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AN APPLICATION EXAMPLE OF THE NBS ROBOT CONTROL SYSTEM
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Mustrial Systems Division, N u i d Bureau of Standardst

Tbe NotioaPl Bureau ofStnndards,Industrial SystcmsDivisioa, has deigned ”be Robot Control System where
high kvel gods are decomposed through asuccession of levels, ea& producing strings of simpler commpnds to the
next bwer kvel. ”be bottom kvdgentmlcs the &rive signals to the robot, gripper, and other rturtors. Each
control le of responsibility, independent of tbe details at other levels,
thus prov compatible” hardware and software for robdics and otber
real -time

lnngurge and
progrcun &V&Pins a Implemented. Rogrpms arc expressed as state
tables, and tbe progrunrmng en permits tbe generation, editing, emulation, and evpluntion of these
state tables. Tbe control sy y interactive, allowing tbe system to run frscly, ork &&-stepped
to any kvel of detail.

Thispaper describes the fvst applition of Tbe NBS Robot Control System in a realistic factory environment,
h U y integrated with a Workstation control system, database system,safety computer, gripper control system,

To aid la spdfybg tbe required task &posttion and task

vision system, mnd network.

1. THE PROBLEM
Because of the large capital investment required to install
state of the art automated manufacturing equipment, it i s
essential that it be possible to incrementally upgrade the
equipment within a factory, adding a new robot, new
machine tool, vision system, etc., as funds become avail -
able and as new equipment becomes more cost effective
than old equipment. What are needed, therefore, are
plug-compatible systems which can be expanded and/or
upgraded in much the same way as stereo systems can
today. I

The National Bureau of Standards, Center for Manu-
facturing Engineering, i s implementing an experimental
factory called the Automated Manufacturing Research
Facility (AMRF) to provide a testbed for studying inter-
face standards which will permit interchangeability of
components.

In January 1984 the AMRF was completed to the
extent that a user could select one of a number of pre-
specified parts, and have the AMRF manufacture that
part without human intervention. The major systems in
the AMRF (shown in Fig. 1) are the cell control, data
administration, network, material handling control,
robot cart controller, horizontal workstation control,
horizontal machine tool controller, turning workstation

control, turning machine tool controller, two robot
control systems, two robots, a gripper control system,
and watchdog safety system (not shown in figure). As o f
January 1984 the AMRF contained 33 different inter-
faces, allimplemented using a single, unified approach to
system interface.

Reference 8 is a detailed description of the objectives
and overall philosophy of the AMRF. Reference 7
describes the overall architecture of the AMRF. Refer -
ence 6 describes the virtual cell concept, and Ref. 3
describes the vision system.

One of the most important systems within the AMRF
is the robot control system, designed by Dr. Anthony
Barbera, Dr. James Abus, and others at N B S . Refer-
ences [1,2,4,51 document the theory underlying the
design of the NBS robot control system. This paper
describes the way in which the control system was used
for the January 1984 run of the AMRF, and i s the first
report detailing an actual application of the N B S Robot
Control System (RCS).

2. INTRODUCTION TO THE NBS ROBOT
CONTROL SYSTEM

The following section gives a very brief description of

?The National Bureau of Standards Automated Manu- from the Navy Manufacturing Technology Program.
famring Research Facility is panially supported by funding
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Fig. 1. Conceptual diagram of AMRF.

the structure of the Robot Control System from the point
of view of a user.

The atomic unit within the control system is a func-
tionally bounded module, as shown in Fig. 2. This
module consists of inputs, a process, and outputs. Each
functionally bounded module is given a name, and the
module can be executed at any time by typing that name
on the terminal. Input variables canbe changed by typing
<variable name=new value> and the value of any
variable can be interrogated by typing <name ?>.Func-
tionally bounded modules are executed in fully compiled
machine code form; hence, the interactive capability
does not severely impair efficiency.

Functionally bounded modules can be assembled into

INPUT PROCESS OUTPUT

Fig. 2. Functionary bounded, named module.
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an executing owner with i ts own name, as shown in Fig.
3. Typing the name of the owner causes the functionally
bounded modules to be executed in the order listed.

INPUT

0INPUT

INPUT D
0INPUT

0 OUTPUT

0 OUTPUT

0 OUTPUT

OUTPUT

Fig. 3. Executing owner.

Executing owners are assembled into control levels.
The structure of a control level, shown in Fig. 4, i s
generic and every level has the identical structure. A
control level consists of a preprocess function, a state
table function, and a postprocess function. In general,
control levels are executed every cycle (40 msec for the
January 1984 run. but this could have been much
shorter). The preprocess functions are used for con-

. hDut

THE ENTIRE CONTROL LEVEL IS EXECUTED ONCE EACH CYCLE.

Fig. 4. Structure of a control decision level.

verting incoming data in a format suitable for the rest of
the level. The postprocessing functions convert output
data into formats required for other systems. The Kernel
of a control level i s a state table‘. As shown inFig. 4, the
left side of the table is a list of conditions which test the
relevant state of the world as determined from the input
variables and internal machine state. Exactly one line of
this table must match with the relevant state of the world.
In this case,the output procedures listed on the right side
of that state table line are executed. (The algorithms
which execute state tables are implemented within the
system as an executing owner, as shown in Fig. 4.) State
tables will be described in more detail later. For the
present, we note several characteristics of state tables
which are not present in procedural software programs.
(a) The NBS Robot Control System does not require

interrupts. Every cycle the state table inputs are
examined. I f a particular input condition requires
immediate attention, this can be reflected in the state
table, and because the state table i s examined every
cycle i t i s guaranteed that whatever action is required
will be initiated within a maximum of 1 cycle time.
i t would of course be possible for a user to write
conventional software which produced the same
results, also without interrupts, but the NBS Control
System structure hides much of the necessary detail
from the user, and ensures consistency in complex
application code.

(b) A large percentage of the code for robot applications
will effect recovery from various undesirable
events. Using state tables organized into control
levels as described, additional situations can be
handled by adding lines to the state table. With
conventional software a user must first figure out
where in the code this particular situation may occur,
and changes and/or patches may have to be made in
many places in the code. Stated differently. state
tables isolate what operations are required for each
specific situation, and let the application designer
think in this high level manner - what to do in each
case, independent o f if, then, loop, or other software
control structures.

(c) State tables separate the issue of when you perform
a function from the function itself. This attribute of
state tables is synergistic with the interactive state
table mechanization which lets you execute single
functionally bounded modules or lists of functionally
bounded modules independently. One can debug the
functions and the state tables which call the functions
independently. Again. i t i s possible to design
conventjonal software such that the control flm
portion of the algorithms call procedures to perform
the computation. One can then develop the control
flow code. leaving stubs for all the procedures. etc.
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achieving some of advantages of the NBS control
system. Again RCS hides those details from the user,
and ensures consistency.

(d) On the negative side, state tables tend to hide the
sequence of execution. State transition graphs can
help alleviate this shortfall as described in Section
8.2.

Figure 5 shows the combination of control levels to
form more complex hierachical structures. In general,
control levels execute their preprocessing, state table,
and post processing functions every cycle. Each control
level decomposes input commands it receives into output
subcommands which it sends to the level below, while
reporting status back to the level above. The interface

\

3.IACQUIRE ( O D [at AI )
From its current position, the robot will go to position

A. (SOURCE), and grasp the named object, (OBJ). I f no
location A is specified, then the object will be acquired
from the robot's current location.

3.2 MOVE ([OBJfrom AI to B)
The robot will acquire the named object from location

A, (SOURCE), and will move it toB, (DEST), but will not
release the object. I f (OBJ from A) is not specified, the
robot will move from its current position to B.

3.3 RELEASE [end-ur AI
The robot will release the object it is holding at its

EACH LEVEL REWIRES FEEDBACK STATUS FROM THE LEVEL
BELOW REPORTING ON THE PROGRESS OF W E COMMAND

, TO THAT LEVEL

Fig. 5. Hierarchical control levels.

between each level is structurally identical, hopefully
providing a foundation for future modular, "plug
compatible" hardware and software for robotics and
other real-time sensory interactive control applications.
Figure 6 shows the TASK, ELEMENTAL MOVE (E-
MOVE), and PRIMITIVE levels as they were implemen-
tcd in January 1984 for the AMRF. The commands and
data to each level and to the vision system are shown, as
is the status and data back from each level.

3. TASK LEVEL
Commands from the WORKSTATION to the TASK

LEVEL are:

present position and move to position A. If A is not
specified, the robot will move to the "SAFE" position
associated with its current location (e.g., if the robot is at
the fixture i t will move to the fixture safe location a few
centimeters above the fixture).

3.4 7RANSFER (IOBJfrom AI to B [end-or Cl)
The robot wil l acquire the named object from location

A, (SOURCE), release it at positionB, (DEST), and move
to C, (END-AT). If (OBJ from A) is not specified, and if
the robot is already holding an object, that object will be
moved toB. I f (end-at C) is not specified the safe position
for B will be used as the end-at location.
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Fig. 6. Commands to each level of robot control system.

3.5 CLEAR (drop-ur A [end-ur Bl)
The robot will go to position A and release the part it

is currently holding. Then it will end-at B. If B is un-
specified the safe position of A is used.

Figure 7 shows the sequence of the above commands
issued by the WORKSTATION to the TASK Level of the
RCS to manufacture a box, one of the sample parts used
in the January 1984 Run of the AMRF.

One of the primary objectives of the NBS control
system i s that, to the maximum extent possible,
commands are data driven. There is a database system
that provides data to each level in the control hierarchy to
permit i t to carry out its tasks. Whenever possible the
need for application -specific data (such as machine
locations, part geometries, etc.) i s deferred to the primi-
tive level; however, this cannot always be done. The
TASK level, for example, must reference the database to

determine if vision is required to acquire a part or i f the
exact position of the part i s already known, as it would be
if the pan were in a fixture. For the January 1984 Run of
the AMRF, every named point has the coordinates of that
point (reference pose) stored in the database. If the
named point is a collection or array of locations (called a
pallet) then the database will include an array of offsets
from the reference pose.

4. E-MOVE LEVEL
The TASK level issues commands to the E-MOVE

level to implement the commands from the WORK-
STATION. The commands from the TASK level to the
E-MOVE level, shown in Fig. 6, are:

4.1 LOCATE (OBJ)
First, the gripper is opened fully to allow the robot
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IAX-YAC4

MAKE BOXT

IPART I I IEND ATCOMMAND

VlS€-UOSE W T

ENQMVE CART

ACOUIRE IDOXT (2) IFIX-MAC5 I I
VOE-OPEN IWWT. OPEN LEFT

1 I V U K ZTRANSFER I00x1 (2)
TRANSFER 100x1 (3) I V-8LKJ IV - U K 4 I V-ELK2

1 V X K I

~ - C L O s ELEFl

MOVE 1 BOXT (2) I V-OLK5 FIX-MAC1

VISE-CLOSEm
RELEASE I I I I FIX-YAC2

MOVE I -cLoa-onw" 1 IFIX-MAC3

VISE-OPEN RlWl

MOVE I I IFIX-SAFE I

I I
MACHINE DOVE TAIL

ACOUIRE IBOXT (2) I FIX-YACS

VISE-OPEN luQm. OPEN LEFT

TRANSFER I I WS-SAFE

Fig. 7. Commands from WORKSTATION to make a box top.

vision an unobstructed view of the scene. Then the robot
will analyze the scene currently in i ts view. Using the
vision system, i t will identify the specific object and
determine its orientation. The robot will then close the
grippers to the approach opening for that object. Finally
the robot i s positioned such that closing the grippers wil l
grasp the object. The database provides the physical
characteristics of \he named OBI to the vision system.
The details of the recognition algorithm are defined in the
vision system. I f the specified object cannot be identified,
a locate failure is returned to the TASK level. The inter-
face to the vision system is discussed in Section 5.

4.2 PICK-UP (OBJ)
The gripper is closed until the gripping force on the

object reaches the pre-specified value. The lower level
will return a grasp failure i f the final gripper opening is
not within the required tolerance. The object size is
acquired from the database and the gripper opening is
part of the status data passed up from the Gripper
Controller.

4.3 MOVE-TO (LOCATION
The robot i s moved from the current location to

the named destination location. The data structures

supported by the NBS control system provide many
options for defining approach and departure paths for any
combination of source pointdestination point moves.
The details of these data structures are beyond the scope
of this paper. In January 1984 Run of the AMRF, almost
allmoves were of the simplest type. In this case the data-
base provides pointers to a set of points defining a
departure path from the initial robot location, and a set o f
points defining an approach path to the destination. The
robot will follow a straight path between the end of the
departure and beginning of the approach path. In the case
that the source or destination, or both, are pallets. the
move table will be adjusted to offset the approach and/or
departure paths to account for the multiple sectors. 1he
MOVE-TO command successively accesses the points
along the desired trajectory, commanding the PRIMI-
TIVE level to GOTHRU each point until the last point, at
which time a GOTO command is issued to GOTO that
last point.

In addition to the approach and depamre trajectories
a set of motion parameters (such as maximum speed.
acceleration and deceleration) are set from the database
for each point.

I f the physical layout of the machine or geometry of
the parts are changed, only the data stored in the data
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structure will change- none of the program needs to be
modified.

4.4 MOVE-TO-OBJ(ON, NAMEDLOCATION)
MOVE-TO-OBJ is exactly the same as MOVE-TO

except that the approach opening for the named object i s
accessed from the database and before moving, the
grippers are opened to the approach opening of the
specified object.

4.5 RELEASE (OW
The RELEASE command opens the gripper to the

release opening specified in the database for the specific
OBJ at its current location.

4.6 PA USE
Each level has a pause command. When received, it

passes a pause down, and a done back up to the level
above.

5. VISION SYSTEM INTERFACE
TheE-MOVE level i s the only level that was interfaced

with the vision system during the January 1984 test run.
The vision system is capable of many complex operations
including visual servoing at frame rates, and comparison
of the current image with the expected image as deter-
mined from a world model. Reference I31 gives more
information on the NBS Vision System. During the
January 84 test runonly two vision commands were used:

5.1 FLOOD-FLASH (OB.?, EXPECTED RANGE)
The name of the OBI and the expected range of the

object are passed to the vision system. The vision system
accesses the database to acquire the feature values of the
object, and compares these features to the object or
objects in i ts field of view. I t locates the image of the
correct object and returns the x and y offset in mm in
camera coordinates of the object and the roll angle of the
object. I t also returns the range of the object based upon
an assumed surface orientation.

5.2 WNE-FLASH (OW, EXPECTED RANGE,
EXPECTED SURFA CE-NORMAL-VECTOR)

Upon receiving this command, the vision system takes
a 2-line structured light picture, as described in Ref. 3.
This picture reveals the range and surface orientation o f
the observed object. I f the measured surface orientation
and range do not match with the expected surface orien-
tation and range, then the vision system returns a line-
flash fail. Otherwise i t returns the measured range.
Several of the parts manufactured during the January
1984 Run had identical top surface dimensions and could
only be distinguished by their thickness. The line flash
command was used to verify that the correct part was

being observed. Ranges could be resolved to 0.2%.
This yields, for the viewing distance we were using,
approximately 1mmresolution. Surface orientation could
be determined to approximately 2%.The vision system
could function without problem in all of the ambient light
conditions experienced, and contains hardware and
algorithms to help alleviate problems usually encoun-
tered in dealing with highly reflective pans.

6. PRIMITIVE
The PRIMITIVE level i s the level which interfaces

with the robot and gripper. The N B S control system fully
supports having multiple systems (the robot and the
gripper controller for example) functioning sirnulta-
neously. However, the January run of the AMRF did not
exploit this capability. The commands implemented by
the PRIMITIVE level presently control either the robot
or the endeffector but not both simultaneously.

6.IGOT0 (POINT)
The GOT0 command will cause the robot to move in

a straight line to the desired point. As it nears that point
i t decelerates and stops at the destination point. A pointer
to the maximum deceleration, speed, and other motion
parameters for the specific move being made are passed
to the PRIMITIVE level from the E-MOVE level.

6.2 WTHRV (POINT)
The GOTHRU command i s identical to the GOTO

command except that the robot does not decelerate as i t
approaches the commanded point. A done i s returned to
the E-MOVE level when the robot comes within a break-
point distance of the specified destination. The E-MOVE
level then sends the next point while robot continues to
move.

6.3 APPROA CH-POSITION-FINGERS (END-
EFFECTOR-PARA-PTR)

T h e system database includes an end-effector para-
meter table which specifies the approach opening.
departure opening, and grip opening for each pan. The
E-MOVE level passes a pointer to this table to the
PRIMITIVE level. The APPROACH -POSITION -
FINGERS command accesses the actual data pointed to
by the END-EFFECTOR -PARA-PTR for the approach
opening and commands the gripper to open to that
amount. I f the gripper, for whatever reason, cannot carry
out that command, a GRIP failure is reponed to the E-
MOVE level.

6.4 DEPARTURE -POSITION-FINGERS (END-
EFFECTOR-PARA-PTR)

DEPARTURE -POSITION -FINGERS is the same as
the APPROACH -POSITION -FINGERS except that the
departure -opening is passed to the gripper control system
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:(EO) cu

:DEFAULT

:(Eam.rwlng :

W R U T

Fig. 8. State table for ACQUIRE.

instead of the approach-opening.

6.5 IMMED-GRASP (END-EFFECTOR-PARA-PTR)
This command directs the gripper controller to close

the gripper until the default force of 100 Ib i s encountered
on the fingers. Then the END-EFFECTOR -PARA-PTR
is used to access the grip-opening of the part and this i s
checked against thi current finger spacing of the gripper.
If the two values do not match within tolerance, the
PRIMITIVE level returns a GRIP failure to the E-MOVE
level.

6.6 PAUSE

level to PAUSE.
Reports done to the level above, and directs the lower

7. BELOW THE PRIMITIVE LEVEL
7.IRobot inregace

The PRIMITIVE level provides the robot three x, y, z
values defining the location of the center, orientation,
and rotation of the wrist plate. These nine values define
the exact pose of the robot wrist plate. This interface with
the robot may be sufficiently generic that it (or a similar
interface) can provide the basis for a standard at some
time in the future. The coordination of joint motion to

achieve the required pose is robot dependent and i s
performed by the robot controller.

7.2 Gripper interfaces

Used.

SPEED). This command will servo the gripper to the
specified opening at the specified speed. If the force on
the fingers exceeds the specified force before the grippers
are within tolerance of the specified opening, a GRIP
failure is returned.

SPEED). The grippers are closed at the specified speed
until the force on the fingers exceeds the specified force.
The gripper controller continually returns the current
gripper-opening.

In the January 1984 test run only two commands were

7.2.I.POSITION (GRIPPER-OPENING, FORCE,

7.2.2. GRASP (GRIPPER-OPENING, FORCE,

8. APPLICATION CODING
At each level of the control system, incoming

commands are decomposed into output commands which
are performed by the next lower level. The decompo-
sition of tasks i s defined through state tables and
procedures called by the state tables.

Each command has a state table which is executed



NBS robor coatrd system 0 L. S. HAYNESet a/. 89

whenever that command i s received from the level
above. (There are a total of 20 State tables, one for each
command.) Here we will describe the state table for
ACQUIRE (OM, SOURCE), as shown in Fig. 8.

8.IAcquire state table
Looking at Fig. 8, the input variables in the upper left

of the state table are the “table test variables” which
represent feedback variables from the lower level and
from sensory systems, as well as the values of internal
variables. Every cycle of the control level, these
variables are compared with the test conditions in each
and every line of the state table. A line i s said to match the
table test variable if every input value in that line matches
the table test variable’s value. I f no lines or more than one
tine matches, 8 STATE-TABLE error has occurred. If
exactly one line matches then the procedures in the output
section of that line are executed. These procedures are
totally arbitrary - there arc no restrictions as to what
they must or must not do. In the January run these

, procedures are coded in a language called SMACRO;
however, any language would be sufficient.

We must emphasize that there is no interest at this time
in defining a standard language for programming such
procedures. In fact, given today’s state-of-the-art, we
believe any such effort would fail. Instead we are
pursuing standard interfaces, and a standard structure
based on hierarchical decomposition and communicating
levels of the hierarchy. The language used for specific
computation seems to be of secondary imponance.
Because the use of SMACRO is not a primary issue, we
will nor present the syntax or features of SMACRO.
Some SMACRO procedures will be shown, but for the
purposes of this paper, they should be considered
pseudo-code.
The table test variables for the state table ACQUIRE are:
0 new command.

True if and only if a new command has been received
from the level above. When any command is sent, a
command number is incremented and sent along with
the command. This incrementalcommand -number is
what a level uses to tell if a command is new. A pre-
processing routine which executes each and every
cycle sets the new-command flag if a new incremental
command number i s received.

The command received by a lower level is echoed
back.

0 status-in
The status of the lower level: Executing, Done, or
Failed.

0 cur-state
An internal variable used for sequencing through the
states of a state table. Specific state variables are not

0 ref.-command -in.

required. Several of the state tables used in the
January Run did not use a state variable for
sequencing.

The ACQUIRE command gives the location of the
object to be acquired. The database is accessed to
determine if vision is required to locate the part at
that location. If vision i s required, table test variable
locsf-obj = vision-reqd, otherwise loc-of-obj does
not qual vision-reqd.

This flag is an internal flag which will be true if there
i s currently an object in the robot gripper.

This flag will be false if the SOURCE location has not
been specified.
When the ACQUIRE command is first received,

table-test-variable newcommand will be true, ref-
command-in will be pause, and status-in will be done.
Only lines 1,2.3, or 4 of state table ACQUIRE could
possibly match. If either an object has already been
specified or the source is not specified, lines 2 or 3 will
match because the command i s illega!. Procedure
CMD = >FAILURE i s executed. Figure 9 is a listing of
most of the procedures used by ACQUIRE. As can be
seen, CMD=>FAILURE simply prints a message, and
sets the word “command” into a variable “failure”
which will be returned to the WORKSTATION to
indicate the type of failure which occurred. Procedure F-
NEXTSTATE sets variable cur-state to a value indicating
a failure. In th is failure case, line 14 will match on the
next cycle, commanding the lower level to PAUSE and
returning a fail to the level above. Line 14 will continue
to be executed until a new command i s received.

Assuming the ACQUIRE command was legal. either
line I or 4 willmatch depending on loc-of-obj. I f loc-of-
obj equals vis-reqd then vision is required. Line 4
matches, procedure VUPOS is executed, and command
MOVE-TO is issued to the E-MOVE level. (Note that
MOVE-TO is itself a procedure but its effect i s simply to
issue the MOVE-TO command.) Procedure VUPOS
computes the robot pose for the particular sector of the
unload station. The sector-number is sent from the
WORKSTATION as part of the ACQUIRE command.
Procedure 2-NEXTSTATE sets cur-state to 2. While the
robot is moving, status-in = executing and line 15 will
match. Eventually the robot will reach the specified goal
point, the E-MOVE level wil l report status-in = done.
and line 6 will match. The variable cur-state will be set to
3, and procedure LOCATE commands the E-MOVE
level to locate the specified object using vision.
LOCATE returns the x and ,v offsets and roll angle which
will place the robot gripper directly over the object.
aligned with the axis of the object. While LOCATE is

0 loc-of-obj

0 obj-acquired

0 Source-spec
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( OUTPUT-COMMAND-PROCEDURE SETUP-SOURCE. umm3 1
TASK DEFINITIONS

#X SET-SOURCE

wurccIoCp! -ptr-in = > Wpt-ptr-out
obj-ptr-in => obj-ptr-out
PRINT" SET-SOURCE ''
wurcchpt -ptr-in = > romombor-ewml-loc
la l r r => apoinl-pos-llag

ond-routine

( OUTPUT-COMMAND -PROEWRE YOVE-TO WlU83 J
TASK DEFINITiONS

a# MOVE-TO
obi-ptr-in = > obi-plr-out
m v t t o =1output-command
PRINT" MOVE-TO "

mnd-routine

X# MOVE-TO-OBJ
obi-plr-in => obi-ptr-oul
move-10-0 = > output-command
PRINT" MOVE-TO-OBJ *'

end-routine

( OUTPUT-COMMAND -PROCEDURE PICKUP 9116183 )
TASK DEFINITIONS

## PICKUP
obl-plr-in = > obj-ptr-oul
pickup = > output-command
PRINT" PICKUP "

true = > obj-acqutrod
obj-ptr-in = > obj-now-in-gripper
obj-now-in-gripper = > gripp.d -obj -ptr -oul- t~e~v0
Call REMOVE-FROM-BUFFER-DE

end-routine I

( VUPOS-SETUP 9/15/83 )

## VUPOS-SETUP *tor-in I> w C t Q 4 U 1
8tBlii -VUPOSI> locpt-ptr-out
obi-ptr-in = > obj-plr-out

rourco-kpt-ptr-inI> rmmbu -currmt -loc
PRINT" VUPOS-SETUP "

end-rwline

( OUTPUT-COMMAND -PROCEWRELOCATE 8/31/03 )
T A S MFlNiTlONS

obj-*-in => obj-*-out
wurco-kept-ptr-In => (ocpl-pr-out
k u t e = > wtput-tornmond
PRINT" LOCATE "

md-routine

( REMOVE-FROM4UFFER -DB 9115183 )
TASK DEFINITIONS

## REMOVE-FROM-BUFFER-DB
ifremember -currenl-loc (EO) buffer
thon il old-oulput-command (NE) pickup

then
u w obJ-ptr-In
-I.: tbor

H tbuflw-boxt (LE) 0-intmgw
then 1-state => cur-state bul = > failure*so tbuflw-boxt (- ) 1-intogw => tbuffw-bort

ondil k u k :

I1 bbuflw-borb (LE) 0-intogar
caw.: bbox

thm (-state = > cur-Mate bul = > failure

( REMOVE-FROM-BUFFER-DE continud J

olw bbuflw-boxb ( - 11-inlogw => bbuffw-borb
endil k e r k :

il fbuffer-llrg (LE) 0-integer
Cas.: flag

then f-fbt. = > CUf-lta1. b d t > fdlW0
01s. fbuflw-1l.g ( - ) t-inlogw r>tbuffn -llag

endil bresk:

n hbulfw-hour (LE) 0-intmgw
cas.: hour

then 1-slateI> cur-state but = > lailure
drr hbuflw-haus (- ) 1- in1.g~= > hbutter -hour

endif break: default: bruk:
mnd-can mdif endif

md-routine

Fig. 9. SMACRO procedures used by ACQUIRE.

executing, the TASK level state table for ACQUIRE will
again match on line 15. When LOCATE completes,
status-in will equal done, and line 7 will match. The
procedures executed in line 7 will set the NEXTSTATE
to 5, and will execute procedure PICK-UP. This
procedure, shown in Fig. 9, does a number of things.

1. Passes the object -pointer down to the €-MOVE level
so the PICKUP command can use the database to
determine the expected size of the object to be grasped
and compared it with the actual finger spacing after
the grasp operation.

2. Sets the value PICKUP into the output command
variable. This variable determines which state table
wil l be executed at the E-MOVE level.

3. Sets true into object -acquired because as soon as the
pickup completes, an object will be in the gripper. I f
the pickup fails to pickup anything (fingers close to 0
spacing) this flag wil l be reset to false.

4. Sets the object pointer into variable obj-now-in-
grippar. This variable always tells what i s currently in
the gripper. I f the E-MOVE level returns a fail
because the grasped object was the wrong size, this
value wil l be set to "unknown -object".
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Fig. 9 (continued).

5. Calls REMOVE -FROM-BUFFER-DB.I t i s the robot
control system's responsibility to maintain how many
of each parttype are currently on t h e buffer table.
Procedure REMOVE-FROM-BUFFER-DB keeps
track of the number of each part on the buffer, and
wil l return a failure if there are no parts of that type
currently available for th is PICKUP operation.
When the PICKUP command is done line 8 of the

ACQUIRE state table matches and the ACQUIRE
command is complete. A PAUSE is sent down to the next
lower level, a DONE i s reported back to the WORK-
STATION, and the next state is set to the done-state.
From then on, line 9 will match until a new command is
received.

In the case that the loc-of-obj i s not equal to vis-reqd,
then vision is not required. Line 1 will match, and the
MOVE-TO-OBI command will result in the gripper
being opened to the approach-opening of the named
object, and the robot moving to the source location.
When the MOVE-TO-OBJ is done, line 5 matches and
from there execution proceeds as already described for
the case where vision is required.

Lines 10-13 handle the several types of failure which
may occur. In these specific cases, noerror recovery was
attempted. The type of error is simply reported to the
level above via the variable "failure" passed to the
WORKSTATION.

The other state table and procedures all look and
function similar to the ACQUIRE.

8.2 State graphs
Alternatively, state tables can be written as state

graphs. Figure 10 is a state graph of the ACQUIRE
command. The two formats are nearly isomorphic, and
we are working on a system to convert from either format
to the other. The circled numbers of Fig. 10 correspond
to the lines of the ACQUIRE state table shown in Fig. 8.
State tables emphasize the conditions under which an
operation i s performed but tend to hide the sequence of
execution. The converse is true for state graphs, so each
have their place.

8.3 Pre andpost processing
The panicular application being reported on in this

paper did not require any application specific pre or p o s t
processor routines. However, there are several pre and
post processor routines which are required by each
control level. These routines (identical in every control
level) test whether the new commandflag should be set
true. or whether a new output command has been issued
and the incremental request number should be
incremented.

9. COMhlUNlCATIONS
The actual transfer of command and status buffers

normally occurs every cycle, and the details of this
transfer are invisible to the application state tables and
procedures. The names of buffers IO be moved and the
name of the destination buffer are entered into the
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ma
failure

COmnund
hllure

tellurry;
Fig. 10. State transition diagram for ACQUIRE.

communication process and the rest i s automatic. Th is is
true regardless of whether the levels reside on the same or
separate processors, or whether they are buffers to or
from control systems levels or external systems such as
the gripper control system or vision system. Figure 11
shows all but two o f the command and status buffers used
by the robot control system in the January 1984 run of the
AMRF. The fact that these buffers are the only mechan-
ism for communication between levels and external sub-
systems greatly simplifies integrating large systems
together. At the hardware level, the communications
processor transfers the output buffers ofallprocessors in
a common memory area and updates any input buffers
appropriately from that. The communications processor
has a 2K byte common memory dedicated for this
purpose. The diagnostic sytem can access all variables

and record the complete state of the system at every
cycle. Those recordings can then be studied or displayed
in real time or off-line.

Although the NBS Control System cycles as defined
above, this does not mean that any level must necessarily
respond in one cycle. From the point of view of the state
tables and procedures, each level is fully asynchronous.
When a command is issued to a lower level, an incremen -
tal command number i s incremented and passed down
with that command, as can be seen inFig. 11. The issuing
level's new command flag will not drop to false until
the new incremental command number is echoed back.
Likewise, when a state table line is matched, and a
new state is to be set, the current state variable (cur-
state in Fig. 8), will not be updated until the lower
level has acknowledged receipt of its command by
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Fig. 1I.Communications.

echoing back the new incremental command number. To line 5 sets the next state value to 5, and issues the PICK-
understand why this i s necessary. consider Fig. 8, line 5. UP command, if the lower level takes several cycles to
The command PICKUP is to be issued to the E-MOVE respond. there will be cycles where ref-command -in i s
level, and the current state value is to be set to 5. When still move-to-obj, and status-in i s still done, yet the state
eventually the PICKUP is done. line 8 will match. When variable cur-state would now be 5. In the above case there
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Fig. I1 (continued). Primitive level communication.

would be no matches in the state table. This problem
could be solved by adding additional lines in the state
table to handle these cases but i t would nearly double the
size of the table. instead, the procedures NEXTSTATE
do not actually change the value of cur-state. They store
the new state value in a temporary location. and a pre-
processing procedure stores that value into cur-state
every cycle where the incrementalcommand -number-
echo-in equals the incremental -command -number-out.
At the primitive level, if we are issuing commands to two
different controllers, both command -number-echo-in
values must match their corresponding command-out
values.

10. USER INTERFACE
The basic emphasis of FORTH in providing an inter-

active user environment was expanded and further struc -
tured. This language was then used as a basic tool to
design and implement the multiprocessor operating
system, the procedural language SMACRO, various
editors, t i le managers, data dictionaries, and graphics
support operators.

The control system i s completely interactive, allowing
the user (for diagnostic purposes) to single-step the
system at any level of detail. For example. any procedure
may be run by typing its name. To cycle the entire TASK
level. one types <TASK-LEVEL>. The preprocessing

f
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routines may be run by typing <PREPROCESS>. The
state table can be cycied by entering <STATE-TABLE>.
Variables may be read out andlor modified by name at
any time. Likewise procedures may be changed using the
editor. the modified procedure(s) reloaded, and the
system will execute with the new definitions.

For the January run of the AMRF separate software
subsystems were coded to simulate upper and lower
levels including workstation controller, the coordinated
joint level, the gripper, the sensory systems andall of the
levels of the robot control system itself. These simula-
tions, along with the interactive capabilities of the
system, greatly facilitated debugging by permitting
ponions of the system to execute as if the remainder of
the system were running.

An extensive diagnostic system has also been imple-
mented. Because of the structure of the communication
system, every cycle the relevant machine state of all
processes is available in the common memory. The
diagnostic processor has access to the common memory

. every cycle. A log of the machine state is made,
permitting the NBS Robot Control System to be stepped
so the machine state at any time can be observed. This
greatly facilities debugging sensory interactive real time
applications where events happen at unpredictable times
and there is usually no way to recreate the exact sequence
of events which caused a panicular problem.

1.

2.

3.

4.

In addition to the log described above, a menu driven
system allows the user to select a wide variety of real time
graphical outputs including multiple xy graphs using any
variables in the system. For example, one could display
a graph of tool tip velocity versus time, or the ortho-
graphic projections (xy. yz, and xz) of the tool tip
position. This allows a graphic display of robot position
even when the robot is not available to the application
designer. The values which are displayed can also be
controlled by the state tables being executed so that
.different displays will appear depending on exactly what
the robot i s doing at that instant.

In addition to graphs and plots of variables, a stick
figure robot can be displayed, and will move as
commanded by the output of the PRIMITIVE level in
exactly the same way as the real robot. This has proved
extremely useful for debugging software, alleviating the
problems of attempting to run a real robot under control
of untested software.

This article was prepared by United State Government
employees as pan of their official duties and is therefore not
subject to copyright.

Identification of commercial software does not imply
recommendation or endorsement by the National Bureau of
Standards, nor does it imply that the software is necessarily the
best available for the purpose.
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