
Proc. DARPA Knowledge -Based Planning Workshop, Austin, Texas,
December 1987, pp. 22 - 1 - 22-10.

REAL-TIME HIERARCHICAL PLANNIKG
FOR MULTIPLE MOBILE ROBOTS

Marlin Herman and James S. Albus

Robot Systems Division
National Bureau of Standards

Gaithersburg, MD 20899

ABSTRACT

The Multiple Autonomous Under-
water Vehicles (h4AUV) project i s
described. The goal of the project i s to
have multiple underwater vehicles exhi -
biting intelligent, autonomous, coopera -
tive behavior. The MAUV control sys-
tem i s hierarchically structured and
incorporates sensing, world modeling,
planning and execution. The levels in
the hierarchy include a mission level, a
group level, a vehicle task level, and an
elemental action level. Issues of real -
time planning and dynamic replanning
in unstructured environments are dis -
cussed.

1. Introduction
The N B S Multiple Autonomous Underwa-

ter Vehicles (MAUV) project involves the
development of a real -time intelligent control
system that performs sensing, world modeling,
planning and execution for underwater robot
vehicles. The project i s funded by the DARPA
Naval Technology Office. The goal of the pro-
ject i s to have multiple vehicles exhibiting
intelligent, autonomous, cooperative behavior.
Oui initial tests have involved two identical
vehicles engaged in various scenarios in Lake
Winnipesaukee in New Hampshire. All
software for controlling the vehicles reside on
computer boards mounted on-board the vehi-
cles.

Th i s paper focuses on the hierarchical
control system for controlling the vehicles, and
describes how planning and execution are done
in the system.

2. Hierarchical Control
The control system for the vehicles i s

hierarchically structured and is shown in Figure

1 [Albus 871. T h i s control system i s based on
the one developed for the Automated Manufac -
turing Research Facility at N B S [Simpson et al.
831. I t i s divided into three main components,
shown as columns in Figure 4. These are sen-
sory processing, world modeling, and task
decomposition. The goal of the task decomposi -
tion component i s to perform real -time decom-
position of task goals by means of real -time
planning, execution and task monitoring. The
goal of the world modeling component i s to
accumulate and store information about the
environment and the internal state of the sys-
tem, and to make this information available to
the task decomposition Component. Th is
component also simulates possible future states
of the world. The database of information
about the state of the world and the internal
state of the system i s kept in a common
memory area.

The goal of the sensory processing com-
ponent i s to detect and recognize patterns,
events and objects, and to filter ana integrate
sensory information over space and time. Infor-
mation extracted from the sensory data i s used
to update the world model database.

The world model serves as a buffer
between the sensory processing component and
the planners and executors of the task decom-
position component. That is, queries about the
world required for planning and execution are
made to the world model, and sensory process -
ing i s used to update this world model.

The control system i s divided hierarchi -
cally into several levels. We view this kind of
hierarchical division as a means of convening
broad, high-level goals into commands to
actuators, motors, communication transducers,
sonar transducers, etc.

In the task decomposition hierarchy, the
highest level, the mission level, converts a
commanded mission into commands to each of
a set of groups of vehicles. These commands



involve tasks that treat a whole group of vehi-
cles as a single unit. The group level converts
group commands into commands to each of the
vehicles in the group. These commands involve
large tasks for each vehicle. The vehicle rusk
level converts task commands into elemental
moves and actions for the vehicle, The e-move
(elemental move) level converts elemental
moves and actions into intermediate poses.
These are converted into smooth trajectory
positions, velocities, and accelerations by the
prirnirive level. Finally, the servo level con-
verts these into signals to actuators, transducers,
etc.

3. Hierarchical Planning and Execution
Before describing the elements of

hierarchical planning and execution, we will
provide our working definition of a plan, and
describe the difference between planning and
execution. A plan i s made up of actions and
events. The events are either events in the
world or events in the internal state of the sys-
tem. We represent a plan as a graph (Figure 2).
The nodes of the graph represent actions and
the arcs represent events. The purpose of the
planner i s to obtaip a plan graph. I t can either
generate i t or retrieve i t from a database.

We define execution as the process of car-
rying out a plan. The purpose of the executor i s
therefore to step through the plan graph. When
the executor arrives at a node of the plan
graph, it "executes " the action associated with
the node. If an action i s at the lowest level of 4. Levels in the MAUV Task Decomposition
the hierarchy, then executing it involves send- Hierarchy
ing signals to hardware. Otherwise, executing
an action involves sending i t to a lower level
where i t can be decomposed. As the executor , 4.1. Mission Level
sits at a node of the plan graph, i t monitors for The inputs to the mission level are a com-
events associated with arcs leading out of the mand and a mission,,due function.The
node. Th i s monitoring i s done at a fast cycle mand is a task involving a fission
rate. The process of monitoring for an event e.g., SEARCH-AND-DESTROY, SEARCH -
consists of querying the world model database AND-EPORT, and MAP. Associated with
for that event. Ifan event has occurred, the each i s a l is t of subtasks that define
executor follows the arc corresponding to that he command. ne mission value functionis a
event and steps to the next action. 1 function used to score the mission, and i s com-

shown in Figure 3. An action i s first input to 1. A value for each vehicle -- used to assess
the top level as a task command. This task i s the desirability of plan alternatives involv -
decomposed both spatially and temporally. Spa- ing high risk to individual vehicles, or
tial decomposition means dividing a task into even the deliberate sacrifice of a vehicle.

2. A value for each subsask -- specifies the
logically distinct jobs for distinct subsystems.
For example, the group level will have a

The notion of hierarchical planning i s posed of the following elements:

different planner for each vehicle in the group.
Temporal decomposition means decomposing a
task into a sequence of subtasks. The l i r s t step
in the plan i s then the input task to the next
lower level, and this, in turn, i s decomposed
both spatially and temporally. At each succes -
sively lower level, the actions become more
detailed and fine structured.

There are two primary reasons for the
hierarchical approach -- to achieve real -time
planning and control and to achieve understan-
dability and programmability. At the higher
levels of the hierarchy, actions are large scale
and they take a long time to execute. Therefore,
the search space used to generate plans i s
coarse and covers large space and time. At the
lower levels, actions are smaller scale and they
take a short time to execute. The search space
i s therefore fine and covers small space and
time. As a result, the search spaces at all levels
are small enough so that the search i s manage -
able. Furthermore, all levels run in parallel.

The understandability and programmability
comes about because the control system i s
decomposed into small modules whose func-
tions can be well understood. Furthermore,
different factors are taken into account at
different levels, i.e., mission requirements,
group tasks, vehicle tasks, elemental actions,
etc. In th is way, when new knowledge i s added
to the system, the modules in which th is
knowledge should reside are more apparent.



3.

4.

5.

1.

2.

3.

4.

importance of the successful completion of
each of the subtasks.
An information value for each subtask --
specifies the importance of returning infor-
mation collected while executing each
subtask.
A value of stealth for the mission --
specifies the importance of avoiding detec-
tion by the enemy during the mission.
The amount of battery energy available for
the mission.
The function of the mission level i s to:
Subdivide the vehicles into groups. In our
scenario, w e have only one group, which
contains two vehicles.
Determine whether any of the subtasks
defining the input mission command
should be omitted.
Provide a coarse description of routes and
tactics for the mission that are sent to the
lower levels.

Determine appropriate priorities to be used
by the lower levels in planning the sub-
tasks.
The ournuts of the mission level are the

group subtaiks and priorities. Piorities are
values indicating the importance of the follow -
ing factors during lower level planning: time
used, energy used, stealth, and vehicle survival.

The mission level planner attempts to gen-
erate an optimal sequence of subtasks as fol-
lows. First, a set of promising plan parameters
i s chosen. These include a specific sequence of
subtasks and an estimate of the time and energy
priorities. Next, the planner uses outcome cal-
culators to determine the result of choosing
these plan parameters. For example, the uansit
outcome calculator determines the projected
risk and the time and energy consumption for
each uansit leg of the mission. In order to do
this, the outcome calculator plans a coarse
route. This route will eventually be passed to
the lower leveI planners.

The results of the outcome calculators are
then scored based on the mission value function
which was input to the mission level. If the
score indicates that a clearly satisfactory set of
plan parameters has been chosen, then these are
passed to the lower level. Otherwise, a new set
of plan parameters i s chosen and the procedure
i s repeated. If the time allocated to the planner

to make a decision has terminated, the best set
of plan parameters thus far found will be
passed to the lower level.

Replanning i s done at regular intervals
throughout the mission by repeating the pro-
gram described above. If replanning results in a
different plan from the one currently being exe-
cuted, i t i s installed in place of the current plan.
In this way, the world and vehicle situation i s
repeatedly evaluated so that the plan generated
from the most recent information i s always
being executed. Further details about the m i s -
sion level may be found in [Pugh and Krupp
871.

4.2. Group Level
The inputs to the group level are a corn-

mand and a set of priorities. The command i s a
task involving multiple vehicles, e.g., TRAN-
SIT, ATTACK, RASTER -SEARCH. The prior-
it ies are values indicating the importance of
stealth, destruction, time, and energy. These
priorities will be used as weights in the cost
function during A' search [Nilsson 711.

The input group tasks define large scale
actions to be performed by groups of MAW
vehicles. The function of the group level i s to
decompose these into sequences of tasks for
individual vehicles. Th i s level also attempts to
maximize the effectiveness of the whole group
by scheduling the actions of each vehicle so as
to coordinate with the other vehicles in the
group.

The planner uses A * search during plan-
ning. The following factors are used in the cost
function for th is search:
1.

2.

3.

4.
5.

Probability of traversal. T h i s i s based on
known obstacles (such as large land
masses) and known density of clutter (e.g.,
a group of small islands in a given path
would result in a low probability of aaver -
Sal).

Probability of detection by enemy
sonobuoy fields or by enemy ships con-
taining acoustic sensors.
Probability of destruction by enemy
minefields or enemy ships containing
active sonar sensors.
Energy used.
Time used.



6. Deviation penalty from path specified at
level above. The input task command to
the group level may specify a path to be
followed. T h i s path i s taken into account
by the cost function by means of a devia-
tion penalty.
The outputs of the group level are the

vehicle tasks and priorities. The output priority
values are the same as the input priorities.

4.3. Vehicle Level
The inputs to the vehicle level are a com-

mand and a set of priorities. The command i s a
task performed by a single vehicle, e.g.,

. LOCALIZE -TARGET, RENDEZVOUS. The
priorities are the same as the input priorities to
the group level.

The function of the vehicle level i s to
decompose the input vehicle task into a
sequence of tasks for each subsystem of the
vehicle. These subsystem tasks are called
elemental moves or actions (e-moves). We
consider three subsystems, the pilot, sensors
and communications subsystems.

The pilot planner uses the world model
database to search for a path between the start
and goal positions indicated by the input vehi-
cle command. A' search i s used and i t s cost
function has the same factors as used at the
goup level.

The communications planner schedules the
messages to be sent. Currently, this schedule i s
extracted form a rule database. In the future,
the schedule will be determined by computing
the value of each message, i t s urgency, the risk
of breaking communications silence, and the
power needed to aansmit the message.

GOPATH, WAIT, RASTER -SEARCH,

The sensors planner schedules the activa -
tion and deactivation of passive and active
sonars. Currently, this schedule i s also extracted
form a rule database. In the future, the schedule
will be determined by computing the value of
taking sonar soundings, i t s urgency, the risk of
breaking silence for active sonar, and the power
needed to take the sonar soundings.

The outputs of the vehicle level are the e-
move tasks.

4.4. E-move Level
The input to the e-move level i s a corn-

mand which i s an elemental move or action
involving a single subsystem, e.g., GO-
STRAIGHT (pilot subsystem), ACTIVATE -
ACTIVE -SENSOR (sensor subsystem), SEND-
MESSAGE (communications subsystem).

The function of the e-move level i s to
decompose the input e-move command into a
sequence of low-level commands to the particu -
lar subsystem controller.

The pilot e-move can be defined as a
smooth motion of the vehicle designed to
achieve some position, orientation, or "key-
frame pose" in space or time. The pilot
planner at this level computes clearance with
obstacles sensed by on-board sonar sensors and
generates sequences of intermediate poses that
define pathways between key-frame poses. A '
search i s used to generate these paths. T h e cost
function used during this search uses the fol-
lowing factors:
1. Traversability. Th i s i s based on known

local obstacles. The traversability of a
given path i s either 1 (the path i s travers -
able) or 0 (the path i s not traversable).

2. Distance travelled. A shorter path i s
always preferred. T h i s helps obtain smooth
final paths.

3. Deviation penairy from path specified at
level above. As in previous levels, the
input command to the e-move level may
specify a path to be followed. T h i s path
i s taken into account by the cost function
by means of a deviation penalty.
A communications e-move i s a message.

The communications planner at this level
encodes messages into smngs of symbols, adds
redundancy for error detection and correction,
and formats the symbols for transmission.

The sensors e-move i s a command to
activate or deactivate a passive or active sonar.
The sensors planner at this level decomposes
sonar activation commands into a temporal pat-
tern of sonar pings.

The e-move level i s the lowest level we
currently consider in the MAUV architecture.
The outputs of this level are low-level com-
mands to the subsystem controllers of the
MAUV vehicles.



5. Cooperative Vehicle Behavior
Cooperative behavior between the two

vehicles i s achieved as follows. The vehicles
start out with identical software, except for the
vehicle identifier, which i s unique for each
vehicle. Th i s implies that each vehicle has a
mission and a group level, and mission and
group level planning i s done on both vehicles.
If the two vehicles sense the exact same world
all the time (i.e., they receive the same sensor
input), then mission and group planning will
be identical between the two vehicles, and they
will achieve coordinated behavior. This i s
because the two vehicles will generate identical
plans for both vehicle 1 and vehicle 2, and
each vehicle will simply execute the appropri -
ate plan for itself.

If, instead of always having identical
world model databases, the vehicles have the
same world model information with regard to
significant world properties (i.e., properties
relevant to generating and executing mission
and group level plans), then mission and group
planning will s t i l l be identical between the two
vehicles. T h i s i s the method we currently use
to achieve cooperative behavior. The significant
world properties relevant to our scenarios are
the positions of large land masses such as
islands, the positions of sonobouy and mine
fields, the positions of the two vehicles, and the
positions of enemy targets and defenses.
Islands, sonobouy fields and mine fields are
input at the beginning of the mission and do
not change. Therefore infomation about these
will be identical in the vehicles’ world model
databases. In order to ensure that information
about the other significant world properties are
the same in both databases, each vehicle, upon
detecting a new target or defense, immediately
communicates th is to the other vehicle. In
addition, each vehicle regularly communicates
i t s position to the other vehicle.

A problem with this technique of achiev -
ing cooperative behavior i s that, as the
scenarios become more complex, more infor-
mation would have to be regularly communi -
cated between the vehicles. In addition, if a
group had many vehicles in it, regular com-
munication from each vehicle to all the others
would have to occur. An alternative technique
which seems more promising i s to designate
one vehicle in each group as group leader, and
to designate one vehicle as mission leader. The

mission leader performs mission planning and
communicates the plans to each group leader.
Each group leader does group planning and
communicates the plans to the individual vehi-
cles in the group. In this way, if different vehi-
cles have different world model databases, they
will nevertheless execute cooperative
maneuvers determined from the world model
databases of the group and mission leaders. If
communication cannot occur because of stealth
requirements or because a vehicle i s out of
communication range, then each vehicle still
has mission and group level software and can
generate i ts own plans. Of course, this could
lead to non-cooperative maneuvers. Once com-
munication i s re-established, the mission and
group leaders can take over.

6. Real-Time Planning
Th is section describes the real-time plan-

ning system used at the group and vehicle lev-
els of the hierarchy. The block diagram in Fig-
ure 4, which shows this planning system, can
be applied to the group level as well as the

vehicle level. An input task command first
goes to the Planner Manager, which contains
two modules. The first, the Job Assignment
Module, divides the input task into several jobs
and sends each to a different planner. The
different planners then work on these jobs in
parallel. The second module, The Plan Coordi -
nation Module, coordinates planning among the
various planners. Currently, this coordination i s
accomplished by generating constraints to be
met by all the planners. For example, i f each
planner corresponds to a separate vehicle, th is
module might generate constraints consisting of
a position where all the vehicles are to rendez-
vous and a time when this i s to occur. Each
individual planner would attempt to meet the
constraints. If one of them could not, i t would
report back to the Plan Coordination Module
which would then generate a new set of con-
straints. In the future, the Plan Coordination
Module will also coordinate communication
among the planners. Some constraints can be
determined only by the planners at plan time,
and these would have to be communicated to
the other planners. For example, one vehicle
planner might want as part of i ts plan one of
two actions depending on what another vehicle
planner generates.

After a planner has finished generating a



plan in the form of a plan graph, the executor
associated with the planner steps through the

Each planner contains several modules
(Figure 4). The Cyclic Replanning Module
accepts an input command (or job) from the
Planner Manager and, at regular cycle times,
generates a new plan. The primary way in
which our system performs replanning i s by
generating new plans regularly. The standard
way of doing replanning i s to post some simple
conditions on the world which, when met,
causes replanning to occur. Our approach, how-
ever, i s based on the notion that the best way
to know whether the world has changed in such
a way as to require a new plan is to actually
run the algorithm that generates the plan, and
then to see whether the plan has changed. The
advantage of doing it this way rather than post-
ing some simple conditions i s that there could
be a complex interaction of events in the world
that would require a new plan, and this com- .
plex interaction i s exactly what the planning
algorithm looks for and evaluates.

One issue that must be considered i s real-
time planning and how it i s handled by the
planner. As stated above, we view a plan as
being composed of actions and world events.
Execution of the plan by the executor occurs by
monitoring for world events and stepping to the
appropriate action based on which world events
have occurred. Let tl be an arbiaary point in
time and let E be the set of events in the world
occumng at tl. We define real-time planning as
the process of generating plans quickly enough .
so that there i s always an action (I given to the
executor such that
1. action II i s part of a plan p, and
2. plan p represents an "appropriate "

response by the system to events E at t ime
11.

Le t rl be as defined above and let t2 be the
latest time by which an action must be exe-
cuted in order to appropriately respond to the
world events E. Then the planning reacnon
time i s defined as the time interval t2-r1.

Fortunately, the planning reaction time i s
different at different levels of the hierarchy. At
the higher levels, the world representation i s
coarse, planned actions occur over large time
scales, and world events are coarsely
represented. Therefore the planning reaction
time of the system can be relatively slow. At

graph.

the lower levels, the world representation i s
detailed, planned actions occur over small time
scales, and world events are represented in
detail. Therefore the planning reaction time
must be fast.

The cyclic replanning time at each level i s
determined by the planning reaction time. The
cyclic replanning times at the higher levels are
longer than at the lower levels. At the end of a
cyclic replanning time interval, the next action
to be taken must be determined by the planner,
for the executor must always have an action to
carry out. However, these time intervals will
often not be enough for the planners to gen-
erate new full plans. Therefore, the planner
wil l pass on to the executor whatever i s i t s b e s t
plan at the end of the cycle time, even though
the planner may not have finished planning to
completion. In our implementation, where A*
search is used, the best plan at any point in
time i s the path in the search tree from the root
to the leaf node with lowest cost.

When the Cyclic Replanning Module has
generated a new plan, the plan i s passed to the
Plan Update Module (Figure 4), which updates
the Plan Graph.

Ifa subtask (Le., an action) of the current
plan i s sent by the executor to the level below
and the subtask cannot be achieved, then a sig-
nal i s returned to the current level and the plan
i s modified by the Subtask Failure Replanning
Module (Figure 4). Associated with each sub-
task command sent to the level below i s a set
of failure constraints. If these constraints cannot
be met, then the subtask fails. Examples of
failure constraints are (1) achieving the subtask
within a time window, (2) achieving a goal
(e.g., arriving at a given point in space), and
(3) not deviating more than a cenain mount
from a given path.

The Subtask Failure Replanning Module
has thus far been implemented only at the e-
move level to handle imminent collision
between the vehicle and the lake bottom. The
module generates a plan in which the vehicle
slowly moves upward, collecting sensory infor-
mation, until i t has determined that there i s
room to continue forward.

Both the Cyclic Replanning and the Sub-
task Failure Replanning Modules tap into the
Plan Schema Database to generate plans. Plan
schemas are used to define the input task corn-
mands and will be described next.



7. Plan Schemas
A plan schema i s used to define a subtask

command. I t provides all possible sequences of
actions that define the command. In order to
determine the best sequence in a given situa-
tion, i t allows the application of a cost function
and provides the ability to perform a search
which i s driven by the plan schema. As shown
in Figure 5, the plan schema i s represented as a
graph. The nodes of the graph represent actions
and the arcs represent events in the world or
internal events in the system. The plan schema
i s converted into a specific plan by an inter-
preter which steps through the plan schema
graph and outputs a plan graph. When the
interpreter reaches a node in the plan schema
graph, i t adds the action associated with the
node to the output plan. I t then queries the
world model about the world events associated
with the arcs leading out of the node. The
queries relate to a hypothetical future world
formed by starting with the current model of
the world and simulating all the hypothetical
actions in the output plan. The interpreter fol-
lows the arc whose world event i s true, and
then processes the next node in the plan
schema.

The node of the plan schema i s divided
into two components, the alternurive action
component and the context subroutine com-
ponent. The alternative action component con-
tains a function that generates al l possible alter-
native actions that can be considered when the
node i s reached. These alternative actions
represent the possible operators that can be
applied to the state space at a given point in the
state space search. In Figure 5, for example, the
GO-STRAIGHT node contains a function that
returns all permissible directions for a GO-
STRAIGHT action. Since the state space in t h i s
case i s a three-dimensional grid, al l GO-
STRAIGHT actions, when executed, will lead
to some adjacent point on the grid.

The context subroutine component of a
plan schema node contains a subroutine that
sets the context (i.e., sets certain variables) for
the alternative action component. This context
i s also applied to all future nodes of the plan
schema that will be traversed by the interpreter,
even though these nodes also have their own
context subroutine components.

The plan schema contains two types of
arcs. The first type i s a world event arc. T h i s

arc contains a predicate that queries the world
model about a hypothetical future world. A
function i s then applied to the result of this
query, and the predicate returns true or false
depending on the value of the function. In Fig-
ure 5, for example, the arc out o f the GO-
STRAIGHT node labeled "@POINT P" i s a
predicate that queries a hypothetical future
world, resulting from the hypothetical execution
of a set of GO-STRAIGHTS, about whether the
vehicle i s at point P. If i t is, then the interpreter
will step to the HOVER node.

The kind of predicate just described i s a
plan rime predicate. Also associated with each
world event arc i s an execution time predicate.
This i s the predicate that i s actually placed in
the plan graph, and this predicate wi l l query the
most current world model at execution time.

T h e second type of arc in the plan schema
i s the else arc. This arc also contains plan t ime
and execution time predicates. The plan time
predicate returns true ifthe node that it leads
out of has been processed and the predicates of
a l l other arcs leading out of the node return
false. In Figure 5, for example, there i s an else
arc and a world event arc leading out of the
GO-SmAIGHT node. If the node has been
processed and the predicate of the world event
arc (i.e., whether the vehicle i s at point P)
returns false, then the predicate of the else arc
will return true and the node wi l l be revisited.
The execution time predicate of the else arc
returns true if the node that it leads out of in
the plan graph has successfully completed exe-
cution and the predicates of other arcs leading
out of the node return false.

References
1. Albus, J. S. "A Control System Architec -

ture for Intelligent Machine Systems. "
IEEE Conf. on Systems, Man, and Cyber-
netics, Arlington, VA, October 1987.

2. Nilsson, N.J. Problem -Solving Methodr in
Artificial Intelligence. McGraw -Hill, New
York, 1971.

3. Pugh, G.E. and Krupp, J.C. "A Value-
Driven Control System for the Coordina -
tion of Autonomous Cooperating Under-
water Vehicles. " Proc. Fourteenth Annual
Symposium of the Association for



Unmanned Vehicle Sysrems, Washington,
D.C., July 1987.

4. Simpson, J.A., Hocken, R.J., and Albus,

J.S. "The Automated Manufacturing
Research Facility of the National Bureau
of Standards. " Journal of Manufacruring
Sysrems, Vol. 1, No. 1, 1983.

SENSORY
PROCESSING

WORLD
MODELINQ

TASK
DECOMPOSITION

MISSION

GROUP

OBJECT LISTS
STATE VARIABLES
EVALUATION FCNS VEHICLE

TASK

PROGRAM FILES
E-MOVE

PRIMITIVE

C00RDINATE
TRANSFORM
SERVO

Figure 1: A block diagram of the N B S MAUV Control System Architecture.

Rendezvousu
Figure 2: A plan graph for a mission level plan.



c

z!
3

Q

mI=

P..

c



Information

@ Point P

Go-Straight
(Xl, Y1, z1, X29Y2, Z2)

Figure 5: Vehicle level plan schema for "Rendezvous at Point P."


