem-
poral operations. It also allows a hypothesis image to be compared with
an input image. The images in the three paths can be combined in arbi-
trary ways on each cycle of a PIPE program, and the chosen
configuration can change on different cycles. In addition, six video
buses allow images 10 be sent from any stage to any one Or more stages.

Images can be processed in any combination of four ways on
PIPE: point processing, spatial neighborhood processing, sequence pro-
cessing or Boolean processing. Different processing can occur at indivi-
dual pixels in the image by using a region-of-interest operator. This
operator uses one of the image buffers in the stage as a map for
selecting the algorithm to be applied to the contents of the other image
buffer.

Point processing can be either a function of one or two input
images and includes simple arithmetic and logical operations such as
scaling, thresholding, converting number systems, etc. Look-up tables
resident on each PIPE stage allow the user to perform more complex
arithmetic operations, trigonometric operations, comparisons, fotations,
eic.

PIPE can perform up to two 3 x 3 neighborhood convolutions on
each stage in parallel. Both neighborhood operators operate on the same
image input, but can perform different neighborhood operations. Larger
neighborhood convolutions can be achieved by decomposing an odd-
sized neighborhood mask into a sequence of 3 x 3 convolutions. The
neighborhood operators can be either arithmetic or Boolean and are per-
formed identically on all locations in the image unless a region-of-
interest is specified. Special features are provided to prevent inaccurate
computations on the image borders.



Multi-resolution pyramids can be construcied by selecting the
"squecze” or "expand” options as an image is stored or written from a
buffer. In the former case, each 2 x 2 neighborhood of the input image
is sampled and written to the output image resulting in an image half the
resolution of the original. This process can be repeated t0 generate suc-
cessively smaller resolution images. Expanding an image involves the
opposite operation by pixel replication and generates successively larger
resolution images.

Sequential processing works on a set of multiple images, e.g.
sequences of images over time, a stereo pair of right and left images, or
multi-resolution images.

When performing Boolean processing, each pixel of information is
considered 10 be composed of eight independent bit planes, which are
operated upon simultancously. The neighborhood operators can be
applied in a Boolean mode, where the output is the combination of the
3 x 3 neighborhood using local operations on each of the eight bit
planes.

PIPE programs are written on a host computer using a software
package which is an iconic representation of the hardware to generate
microcode. Programs are executed by downloading the microcode
instructions to PIPE. PIPE interfaces to & host computer through a
board called ISMAP. Following feature detection performed on PIPE,
ISMAP performs feature extraction, i.e., the iconic image of features, in
which symbol values are indexed by image location, is mapped into a
list of feature values, where associated with each feature is the set of
image locations containing that feature. This is called a histogram.
Therefore, image location is indexed by feature value.

6. Compression Techniques Implemented on PIPE

A number of data compression algorithms have been developed
and demonstrated on PIPE. These include grey-level quantization, non-
maxima suppression, foveal-peripheral simulation, image differencing,
histogram slicing, binning, Laplacian pyramids, Poisson interpolation,
and linear predictive coding. The following briefly describes each of
these methods.

One way of measuring the effectiveness of image compression
algorithms is by examining the entropy. Entropy is a measure of the ran-
domness of grey values in an image. For image coding applications,
entropy gives a lower bound on the average number of bits per pixel
required to code an image using a compact code [2]). Therefore the
lower the entropy, the greater the compression. In several of the
compression algorithms to be described below, the entropy of the
compressed image is given. The entropy value for each algorithm is
obtained by applying the algorithm to a test image, and measuring the
entropy of the resultant image. The average number of bits per pixel
suggested by the entropy measure would be nearly obtained if a compact
coding scheme, such as Huffman coding, were applied to the resultant
image. To obtain the compression ratio, we multiply the entropy measure
by the number of pixels in the image, and compare that with the number
of bits required to represent the original image.

Grey scale quantization involves reducing the resolution of each
pixel in the image. As represented on PIPE, an image pixel contains 8
bits. However, image resolution and contrast remain acceptable when
three or even four low-order bits are dropped. Thus the number of bits
required to transmit an image can be reduced by 37.5% or 50% respec-
tively. The concept of "dropping n bits” is easily implemented on PIPE;
the image is passed through a look-up table which shifts each grey-scale
value right by n positions and then enhances the output by shifting the
resultant image left by n positdons. For example, dropping 3 bits of a
pixel having grey value 52 would result in a quantized grey level of 48.
The update rate of this method is one cycle or 1/60th of a second. The
entropy measurement is dependent on the number of low-order bits
being dropped. It ranges between a value of 6.74 for a full resolution
image to 3.10 for an image in which four bits have been dropped.

Non-maxima suppression is an image processing method which
results in a binary edge image in which all edges are one pixel wide.
On PIPE, a Sobel edge operator is applied to the input image using the
neighborhood operators. Edge magnitude and direction are extracted by
using a two-valued function look-up table. The edge directions are
quantized into eight discrete bins, and by using PIPE’s region-of-interest
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operator, all edge points that are not locally maximal in the given gra-
dient direction are eliminated. The update rate for this algorithm is two
cycles (1/30th of a sccond), and the entropy measure is 0.37. The
compression ratio is very high since only one bit of information per

The foveal-peripheral simulation is based on the biology of human
vision. In humans, there is a very small area of acute vision, surrounded
by areas of degraded vision. Two methods were written based on this
idea. In the first (Figure 1a), a square window of the image is displayed
with full 8 bit resolution. This square is surrounded by concentric win-
dow bands containing 6 bits, 4 bits, 2 bits, and finally 1 bit of resolu-
tion. The full resolution window can be repositioned and resized to
meet the user's requirements.

The second foveal-peripheral algorithm utilizes the concept of
multi-resolution image processing. In multi-resolution processing, a full
sized image is successively sampled and reduced in resolution by a fac-
tor of two. Thus a 256 x 256 image is reduced w0 a 128 x 128 image
which is reduced to a 64 x 64 image, etc. Using this technique, an arbi-
trarily sized and positioned square window is displayed at its full resolu-
tion (Figure 1b). It is surrounded by a window band obtained from its
next level of resolution which in tum is surrounded by a band at the
next level in the pyramid. Each level of the pyramid is successively
more blurred, but requires fewer bytes of information.

In both methods, image masks representing the size and position of
the window of interest and its surrounding bands are generated on either
the host computer or the high level processor and are downloaded to
PIPE. In the implementation of the first method, the input image is
passed through a number of grey scale quantization tables, and the full
resolution image and the lower resolution bands are logically combined
to produce the reconstructed output image. The implementation of the
second method involves generating two successively lower resolution
images from the input. During reconstruction, the 128 x 128 resolution
image is expanded and blurred using a Gaussian filter; the 64 x 64 reso-
lution image is expanded twice and combined according 1o the regions
defined by the downloaded image mask.

The entropy and the compression ratio in both instances are depen-
dent on the size of the full resolution window of interest. For a square
window measuring 60 x 60 pixels, the entropy measure is 2.02 for the
first implementation and 4.05 for the second. The update rates are two
and four cycles respectively.

Image differencing is an effective compression technique when
there is relatively little motion between successive scenes in 2 sequence
of images. For a stabilized camera mounted on a vehicle, the distant
background will appear not to move between successive images, while
the foreground will appear to move. The difference image is generated
by subtracting an image at time ¢,., from the image at time s, . All sta-
tionary regions of the image are eliminated and only areas of motion are
visible. Thus much less information than the full image sequence need
be transmitted. The full image sequence can be reconstructed from the
difference images. In practice, good results have been achieved by
transmitting a full image every 8 seconds, and difference images every
1/30th of a second. At reconstruction, the difference images are
summed with the originally transmitted image to form a sequence of full
images as follows:
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The update rate for this method is one cycle and a typical entropy meas-
ure for a difference image is 2.01.

Image compression and reconstruction using decimation and Pois-
son interpolation [8] is achieved on PIPE by passing the input image
through a Laplacian neighborhood operator and thresholding the resultant
image such that strong edges retain their grey level value while homo-
geneous regions are mapped to zero. This decimated image is transmit-
ted to the remote operator station. Reconstruction involves multiple
iterations of interpolation of the decimated image in regions which had
been homogeneous. This selective interpolation is achieved using
PIPE's region-of-interest operator. The update rate for the decimation is
two cycles, and the update rate for the reconstruction is N cycles where
N represents the number of iterations performed. Good results have
been achieved by using six iterations.



Linear predictive coding is the process by which the greyscale
values at esch pixel in two sequential images are used to predict the
greyscale value at a future point in time. Theoretically, this prediction is
based on the assumption that the intensity values at any given pixel loca-
tion vary only slightly over time, when the length of time is relatively
short. Since the time between sequential images is small, the extrapola-
tion of the greyscale values using a linear function is assumed to provide
an accurate prediction.

Implementing this concept on PIPE requires storing an image frame
in a buffer and then holding it until the next sequential image is stored
in another buffer. The older image is multiplied by two and the most
recent image is subtracted from it. The images are scaled down before
calculations 1o prevent overfiow and the results are scaled back up. The
delay time for the algorithm is 1/10 second (6 cycles).

Binning is a term used to describe a general class of methods also
known as histogram transformation. Once the histogram of an image is
obtained, ranges of greyscale values can be grouped together o a single
value based on a number of different criteria. Three methods of per-
forming this grouping were investigated. One method was to construct
each bin from an equal range of greyscale values. Another method was
to have each bin contain an equal integral portion of the histogram
curve. Histogram slicing, the third method, is accomplished by dividing
the histogram of an image according to the most populous greyscale
values,

The histogram of an image can be produced on PIPE. The
buffered image is passed 10 the ISMAP board which sums the values of
each occurrence of greyscale in the image. A symbolic list is produced
which can be passed to the host computer for subsequent processing.
This symbolic histogram list is used to generate a lookup table to map
greyscale values into any arbitrary number of bins based on one of the
methods mentioned above. The lookup table is sent back to PIPE so
that subsequent images are binned. The frequency of the calculation of
this lookup table is dependent on how rapidly the distribution of the
greyscale values in an image change from frame to frame. For example,
given that the scene rarely changes from being an outdoor open-terrain
image with only small variations in lighting, the calculation may only
have to occur once. The amount of time to wansform an image on the
PIPE is 1/60 second. The entropy of the test image afier it has been
transformed is dependent on the number of bins that are specified; for
histogram slicing using seven bins, the entropy of the test image is 2.31.
Binning of an image can also be used to obtain additional compression
subsequent to performing some other types of compression techniques.

The Laplacian pyramid method of encoding an image [1] is based
on both predictive and transform methods of image compression. The
prediction of a pixel’s value is based on a local Gaussian-weighted aver-
age of surrounding pixels. These predicted values are subtracted from
the original values so that a measure of the predicted error is produced.
The result is that only the predicted error, which requires fewer bits to
be represented, and the low-pass filtered image, which can be subsam-
pled, need 10 be encoded. This concept is repeated to produce a
pyramid-like data structure.

The encoding technique is implemented on the PIPE. The first
level of the Laplacian pyramid is constructed using the following method
(Figure 2). The full resolution image is convolved with a Gaussian filter
to produce the image GOO, and the res: Uting image is subsampled. The
subsampled image, G10, is then expanded back to full resolution. In
order to compensate for the pixel replication that occurs on PIPE during
expansion, the expanded image is masked with a template pattem of
zeros and ones so that three out of every four pixels are set to zero {9].
The masked image is then convolved with a Gaussian filter and then
multiplied by four to produce image G11. GOO is then subtracted from
G11 w produce the Laplacian for the full-resolution image, LOO. The
entire process is repeated using G10 1o produce L11 and so on until L44
is produced.

The five levels of the pyramid plus GS0 are used to reconstruct the
original image, also on the PIPE. Starting with G50 (Figure 3), the
lowest resolution image is expanded, masked with the template, con-
volved with a Gaussian filter, and then added to the Laplacian image on
the level below it. This process is repeated until all images have been
added together to produce a reconstructed original image. The entire

encoding and decoding of a single frame requires 51 cycles. The total
entropy of all 6 transmitted images is 4.5.

7. Conclusion

This paper has described several algorithms that have been imple-
mented as possible candidates for a hybrid video compression system 1o
be used for remote driving of a ground vehicle. The algorithms have
been implemented on the PIPE real-time image processing machine, and
the implementations have also been described. The PIPE has been
integrated with a remote control vehicle system and these algorithms
were evaluated by means of real-world remote driving experiments. The
results of these experiments are presented in a companion paper [3).
Briefly, these experiments have shown that remote vehicle driving is
difficult enough without degrading the imagery through compression
algorithms. The degraded imagery makes driving even more difficult.

Some difficulties we found in driving in cross country terrain using
either the full video or the compressed video were (1) global relative
vehicle location is very difficult for the driver to obtain, (2) the orienta-
tion of the local ground surface is very difficult to obtain, (3) ditches,
gullies, and other obstacles are difficult to distinguish, (4) range of
objects from the vehicle are difficult to determine.

It appears that performing compression by transmitting images at a
rate of at most a few per second, and then providing a realistic video
simulation to the operator, may be one of the most effective ways of
performing video compression.

References

1. Bum, P. J. and Adelson, E.H. "The Laplacian pyramid as a com-
pact image code.” JEEE Transactions on Communications, vol
COM-11, no. 4, 1983, 532-540.

2. Gonzalez, RC. and Wintz, P. Digital Image Processing.
Addison-Wesley Publishing Co., Reading, MA, 1977,

3, Heman, M, Chaconas, K., Nashman, M., and Hong, T.-H.
"Video Compression for Remote Vehicle Driving." Proc. SPIE
Advances in Intelligent Robotics Systems: Mobile Robots 1l Cam-
bridge, MA, November 1988.

4.  Kent, EW,, Shneier, M.O. and Lumia, R. "PIPE (Pipelined Image
Processing Engine)." J. Parallel and Distributed Computing, 2,
50-78, 198S.

S. H. E. Knutsson, R. Wilson, and G. H. Granlund, "Anisotropic
nonstationary image estimate and its applications : Part I - Restora-
tion of noisy images,” IEEE Transactions on Communications, vol.
COMM-31, 388-397, 1983.

6. M. Kunt, A, Ikonomopoulos, and M. Kocher, "Second generation
image coding techniques,” Proceedings of the IEEE, vol. 4, 549-
574, 198S.

7. R. Lippmann, "Continuous movement regeneration in low-frame-
rate acrial images,” Proc. IEEE International Conference on Elec-
tronic Image Processing, 194-198, 1980.

8. McMillen, R. Personal communication. Hughes Aircraft Co., 1988,

9. Singh, Ajit "Image processing on PIPE."” Philips Laboratories -
Briarcliff, North American Philips Corporation, TN-87-093, July,
1987,

10. R. Wilson, H. E. Knutsson, and G. H. Granlund. "Anisotropic
nonstatationary image estimation and its applications : Par II -
Predictive image coding," IEEE Transactions on Communications.
vol. COMM-31, 398-404, 1983.



64 x 64

128 x 128

(a)

(b)

Figure 1. Two compression techniques based on foveal-peripheral vision.
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Figure 2. Construction of Laplacian pyramid.
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Figure 3. Reconstruction of original image from Laplacian pyramid.



