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ABSTRACT

PIPE i s a pipel id image processing device that
was designed for real-time robot vision applications. I t
accepts images from a video camera 60 times persecond. and contains hardwarr for digitizing. displaying,
and performing optrations on thcse images at video
rates. Each stage of the pipeline contains arithmetic and
logic units, convolvers, image buffers, md look-up
tables. The purpose of this p a p is to introduce PIPE
md some ofits applications to the scanning microscapy

Thc first i s acre0 analysis. whose purpose is to
automatically extract range from two c~merasmounted
side by side. The second application i s motion analysis
and eacling. Th is application involves detecting
motion, measuring its velocity. using i t D obtain three-
dimensional information, and tracking it through time.
The hnal application is inspection of two-dimensional
paaerns.

community. Thne kinds of applications arc described.

1. Introduction
PIPE (Plpelined Image Recessing Engine) is a multi-stage,

multi-pipelined image processing device that was designed for
real-time robot vision applications. These applications have
included mbot guidance, medical analysis. flexible manufacturing
systems. remote image analysis, autonomous vehicle guidance,
inspection, and range image processing. The purpose of this paper
is to introduce PIPE and some of its 2pplications to the scanning
microscopy community. Three tasks in particular - stcrco vision,
motion analysis, and inspection -- seem to relate closely to some of
the image processing needs for scanning microscapy. This paper
will describe these three applications in the context of robot vision
T h e paper will also provide an overview of the hardware and capa-
bilities of PIPE.

PIPE was conceivcd and designed at the National Bureau of
Standards [Kent, Shneier and Lumia 851. It i s c m t l y commer-
cially available thr~ugh Aspex Incorpomed. PIPE will accept
images from a video camera at field rates -- 60 times per second.
PIPE’S basic cycle rate i s 1/60 second. Therefore, many powerful
algoribms can m on PIPE several times pcr second. The follow-
ing is a l is t of the kinds of algorirhms rhus far implemented on
PiPE pt NBS.
1. spatialfiltering

-- edge-preserving moothing, LaplacimGaussian hlter-
ing, rnultiresolution Gaussian and Laplacimpyramids.

-- tanporal averaging, spatio-tcmpol;ll moothing.
2. Temporalblkring

3. Edge detection

897 27

4. Lintcxt.raction
5. Motion detcclion and uacking

-- centmid eacking. optical flow exuaction

6. Stereomatching
7. Imagerotation
8. Pointpmcessing

- scpling, thresholding, convast w g .

The moa complex of these algorithms - stem matching --
mu once per secand. Some of thc algorithms, such as point pro-
cessing or spatial smoothing, m at 60 times perd.The other
algorithms run at several times per second.

2. DesaiptionofPIPE
Figure 1 shows bow PIPE is meant to fit into an overall com-

p u r vision architecture. The architecave includes PIPE, a feature
extractor designed specifically for PIPE called ISMAP (Iconic to
Symbolic MAPper), and a boa ccrmputer which i s typically a stan-
dard computer !hat performs symbolic processing.

In Figure 1, PIPE serves as the initial processing stage which
accepts an image consisting of an array of p y scale values and
produces a similar array of low-level symbolic values which
encode features obtained h m the gray scale m y , such as edges,
motion directions, comers, range. UC. This process of feature
detection produces an iconic description of image features from an
iconic description of image intensities. Therefore, associated with
each image location is the feature at that location.

Following the feature detection process. I S M A P serves to
perform fcahln exvaction (iconic 10 symbolic mapping). In th is
mep, the iconic image of features, in which symbol values are
indexed by image lomion, is mapped into a List of feature values,
where associated with each fearure i s the set of image locations
containing that feature. This is called a histogram. Brefore. image
locatjon is indexed by feature value. T h i s accomplishes two goals:
it permits finding h e locations of fearures of interest by drect
indexing rather than by exhaustively searching the image, and it
exUaCtS locations as data to which subsequent oprab;ons can be
applied. These subsequent operations are performed on che host
computer, and involve finding relations among the location data
which cormpond to geomevic relations of features. The geometric
relations discovered then serve i s input to subsequent dassification
p m c e s S e S .

Notice in Wgure 1 that the host computer may nceive from
PIPE iconic images as well as histograms. Funhemore, the host
computer can send iconic images b PZPE.

PIPE was designed with the following goals in mind:
1. rcal -time processing of images at field rate (1/6Oth second),

2. provision for interactions between related images, such as
those arising h m dynamic image sequences or from stereos -
copic views,
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3. -on for the ability to apply different algoritlnns to

4. .bility to perform multi-molution image processing,
5. rbility for guiding processing by knowledge -based annmands

md "hypothesis images " supplied fran the host computer.
PIPE is a hardwan device specialized for padel image pro-

assing rather rhan a fully gcncral purpose computer. Within the
limits of the processes it supports.it is an extnmely fast ud Bexi-
ble device.On tk other hand, since it is Mw a mral plrpose
computer. it is tylt possible to efficiently program ubiapry algo-
rilhms onit.

PIPE i s intmded as a processor for local aperations on
images; it is mt designed to efficiently perform operations that
requile global knowledge of the image. This latter step is inttnded
for the host computer.

The basic design of PIPE i s shown inFigure 2. I t consists of
a Video Interface Stage (responsible for AID and D/A conversion
between RS170 fields and 256 x 256 x 8 bit images), Input and
Ourput stages m i s t i n g of two frame buffers each and some
image combining logic, and up to eight Modular Recessing Stages ,

(MPS) which pxform the primary computations. The Output Stage
interfaces to the ISMAP. Each Mps stage has image buf fers&
which receive images, and operators which act on them. Images are
transferred fmm stage to stage at field rate (60 imagedsec) by three
concurrent pathways. The forward pathway acts as a traditional
pipelined image-pmcessing pah. The backward pathway carries
images in the opposite direction, from the output of a stage to the
input of the previous stage. T h i s allows a sequence of images taken
over time to be compared. I t also allows a hypothesis image to be
compared with an input image. The recursive pathway carries an
image from the output of a stage back into the input of the same
stage. T h i s allows feedback and relaxation processing.

At the input to each stage. the images carried by the thrce
pathways an first mapped separately ulrough arbitmy functions
implemenled via look-up tables. Then they may individually
undergo any arithmetic or boolean operation. Then any arithmetic
or boolean operation may be rlsed to combine the three input
images into a 6nal input image, prior to its storage in one of two
buffers within the stage.

Within each stage. operators may act on images stored in
either or both of the two buffers. These operators include two
simultaneous and independent arithmetic or booleanneighbomood
operations (3x3 convolvers), and the application of an arbitrary
function of one or two nrgumenrs (single-valued and two-valued

The output from the stage involves stndig to the forward,
ncursive. and backward pathways images resulung from any of
these operations or from any of the buffers.

differart ~ g i o mof the image in mal time.
h

look-upUbh).

In m alternative mode of operation, one of the two image
buffers in each stage may cewe as a map for stlecring the ago-
rithms to be applied to the contents of the other buffer. h this
mode, PIPE functions as a multi-instruction smarn multi-dau
stnam (MIMD) machine; the algorithm to k applied toIII image
is delemined on a pixel -by-pixel basis as the image is processed.
currently, 16 such alternative algorithms may k scka in real
time.

In another mode of operation, PIPE functions ps a multi-
resolution pyramid machine. In this mode. images carried by the
forward pathway are reduced in s i x by one half at each stage.
while sizes of the images carried by the backward pathway ve
doubled a1 each stage. ?he images carried by the ltcursive pathway
remain unchanged in resolution. Any combination of stages may
operate in this mode, under programcontrol.

In addition to the pathways mentioned. PIPE contains six
general plrposc video busses which allow images to move from
the hoa, or from any buffer in the machine. into any other buffer
inthemrchint.

In any of P I P E ' S opwating modes. the operations of every
stage uc completely independent, and can be completely
rcconf~gurcdin the her-field time (1/60 second) by the syscem
controller stage. which in tum may select stage configurations from
a=redsequence.

PIPE processes images in four ways: point, spatial. W e a n ,
md sequence. Point pmssing involves applying a function to
Uch individual pixel point in the image. The application of a func-
tion is d m through a look-up table. Examples of such functions

ing involves applying an arithmetic neighbamood operator to the
3x3neighbomood surrounding each pkeL Examples of such opera-
tors an Sobel edge detection and smoothing. Boolean pmcesing
involves -lying a boolean neighbamood operator to the 3x3
neighborhood surroundul. g each pixel. Each of the 8 bit planes
associated with each pixel is mated separately. and logical opera-
tions such as "and" and "or" arc applied to each bit plane. Sapen-
tial processing involves performing a temporal operation involving
a acquence of thme images. Examples of such opentions include
motion delcaion and temporal smoothing.

An eight stage PIPE performs 1.2 billion arithmetic, or 7.36
billion Boolean sum-of-products, operations per second. Funher
details describing PIPE may be found in [Kent, Shneier and Lumia
851.

UI: S C ~ .threrhalding, and contrast mtching. Spatial p r o c e ~ s -

3. stereo Analysis
S t e m analysis is a technique used to obtain range from a

two-camera system. The key problem in stereo computation is to
find corresponding points in b e stereo images. Comsponding
poiras are the projections of a single point in rhe three-dimcnsional
scene. Figure 3 shows a two-camera stereo system. The rrspective

plancsareI, dl,,and the rcspec t i veop t i daxesanzmd~ ' .
A point P in 3-space is projected onto PI in the left image and
onto P, m the right image. The difference in the positions of two
corresponding points PI and P, in their respective images is called
"paraLlax" or "disparity." The disparity of P is a function of bath
its location in the scene, and of the position, orientation. andphysi-
cal characteristics of the stem cameras. whm thesc camera ami-
butes arc known, the location of P can be determined [Barnard and
Fischla 821.

A stereo analysis algorithm that computes comspondence has
been implemenled on the PIPE. The algorithm was developed by
AUen Waxman of Boston University, and is based on an algorithm
developed for the Connection Machine-er and Poggio
861. ?be aep of the algorithm uc as follows:
1. Filter each image using Laplacia Gaussian filtering. The

Laplacia Gaussian 6ltcr is appmximaml as a difference of
Gaussian smoothed images.

2. Obtain the zero aossiags of diffemce of Gaussian
image. The RsUlt o f r h i s step is a binary image whcrc zero-
crossing points have a value of 1 and the background has a
value of zero.

3. Shift one zero crossing image across the other, onecolumnat
a time. For each shim position, c k c k whether a zero cmss-
ing from om image falls on top of a zero crossing of the
other image. If it does, mark a bit in x-y-disparity space.
m s space is represented by the bit planes associated with
each pixel; each bit plane lepresents a different disparity.)

lefi and right focal points Fl and F, , the respective image
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4. Perform a three-dimensional convolution: each point in the

anfCr of a thne-dimcnsional cube ( ix-y-dispaityspace) i s
given a number equal to the number of bits msrked inside the
cube.

5. At each x,y point in the image, look for the disparity with
maximum value. This dspanty value is then assignedto that

l l i s algorithm has been teain real time on several scenes.
I t runs in appmximately one second. Compare this with Some
stereo algorithms which run in many minutes or even hours. I t is a
very general stereo algorithm which is designed for arbitrary
natural m s . The results arc not as gocxl as we expected. but it i s
a first step towards real-time stem analysis on PIPE.

image poinL

4. Motion Analysis and Tracking

Several d i f fermt motion detection and analysis algorithms
have been implemented on PIPE. All of these involve comparing
successive images. The simplest such algorithm to implement is to
take the difference of successive pairs of images. and to display
th is difference. This algorithm i s useful for detecting motion in the
visual field, but it does not give the velocity of this motion

An algorithm that detects motion and provides velocity of
motion in the image plane (Le., the manifemion on the image
plane of object motion in the world) was developed by Horn and
Schunk [Horn and Schunk 811. However, it does not recover the
IU image velocity. It only m e r s the component of velocity
normal to image edges. The algorilhm assumes that lighting
remains constant, and objects in the visual field remain stationary
while the camera moves around. The basic notion behind the algo-
rithm is that i f intensity of each object in a scene is assumed to be
constant, then normal velocity is the time derivative of intensity
divided by the intensity gradient. The implementation of this algo-
rim on PIPE is described in more detail in [Goldenberg et al. 871.

A more recent motion recovery algorithm [waxman and Ber-
gholm 871 relies on the motion of binary image features such as
edges and points, but does not explicitly track features from frame
to frame. Instead. each feature gexrates a Gaussian activation
profile in a spatio-temporalneighborhood around the f e m . This
profile i s lhen carried along with the motion of the feature. Image
velocity estimates may be obtained for these features. In the case
of edge features, only normal velocity i s obtained. However, in the
case of point features (e.g., dots, comers, high curvature points on
contours), full image velocity i s obtained. 7 l i s algorithm has been
implemented on PIPE. I t returns 15 velocity updates per second.

There arc several reasons why we would want to recover
image motion. I t could be used for image segmentation (e.g..
exuacting moving edges or moving regions), and to recover rigid
body structure and motion of objects in the visual field 79,
Waxman and Wohn 871. Onc example of the way we intcnd to
lccover 3-D shape from image motion is to apply motion wtraction
techniques to images obtained from a camera mounted on a robot
(either a mobile rob or a manipulator). 'zhc camera motion (both
translation and rotation) can be determimi from sensors on the
robot. Then, under the assumption that objects in the scene main
stationary, image flow can be used to recover 3-D positions of the
points giving rise to the image flow. The mtuitive idea beW this
concept is that points futher from the camera will appear to move
less than points close to the camera.

An example of the use of image motion i s to track an object
Image motion is used to e m c t the object from the background,
while a tracking algorithm is applied to follow the objcct over time
[Goldenberg et al. 871. The algorithm, which has been implemented
on PIPE. assumes that a single objea i s moving relative to a

stationary camera. 'Ik differaxe of two successive images i s
obtained md thnsholdcd. Fesulting in a region of motion. Each
pixel in th is image is either a 0 (no imponant change) or a 1
(impom change). Ihe next step involves computing the ccntroid
of thc region of motion. Th is m i d is thcn tracked over t h e . To
calculare the x centroid, the binary motion image is multiplied by
an X-Ramp -- an image when each pixel has a grey value equal to
its x coordinare. The resultant image has, for each pixe l in the
region of motion, a g ~ yvalue cqual toits xmrdinate.The x cen-
troid is the average of all the non-zero pixels in the image. The y
ctntroid i s obtained in an analogous manner. These averages B T ~

compurtd using a pyramid-based sddhng stralcgy. which places the
centroid coordinates in the upper lefi pixel of each image. This
algorithm. when naming on PIPE, results in centroid updates 5
times persed.

5. Inspection
Inspection of two-dimensional pattern can be done on PIPE

in several ways. One way uses the backward pathway of PIPE and
the input from the boa machine. A blue print, or model, of the
ideal appeprarrce of the pattern is stored or generated on the host
machine. This partem is then transmitted to the PIPE which com-
pares i t with an incoming image. The comparison dts in a
difference image which is then analyzed to determine the degree of
difference. A main problem tha has to be overcome in this kind of
application is the pmblem of registering the model with the image.
The position and orimtation of the object to be inspected would
have to be h o r n in advance (up to a small error) in order for Ws
technique to be effective.

Another t d u Q u e uses operators known as shrink and
expand [Roscnfeld and Kak 821. These operators are generally
applied to thresholded bmary images. The shrink operator involves
deleting a layer of border pints one pixel wide from each region,
or blob, in the binary image. T h e expand operator involves adding
a layer of border points to each blob. These operators are easy to
implement on PIPE using the Boolean neighborhood operator capa-
bility. Generally, several shrink or expand steps are done in suc-
cession. We can define the thickness of a blob as twice the number
of shrinking steps required to wipe it out. As an example. suppose
we want to find all lines in an image that are six pixels wide or
thinner. If we apply the shrink operator thrw times, then all lines
six pixels or thinner will disappear. I f we then apply the expand
operator thrw times, then lines thicker than six pixels will appear
the same as they appeand in the original image, while lines six
pixels or thinner will not reappear. If a logical exclusive -or
between this final image and original image is done, then the
resulting image will contain only those thin lincs which &sap
peared after performing the shrink and expand operations.

Another inspaion technique can be used to 6nd imperfec -
tions in a regularly texaued region. such as a weave pattern. The
technique involves applying a high-pass filter to the image, so that
only features whose spatial frequency is higher than that o f the reg-
ularly texlund panern at exmaai. l'bcsc featurcs might then be
imperfections. A high-pass liltcr can be implemented on PIPE by
performing a smoothing operarion (e.g.. Gaussian smoothmg) and
then taking the difference between the smoothed image and the ori-
ginal image.

6. Conclusion
The PIPE (pipelined Lmage Processing Engine) has been

described. It i s an image processing device that was designed for
real-time robot vision applicarions. Three applications that might
have relevance for scanning microscopy have been described.



These uc stern analysis for exvlcting range from two images,
motion analysis for detecting, measuring and uacking motion and
for extrpctrn' g tluu-dimensionalinformation and inspection of two
dimensional paaems. Fume work on PIPE willinclude developing
more sophisticated and more effective algorithms to perfom fhesc
tasks, md integrating PIPE with a symbolic hoa pracessor so that
high-level symbolic vision can be combined with the low-level
image plocessing.
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Figure 1: Major image -flow relationships between PIPE, ISMAP, and the host computer.
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