Proc. SPIE Scanning Microscopy Technologies and
Applications, Vol. 897, Los Angeles, CA., January 1988, 169-173.

897 27

Application of the PIPE Image Processing
Machine to Scanning Microscopy

Martin Herman

Sensory Intelligence Group
National Bureau of Standards
Gaithersburg, MD 20899

ABSTRACT

PIPE is a pipelined image processing device that
was designed for real-time robot vision applications. It
accepts images from a video camera 60 times per
second, and contains hardware for digitizing, displaying,
and performing operations on these images at video
rates. Each stage of the pipeline contains arithmetic and
logic units, convolvers, image buffers, and look-up
tables. The purpose of this paper is to introduce PIPE
and some of its applications to the scanning microscopy
community. Three kinds of applications are described.
The first is stereo analysis, whose purpose is to
automatically extract range from two cameras mounted
side by side. The second application is motion analysis
and twracking. This application involves detecting
motion, measuring its velocity, using it to obtain three-
dimensional information, and tracking it through time.
The final application is inspection of two-dimensional
patterns.

1. Introduction

PIPE (Pipelined Image Processing Engine) is a multi-stage,
multi-pipelined image processing device that was designed for
real-time robot vision applications. These applications have
included robot guidance, medical analysis, flexible manufacturing
systems, remote image analysis, sutonomous vehicle guidance,
inspection, and range image processing. The purpose of this paper
is to introduce PIPE and some of its applications to the scanning
microscopy community. Three tasks in particular ~ stereo vision,
motion analysis, and inspection -- seem to relate closely to some of
the image processing needs for scanning microscopy. This paper
will describe these three applications in the context of robot vision.
The paper will also provide an overview of the hardware and capa-
bilities of PIPE.

PIPE was conceived and designed at the National Bureau of
Standards [Kent, Shneier and Lumia 85). It is currently commer-
cially available through Aspex Incorporated. PIPE will accept
images from a video camera at field rates -- 60 times per second.
PIPE’s basic cycle rate is 1/60 second. Therefore, many powerful
algorithms can run on PIPE several times per second. The follow-
ing is a list of the kinds of algorithms thus far implemented on
PIPE at NBS.

1. Spatial filtering
-- edge-preserving smoothing, Laplacian-Gaussian filter-
ing, multiresolution Gaussian and Laplacian pyramids.
2. Temporal filtering
-- temporal averaging, spatio-temporal smoothing.
3. Edge detection
-- Sobel edge operator, zero crossings, non-maximum
suppression.

. Line extraction
5. Motion detection and tracking

N ~-- centroid tracking, optical fiow extraction.
6. Stereo matching
Image rotation
8. Point processing

-- scaling, thresholding, contrast streiching.
The most complex of these algorithms - stereo matching --

runs once per second. Some of the algorithms, such as point pro-

cessing or spatial smoothing, run at 60 times per second. The other
algorithms run at several times per second.

=~

2. Description of PIPE

Figure 1 shows how PIPE is meant to fit into an overall com-
puter vision architecture. The architecture includes PIPE, a feature
extractor designed specifically for PIPE called ISMAP (Iconic to
Symbolic MAPper), and a host computer which is typically a stan-
dard computer that performs symbolic processing.

In Figure 1, PIPE serves as the initial processing stage which
accepts an image consisting of an array of gray scale values and
produces a similar array of low-level symbolic values which
encode features obtained from the gray scale array, such as edges,
motion directions, comers, range, etc. This process of feature
detection produces an iconic description of image features from an
iconic description of image intensities. Therefore, associated with
each image location is the feature at that location.

Following the feature detection process, ISMAP serves
perform feature extraction (iconic to symbolic mapping). In this
step, the iconic image of features, in which symbol values are
indexed by image location, is mapped inio a list of feature values,
where associated with each feature is the set of image locations
containing that feature. This is called a histogram. Therefore, image
location is indexed by feature value. This accomplishes two goals:
it permits finding the locations of features of interest by direct
indexing rather than by exhaustively searching the image, and it
extracts locations as data to which subsequent operations can be
applied. These subsequent operations are performed on the host
computer, and involve finding relations among the location data
which correspond to geometric relations of features. The geometric
relations discovered then serve as input to subsequent classification
processes.

Notice in Figure 1 that the host computer may receive from
PIPE iconic images as well as histograms. Furthermore, the host
computer can send iconic images to PIPE.

PIPE was designed with the following goals in mind:

1. real-time processing of images at field rate (1/60th second),

2. provision for interactions between related images, such as
those arising from dynamic image sequences or from stereos-
copic views,

-
v

3. provision for the ability to apply different algorithms to
different regions of the image in real time’,h

4. ability to perform multi-resolution image processing,

5. ability for guiding processing by knowledge-based commands
and "hypothesis images” supplied from the host computer.
PIPE is a hardware device specialized for parallel image pro-

cessing rather than a fully general purpose computer. Within the
limits of the processes it supports, it is an extremely fast and flexi-
bie device. On the other hand, since it is not a general purpose
computer, it is not possible to efficiently program arbitrary algo-
rithms on it.

PIPE is intended as a processor for local operations on
images; it is not designed to efficiently perform operations that
require global knowledge of the image. This latter step is intended
for the host computer.

The basic design of PIPE is shown in Figure 2. It consists of
a Video Interface Stage (responsible for A/D and D/A conversion
between RS170 fields and 256 x 256 x 8 bit images), Input and
Output stages consisting of two frame buffers each and some
image combining logic, and up to eight Modular Processing Stages
(MPS) which perform the primary computations. The Output Stage
interfaces to the ISMAP. Each MPS stage has image buffers.
which receive images, and operators which act on them. Images are
transferred from stage to stage at field rate (60 images/sec) by three
concurrent pathways. The forward pathway acts as a traditional
pipelined image-processing path. The backward pathway carries
images in the opposite direction, from the output of a stage 1o the
input of the previous stage. This allows a sequence of images taken
over time to be compared. It also allows a hypothesis image to be
compared with an input image. The recursive pathway carries an
image from the output of a stage back into the input of the same
stage. This allows feedback and relaxation processing.

At the input to each stage, the images carried by the three
pathways are first mapped separately through arbitrary functions
implemented via look-up tables. Then they may individually
undergo any arithmetic or boolean operation. Then any arithmetic
or boolean operation may be uased to combine the three input
images into a final input image, prior to its storage in one of two
buffers within the stage.

Within each stage, operators may act on images stored in
either or both of the two buffers. These operators include two
simultaneous and independent arithmetic or boolean neighborhood
operations (3x3 convolvers), and the application of an arbitrary
function of one or two arguments (single-valued and two-valued
look-up tables).

The output from the stage involves sending to the forward,
recursive, and backward pathways images resulting from any of
these operations or from any of the buffers.

In an aliemative mode of operation, one of the two image
buffers in each stage may serve as a map for selecting the algo-
rithms to be applied to the contents of the other buffer. In this
mode, PIPE functions as a multi-instruction stream multi-data
stream (MIMD) machine; the algorithm to be applied to an image
is determined on a pixel-by-pixel basis as the image is processed.
Currently, 16 such altemnative algorithms may be selected in real
time.

In another mode of operation, PIPE functions as a multi-
resolution pyramid machine. In this mode, images carried by the
forward pathway are reduced in size by one half at each stage,
while sizes of the images carried by the backward pathway are
doubled at each stage. The images carried by the recursive pathway
remain unchanged in resolution. Any combination of stages may
operate in this mode, under program control.

897 27

In addition to the pathways mentioned, PIPE contains six
general purpose video busses which allow images to move from
the host, or from any buffer in the machine, into any other buffer
in the machine.

In any of PIPE’s operating modes, the operations of every
stage arc completely independent, and can be compietely
reconfigured in the inter-field time (1/60 second) by the system
controller stage, which in tum may select stage configurations from
a stored sequence.

PIPE processes images in four ways: point, spatial, boolean,
and sequence. Point processing involves applying a function to
each individual pixel point in the image. The application of a func-
tion is done through a look-up table. Examples of such functions
are scaling, thresholding, and contrast stretching. Spatial process-
ing involves applying an arithmetic neighborhood operator to the
3x3 neighborhood surrounding each pixel. Examples of such opera-
tors are Sobel edge detection and smoothing. Boolean processing
involves applying a boolean neighborhood operator to the 3x3
neighborhood surrounding each pixel. Each of the 8 bit planes
associated with each pixel is treated separately, and logical opera-
tions such as "and” and "or" are applied to each bit plane. Sequen-
tial processing involves performing a temporal operation involving
a sequence of three images. Examples of such operations include
motion detection and temporal smoothing.

An eight stage PIPE performs 1.2 billion arithmetic, or 7.36
billion Boolean sum-of-products, operations per second. Further
details describing PIPE may be found in {Kent, Shneier and Lumia
85].

3. Stereo Analysis

Stereo analysis is a technique used to obtain range from a
two-camera system. The key problem in stereo computation is to
find comesponding points in the stereo images. Corresponding
points are the projections of a single point in the three-dimensional
scene. Figure 3 shows a two-camera stereo system. The respective
left and right focal points are F; and F, , the respective image
planes are /; and J, , and the respective optical axes are z and z°.
A point P in 3-space is projected onto P, in the left image and
onto P, in the right image. The difference in the positions of two
corresponding points P; and P, in their respective images is called
"paraliax” or "disparity.” The disparity of P is a function of both
its location in the scene, and of the position, orientation, and physi-
cal characteristics of the stereo cameras. When these camera attri-
butes are known, the location of P can be determined {Barnard and
Fischler 82).

A stereo analysis algorithm that computes correspondence has
been implemented on the PIPE. The algorithm was developed by
Allen Waxman of Boston University, and is based on an algorithm
developed for the Connection Machine [Drumheller and Poggio
86]. The steps of the algorithm are as follows:

1. Filter each image using Laplacian Gaussian filtering. The
Laplacian Gaussian filter is approximated as a difference of
Gaussian smoothed images.

2. Obtain the zero crossings of the difference of Gaussian
image. The result of this step is a binary image where zero-
crossing points have a value of 1 and the background has a
value of zero.

3. Shift one zero crossing image across the other, one column at
a time. For each shifted position, check whether a zero cross-
ing from onc image falls on top of a zero crossing of the
other image. If it does, mark a bit in x-y-disparity space.
(This space is represented by the bit planes associated with
each pixel; each bit plane represents a different disparity.)

4. Perform a three-dimensional convolution: each point in the
center of a three-dimensional cube (in x-y-disparity space) is
given & number equal to the number of bits marked inside the
cube.

5. At each x,y point in the image, look for the disparity with
maximum value. This disparity value is then assigned to that
image point.

This algorithm has been tested in real time on several scenes.

It runs in approximately one second. Compare this with some

stereo algorithms which run in many minutes or even hours. It is a

very general stereo algorithm which is designed for arbitrary

natural scenes. The results are not as good as we expected, but it is

a first step towards real-time stereo analysis on PIPE.

4. Motion Analysis and Tracking

Several different motion detection and analysis algorithms
have been implemented on PIPE. All of these involve comparing
successive images. The simplest such algorithm to implement is to
take the difference of successive pairs of images, and to display
this difference. This algorithm is useful for detecting motion in the
visual field, but it does not give the velocity of this motion

An algorithm that detects motion and provides velocity of
motion in the image plane (i.e., the manifestation on the image
plane of object motion in the world) was developed by Hom and
Schunk [Hom and Schunk 81]. However, it does not recover the
full image velocity. It only recovers the component of velocity
normal to image edges. The algorithm assumes that lighting
remains constant, and objecis in the visual field remain stationary
while the camera moves around. The basic notion behind the algo-
rithm is that if intensity of each object in a scene is assumed to be
constant, then normal velocity is the time derivative of intensity
divided by the intensity gradient. The implementation of this algo-
rithm on PIPE is described in more detail in [Goldenberg et al, 87).

A more recent motion recovery algorithm [Waxman and Ber-
gholm 87] relies on the motion of binary image features such as
edges and points, but does not explicitly track features from frame
to frame. Instead, each feature generates a Gaussian activation
profile in a spatio-temporal neighborhood around the feature. This
profile is then carried along with the motion of the feature. Image
velocity estimates may be obtained for these features. In the case
of edge features, only nommal velocity is obtained. However, in the
case of point features (e.g., dots, comers, high curvature points on
contours), full image velocity is obtained. This algorithm has been
implemented on PIPE. It returns 15 velocity updates per second.

There are several reasons why we would want to recover
image motion. It could be used for image segmentation (e.g.,
extracting moving edges or moving regions), and to recover rigid
body structure and motion of objects in the visual field [Ullman 79,
Waxman and Wohn 87). One example of the way we intend 10
recover 3-D shape from image motion is to apply motion extraction
techniques to images obtained from a camera mounted on a robot
(either a mobile robot or a manipulator). The camera motion (both
translation and rotation) can be determined from sensors on the
robot. Then, under the assumption that objects in the scene remain
stationary, image flow can be used to recover 3-D positions of the
points giving rise 1o the image flow. The intuitive idea behind this
concept is that points further from the camera will appear to move
less than points close to the camera.

An example of the use of image motion is to track an object.
Image motion is used 1o extract the object from the background,
while a tracking algorithm is applied to follow the object over time
[Goldenberg et al. 87). The algorithm, which has been implemented
on PIPE, assumes that a single object is moving relative to a

897 27

stationary camera. The difference of two successive images is
obtained and thresholded, resulting in a region of motion. Each
pixel in this image is either a 0 (no important change) or a 1
(important change). The next step involves computing the centroid
of the region of motion. This centroid is then tracked over time. To
calculate the x centroid, the binary motion image is multiplied by
an X-Ramp -- an image where each pixel has a grey value equal to
its x coordinate. The resultant image has, for each pixel in the
region of motion, a grey value equal to its x coordinate. The x cen-
troid is the average of all the non-zero pixels in the image. The y
centroid is obtained in an analogous manner. These averages are
computed using a pyramid-based adding strategy, which places the
centroid coordinates in the upper left pixel of each image. This
algorithm, when running on PIPE, results in centroid updates §
times per second.

5. Inspection

Inspection of two-dimensional pattems can be done on PIPE
in several ways. One way uses the backward pathway of PIPE and
the input from the host machine. A blue print, or model, of the
ideal appearance of the pattern is stored or generated on the host
machine. This pattern is then transmitted 10 the PIPE which com-
pares it with an incoming image. The comparison results in a
difference image which is then analyzed to determine the degree of
difference. A main problem that has 10 be overcome in this kind of
application is the problem of registering the model with the image.
The position and orientation of the object to be inspected would
have to be known in advance (up to a small error) in order for this
technique to be effective.

Another technique uses operators known as shrink and
expand [Rosenfeld and Kak 82]. These operators are generally
applied to thresholded binary images. The shrink operator involves
deleting a layer of border points one pixel wide from each region,
or blob, in the binary image. The expand operator involves adding
a layer of border points to each blob. These operators are easy to
implement on PIPE using the Boolean neighborhood operator capa-
bility. Generally, several shrink or expand steps are done in suc-
cession. We can define the thickness of a blob as twice the number
of shrinking steps required to wipe it out. As an example, suppose
we want to find all lines in an image that are six pixels wide or
thinner. If we apply the shrink operator three times, then all lines
six pixels or thinner will disappear. If we then apply the expand
operator three times, then lines thicker than six pixels will appear
the same as they appeared in the original image, while lines six
pixels or thinner will not reappear. If a logical exclusive-or
between this final image and the original image is done, then the
resulting image will contain only those thin lines which disap-
peared after performing the shrink and expand operations.

Another inspection technique can be used to find imperfec-
tions in a regularly textured region, such as a weave pattern. The
technique involves applying a high-pass filter to the image, so that
only features whose spatial frequency is higher than that of the reg-
ularly textured pattem are extracted. These features might then be
imperfections. A high-pass filter can be implemented on PIPE by
performing a smoothing operation (e.g., Gaussian smoothing) and
then taking the difference between the smoothed image and the ori-
ginal image.

6. Conclusion

The PIPE (Pipelined Image Processing Engine) has been
described. It is an image processing device that was designed for
real-time robot vision applications. Three applications that might
have relevance for scanning microscopy have been described.

These are stereo analysis for extracting range from two images,
motion analysis for detecting, measuring and tracking motion and
for extracting three-dimensional information, and inspection of two
dimensional patterns. Future work on PIPE will include developing
more sophisticated and more effective algorithms to perform these
tasks, and integrating PIPE with a symbolic host processor so that
high-level symbolic vision can be combined with the low-level
image processing.

References

1. Bamard, S.T. and Fischler, M.A, "Computational Stereo."
Computing Surveys, Vol. 14, No. 4, December 1982, 553-
572.

2. Drumheller, M. and Poggio, T. "On parallel stereo.” IEEE
International Conf. on Robotics and Awtomation, San Fran-
cisco, CA, April 1986, 1439-1448.

3. Goldenberg, R., Lau, W.C.,, She, A. and Waxman, AM. 9.

"Progress on the prototype PIPE." IEEE International Conf.
on Robotics and Automation, Raleigh, NC, April 1987,

897 27

Hom, BK.P. and Schunk, B.G. "Determining optical flow."
Artificial Intelligence, 17, 1981, 185-203.

Kent, EW,, Shneier, M.O. and Lumia, R. "PIPE (Pipelined
Image Processing Engine)." J. Paralle! and Distributed Com-
puting, 2, 50-78, 1985,

Rosenfeld, A. and Kak, A.C. Digital Picture Processing.
Second Edition, Academic Press, Orando, Florida, 1982.

Ullman, S. The interpretation of visual motion. MIT Press,
Cambridge, MA, 1979.

Waxman, AM. and Bergholm, F. "Convected activation
profiles and image flow extraction." Technical Report LSR-
TR-4, Laboratory for Sensory Robotics, Boston University,
August 1987.

Waxman, A.M. and Wohn, K. "Image flow theory: A frame-
work for 3-D inference from time-varying imagery.” In C,
Brown, ed. Advances in Computer Vision, Erflbaum Publish-
ers, 1987,

ICONIC \
IMAGES

NEW IMAGES PIPE

IEMAP SYMBOLIC HOST
IMAGE MEMORY
DESCRIPTION

Figure 1: Major image-flow relationships between PIPE, ISMAP, and the host computer.

897 2

"WI)SAS UOISIA OAANG 1 uNFry

W3ILSAS YHINVYD LHOY

U
‘3
. W3ILSAS VHIWYD 1337

('pareiod
-100u] xodsy wayy uoissiuuad ynm poawuday) “weideip ypojq woisAs ddid 7 andig

E<~—0<—Q V-UO-—m EW._-m>m S3IV4u3iNE WALSAS 1304 AuVITIXOY

I9VLS 1HOI3 008/1 3did * Nw

A

39vis _
$53900v viva ¥3T0uiN03 -
W3iSAS

SIvis
v ol

/ [/
_! // — > s
_l < g —l : r - u —l L S1NdM1
W LT 0301A
Py 14913
1“1 2vs ﬂll e] V1S -u3NL
w1 1n4ino 9 Sdu £ Sa 2 Sam) san | (2] 1nen) 0301 Sinaimo
Wieg paswroes - (8) m 0314
Wed pamnsoj - (1) . _. _, _. — 33u41
Wieg saysuncey - () L-9 s
sshonyaeg 8389 y ‘ ’ !)
w
|
Y
Y . | Y
(3-v) sassne Y ¥
0301A Xis L i Y - —Ly .

