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This describes the first phase of an effort to develop a robot crane for shipbuilding

applications. The focus of this phase is on the study of the stiffness characteristics
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of this robot as a function of its geometry payload and height. A brief description of
the design of the main part of the robot crane consisting of a six-wire parallel link
manipulator is given. The stiffness of the manipulator to side loads and momenis
was studied. The nonlinear and linearized mathematical model of the manipulator

stiffness matrix is derived. Stiffness measurement tests were conducted using a small
size laborarory model. The results of these tests for various external loads. heights,
and payloads are given. Computer simulation and theoretical results are also

discussed.

Introduction

The last ten years have seen a tremendous growth in the
use of robots in the manufacturing industry with more than
20.000 units installed in the U.S., most of them in the
automotive or automotive-related industries (U.S. Depart-
ment of Commerce. 1987). Amidst this astounding techno-
logical development there are very few applications of robots
in the heavy construction industry and large-scale assembly,
like shipbuilding. The reasons for that delay are probably due
to the fact that shipbuilding is a made-to-order industry,
requiring great precision in the construction of components
and blocks. requiring an enormous number of structural
members and machines most of which are heavy and bulky.
Shipbuilding construction, being labor intensive, is becoming
more expensive every year, while robotic automation is be-
coming less expensive and more capable every year. Perhaps
the time has come for the two technologies to intersect and
to help each other enhance their cost competitiveness and
productivity.

In Japan, the Japanese Shipbuilding Society started a 5-yr
research and development plan of “Modemization of Produc-
tion Technology in Japan™ on 1982 (Kubo, 1987). The pro-
gram is sponsored by a consortium of seven major Japanese
shipbuilders, and funded by the Japan Foundation for Ship-
building Advancement. As a result of this effort, prototypes
of large size gantry-type robots for welding, surface prepara-
tion and painting of ship structures have been built by Ishi-
kawajima-Harima Heavy Industries Co. and are now being
tested by Sumitomo Heavy Industries, Ltd.

One significant part of shipbuilding activity involves hand-
ling. lifting. positioning and assembling of large and small
ship components and machinery. These operations are not
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only labor intensive, but dangerous and tiring too. For ex-
ample, end load outfitting involves transfer of loads from a
crane to hand rigging equipment. Lateral translation of the
load usually involves additional transfers or trolleys running
on rails temporarily attached to ship structure. Instaliation
and operation of hand rigging equipment is heavy labor-
intensive work, and each load transfer is a potentially very
dangerous evolution. Many ship system components must be
landed on foundation or inserted with precise lateral position
orientation and declivity. Additional rigging, tag lines and
contact forces applied by rigging personnel are used to make
these landings. Hands and feet in way of the lift are in danger
of being crushed by slack loads suddenly seating. Often final
alignment must be made with jack screws, wedges and gibs.

Currently, ordinary shipvard cranes are stable only in the
vertical direction. The load is free to rotate in all directions
and sway in the horizontal plane under the slightest side
pressure, like a pendulum does. Under these conditions it
would be very difficult for the crane to support any robotic
operations due to the excessive compliance of its end effector.
Automatic crane antisway control devices have been proposed
and tested by several people (Kogure, et al.,, 1978: Carbon.
1976; Gercke, U.S. Patent No. 2,916,162). Although these
devices tend to suppress the pendulum motions in the hori-
zontal directions, they fail to suppress any pitch, roll or yaw
rotations of the load. Other systems have been developed
which try to solve the sway problem by employing several
wires and winches (Noly, U.S. Patent No. 4,350,254). These
systems add considerable complexity and cost to the load-
handling system and have not found practical application
thus far.

Conventionally designed robots could be used as shipyard
cranes, but they would probably be impractical for handling
heavy loads. Considering the low payload to manipulator arm
weight ratio of these robots, they would have to be constructed
of gigantic dimensions, occupy a large. area of the shipyard
ground, and consume large amounts of power.
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In this paper we propose a new crane design, which despite
its simplicity, results in a very stifl load platform which can
be used as a robot base or end effector for heavy loads. A
nonlinear and a linearized model of the crane stiffness to
external loads are derived. A small size model of the proposed
crane was constructed and its stiffness to external side loads
was measured.

The Proposed Robot Crane Design

Considering the requirements for a robot crane, which
should provide superior stiffness to load roll and sway, has a
large work volume without occupying any significant floor
space and has a reasonable size, the mechanism concept
shown in Fig. 1 is proposed. It consists of an equilateral
triangular platform which will be suspended by six wireropes,
two at each vertex of the triangle, from an overhead carriage.
The carriage can be attached to either an overhead (see Fig.
2) or a boom crane depending on the application. The carriage
includes a single winch onto which all six wireropes attach
and rope guides which guide the six wireropes away from the
winch in three pairs equidistantly spaced. If desired, it is
possible to adjust the lengths of the individual wireropes with
actuators which are mounted between the carriage and the
guides. Adjusting the lengths of the wireropes will result in a
change of the position and orientation of the suspended
platform and the rope tensions (Albus, 1987).

The suspended platform behaves as if the six wireropes were
an extensible single solid beam with a spring constant de-
pendent on the weight of the load and the height of the crane
for a given crane geometry and wireropes type and size. This
is a significant improvement in stiffness over a conventional
crane and it enables the load to be accurately positioned and
provides a stable platform which can be used to exert torques
and side forces on objects being positioned. The suspended
platform can be used as a stabilized base for the direct
mounting of conventional manipulator arms or it can be used
for the support of special substructures for specific crane
applications. For example. to extend the reach inside closed
spaces a subplatform load handling mechanism can be used
which will enable shipyards to accomplish end load outfitting
of ship modules and precision handling of ship system com-
ponents with improved productivity and personnel safety. To
extend the reach inside closed spaces, a folding substructure
mechanism can be used in order to pass through narrow
openings and then unfold to cover the desired inner space
volume.

The suspension mechanism of the proposed robot crane
platform shown in Fig. 1 imitates the behavior of a parallel
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Fig. 1 Mechanism concept
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Fig. 2 Overhead robot crane

link manipulator arm. The arm mechanism is called that
because the links are positioned side by side, “approximately”
parallel to each other and each link serves a role “approxi-
mately” equal to that of its neighbor. This is different than
the design of the more common serial link manipulators built
of a chain of links connected end to end in a serial manner.
Parallel link manipulators are in general known for the sim-
plicity of their mechanical design, and their high strength and
stiffness-to-weight ratios, because their actuators bear no mo-
ment loads but act in simple tension or compression. They
are also known for their high force and moment capacity,
since their actuators act all in parallel. Such manipulators
with solid adjustable length beams in the place of the wire-
ropes were first used for the design of tyre test machines
(Gough, et al., 1957, 1962); later they were used for the design
of flight simulators (Stewart, 1965). With the increasing
interest in robotic arm manipulators, studies have been con-
ducted for its use as a mechanical wrist (Bennett, 1968), a
compliant device (McCallion et al., 1979), a force/moment
or position sensor (Koliskor, 1982), a robot arm (Fichter et
al., 1980, 1984, 1987; Powell, 1982; Landsberger, et al., 1985;
Sheridan, 1986; Konstantinov et al., 1985), and an industrial
manipulator for assembly (Gadfly, 1983) and for grinding
(Multicraft, 1987).

The design discussed in this paper is taking advantage of
the suspended crane load to maintain the wireropes extended,
and thus form six flexible wires which, with their elastic
deformation, oppose any displacement of the payload. The
stiffness created by this elastic deformation is superimposed
onto the pendulum-effect-created-stiffness of ordinary cranes.
Individual rope length control of the position and orientation
of the platform is possible, but it is probably difficult for the
length of the wires considered here, energy-consuming for the

_payloads considered, and not necessary if the responsibility

for the manipulation control is placed on the end-effector
device which will be suspended from the platform.

Nonlinear Model Stiffness Study

This section describes the development of a computer
mode! of the robot crane stiffness based on the nonlinear
equations of the quasi-static motion of the lower platform.
For a given external load (force and/or moment), applied to
the center of gravity of the lower platform, the computer
program solves the force and moment balance equations of
the platform and wireropes support system to determine the
corresponding three-dimensional space displacement. The
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relationship between the six Cartesian coordinate frame com-
ponents of the load and the components of displacement
expresses the stiffness of the crane structure.

The basic structure of the robot crane, which consists of
the wireropes support system, is shown in Fig. 3 for the resting
steady-state position. The overhead carriage and the sus-
pended platform are represented by two equilateral trianges.
In this position both triangles are assumed to be horizontal
with their centers of gravity lying on the vertical axis z. The
overhead triangle is assumed to be fixed in space and has
three vertices located at

A: (=b, =bv3/3, = h)
B: (b, =b+3/3, =h)
C: (0, 2bV3/3, =h) )]

with respect to a fixed Cartesian coordinate frame (x, », z),
based on the lower triangle, when it is positioned at its steady-
state resting stage, and centered at its center of gravity, (see
Fig. 3). Where 2b is the length of the side of the overhead
triangle and 2a is the length of the side of the lower triangle.
The height £ is the vertical distance between the two triangles.

The lower triangle, before it is displaced, has three vertices
Jocated at

D: (0, =2a+v3/3, 0)
E: (a, av3/3, 0)
E: (-a, av3/3,0) (2)

with respect to the same coordinate frame.

The two triangles are connected by the six elastic wires,
{AD, BD, BE, CE, CF, AF}. Before the lower triangle is
displaced, all six wires have the resting steady-state length,
which is

L= <h?+ 4b° + a° - ab)/3 3)

Front View
Top View

bt —

Fig. 3 Robot crane wirerope support structure
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Fig. 4 Displaced lower pistform and no. 1 wirerope

Let the lower triangle undergo a rigid body motion (see Fig.
4) characterized by three displacements, u.. u,, u., and three
successive rotations, performed in the following sequence:
first, rotation by an angle ¢ about z*-axis, then # about x*-
axis, and then ¢ about y*-axis. Here x*-axis. y*-axis, -*-axis,
called the body axes, are the three axes embedded in the lower
triangle, which coincide with the x-axis. y-axis, z-axis, before
any motion takes place. If (x. y, z) and (x’. y’, z') are the
coordinates of any point on the lower triangle before and after
the motion, respectively, then the coordinate transformation
between the two can be written as

x’ X u.
".'I =Q y -+ u (4)
z’ z u-

where the rotational transformation matrix Q can be ex-

pressed in terms of the previously mentioned angles of rota-
tion as {Goldstein, 1950)

Cos  Cos ¢ — sin y sin 4 sin ¢
cos ¢ sin ¢ + sin { sin 6 cos ¢
-sin ¥ cos 6

_Q:

—cos 6 sin ¢ sin ¥ cos ¢ + cos ¢ sin 6 sin ¢
cos 6 cos¢ siny sin ¢ — cos ¥ sin 8 cos ¢
sin 4 cos ¥ cos @

(M

Applving the transformation equations (4) and (5) on the
coordinates of the vertices D, E. F. of the lower triangle gives
the coordinates of the same vertices at the new locations D".
E’, E’ after the end of the rigid body motion

D’: (-2a0::v3/3 + u,, —2aQ::v3/3
+ u,, —2aQ5:V3/3 + u.),
E': (aQ: + aQ,:v3/3 + u,, aQ-,
+ a0 V3/3 + u,, aQ: + aQ:V3/3 + u.),
F':(=aQ,, + aQ,-V3/3 + u,, —aQ.,
+ aQ::V3/3 + u,, —aQu + aQ::V3/3 + u.) (6)
where 0, is the ith row, jth column element of matrix Q

given by equation (5).

AUGUST 1989, Vol. 111/ 185



The vectors [,’ (n=1, ..., 6) defining the new position of
the wires can be found from (1) and (6), and are expressed as

L' =A =D =(=b+2a0,:V3/3 - u,, —bv3/3
+2a0::v3/3 = u,, ~h + 2a05:V3/3 = u) (7)

L' =B =D’ =(b+2a0:v3/3 - u, =bJ3/3
+2aQ:2V3/3 — u,, —h + 2a0::V3/3 — u.) (8)
L'=B-E =(b-aQ, —aQ.v3/3-u

-bv3/3 — aQ: - aQ=:V3/3
—h = aQs, - aQuV3/3 - u) (9)

Li'’=C—-E =(-aQ. —a0-v3/3-u
263/3 = aQ:, — aQ:V3/3 -
—h = aQy, = aQ::v3/3 — u.) (10)

=C - F' =(@aQ - aQ:v3/3 - u,,
26Y3/3 + aQ:, — aQ+:V3/3 —
~h + aQs, — aQs:v3/3 — u.) (11)

I’ =A=~F' =(-b+aQ, - aQ:v3/3 - u,

~bv3/3 + aQ: - aQ::V3/3 -
—h + aQs, - aQ:=V3/3 — u) (12)

After the rigid body motion, the length of the wireropes will
in general be different. Let the length of the nth vector /.’ be
denoted by /,’, which can be determined from

L=+ 07+ 12 (13)

where /.., I,., [,., are the lower platform (x, v, z) frame
projections of wirerope vector /,’. The length of the nth
wirerope, if it is in tension, is equal to /,”.

The force acting on the lower platform triangle, due to the
change in tension of the nth wirerope, as a result of the rigid
body motion is given by

PN Ly S A Y
" Q £ 1", < /0

where k is the stiffness of the wirerope. It is assumed here that
the wireropes cannot support compressive forces; therefore, if
{,’ becomes less than /y, the force on the nth wuerope becomes
zero.

The balance of forces acting on the lower platform requires
that

- u_n
u_\ ’
u_l L]

uyy

(14)

[+é'[n= (15)

where f is the external force applied at the center of gravity

of the f)latform.
The balance of moments acting on the lower platform
requires that

m+ QDX (fi+/)+ QF
X(fi+f)+ QEX(fi+/f)=0

where m is the external moment applied upon the lower
platform.

Notice that due to the complexity of the six wireropes
system kinematics, equations (15), (16) are highly nonlinear.
If u,, u,, u., ¢, 0, ¢, are given then it is straightforward to
solve for the force and moment f and m needed to maintain
the balance of the lower platform. On the other hand, for a
given external force f and moment m, equations (15), (16)

(16)
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have to be solved iteratively to determine u., u,. u., ¢, 6, ¥,
;vhich specify the position and onentation of the lower plat-
orm.

A computer program was developed to iteratively solve
equations (15), (16) and to determine the rigid body move-
ment of the proposed lower robot crane platform as a function
of the applied external load. The numerical results generated
by the computer program are compared with experimental
test data. The results of that comparison will be discussed in
a later section.

Linearized Model Stiffness Study

If the rigid body motion displacements of the lower plat-
form are small, it is possible to linearize equations (15) and
(16) in terms of those displacements about the resting steady-
state position for a total suspended weight of the lower plat-
form, substructure, payload, etc., of W. The linearization
results in a significant simplification of the nonlinear force
and moment balance equations (15), (16), which can then be
solved to derive an analytical expression between the external
lower platform load and the resulting displacements

L = Kbu (17)
where the stiffness matrix K is given by
K. 0 0 0 ~-K, O
0 K, 0 K. 0 O
_]10 0 Ks 0 0 o0
E=10 k0 k& 0 o0 (18
-K: 0 0 0 K. O
0 0 0 0 0 K

= [ff.f-m.m.m.} is the vector of the external load of force
S and moment m, dy = [6u.bu,éu.006y6¢) is the vector
of the resulting displacements, and

W
K|—4k(a- 'h—
by
K;=2ka(2a—b)hn7—;
K4—4kah'[—°+ b-—
L.} 3A..
.5 b 2W
K5—8kab1,+ b3h |
< BT v L.
lL.=vh. +&b +a —ab)/3 h“-6k(l..—lo)

l. and h. are the resting steady-state position wirerope length
and the height of the lower platform from the overhead
carriage, respectively, after the application of the weight W
with no external load. [, is the resting steady-state position
wirerope length for zero weight and no external load given by
equation (3). k is the wirerope stiffness assumed to be the
same for all six of them.

The elements of the linearized system stiffness matrix are
relatively simple expressions of the robot crane dimensions,
the wirerope stiffness, and the suspended total weight ¥ K|,
K, K., K<, consist of two terms, and, as the suspended weight
is reduced to zero, the first term is reduced to a function of
the geometry and the wirerope stiffness while the second term
is reduced to zero. However, the reduction of the first term is
much smaller than that of the second term.
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It is shown in Appendix ] that the first term of X,, (j = 1
to 5), is that component of stiffness which is due to the elastic
deformation of the wireropes, acting as linear springs, when
there is no suspended weight ( W= 0). It is shown in Appendix
11 that the second term of X, , is due to the pendulum-induced
stiffness by the suspended weight W.

Experimental Setup and Test Results

A small model of the proposed robot crane suspension
mechanism was constructed in order to test the validity of the
mathematical stiffness model. The model consisted of two
aluminum triangular plates, like the ones shown in Fig. 1, of
equal side length a = b = 114.3 mm (4.5 in.). The lower
platform was suspended by six steel wires of 1.08-mm (0.042-
ir.) diameter. Measuring the speed of sound propagation
inside the wires it was determined that the modulus of elastic-
ity of the material was £ = 206,831 x 10° N/m? (30 x 10¢
Ibf/in?). The wire stiffness for each test was determined from

= AE/l,, where A is the wire cross-sectional area. The
height & and the suspended weight W varied depending on
the test conditions. During testing external loads (force or
moment) of various amplitudes and orientations were applied
through a multiaxis load-cell. The resulting displacement in
the direction of load application was measured with a Linear
Voltage Differential Transducer (LVDT). The test results were
plotted and compared with the ones predicted by the mathe-
matical model. ¢

The model crane tests attempted to simulate the type of
external Joads which are anticipated to dominate the loading
of the real robot crane during operation. Single coordinate
axis direction external loads were applied during each test.
One series of tests involved the application of a single external
force on the lower platform in the horizontal direction, a
second series of tests involved the application of a force in the
vertical direction along the axis of symmetry, and a third
series of tests involved the application of a pure moment
along the vertical direction axis of symmetry.

Single External Force in the Horizontal Direction. During
this series of tests a single horizontal force was applied on the
lower platform in the y-axis direction, as is shown in Fig. 3.
The amplitude of the force, the length of the wires /,, and the
total supported weight W were varied. Figure 5 shows the
external force f, versus the displacement éu, plot from the
experimental test data for a certain wire length / and total
suspended weight W’ combination. As can be seen from that
figure for the range of external forces used in this test the
relationship between force and displacement is close to linear.

To check the accuracy of the theoretical model to predict
the experimental data, the external force f; versus the displace-
ment du, relationship from the nonlinear mathematical model
was plotted on the same figure. This plot is represented by
the solid line on Fig. 5. The same was done for the linearized
mathematical model and it was found that the two lines are
indistinguishable on that figure. As can be seen from those
piots, the theoretical models predict the crane suspension
mechanism stiffness accurately.

Solving equation (17) for an external load vector P, =
[0£,0000] gives

f = K,bu,

where

K’
K = (K. - E) 19)

substituting for K, K., K., gives a complex expression of X,
in terms of X, a, b, and W~

To get a better physical understanding of the source of this
stiffness, the external force f, versus the displacement éu, from
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Fig. 5 Experimental testing and computer simulation results

the mathematical models was plotted for the case when there
is no suspended weight (W = 0), shown by the dotted line of
Fig. 5. This is equivalent to considering only the first term of
K, (j = 1 t0 5), representing that component of stiffness
which is due to the elastic deformation of the six wires. The
remaining parn of the total stiffness, up to the solid line in the
figure, corresponds to the pendulum-induced stiffness by the
suspended weight W,

For comparison purposes, the external force f, versus the
displacement éu, of a single wire pendulum mathematical
model with % the suspended weight B’ was also plotted,
shown by the dashed line of Fig. 5. It is obvious that a crane
constructed that way would have a fraction of the stiffness of
the proposed robot crane to horizontal external Joads.

Figure 6 shows the results of a similar test for a lighter
suspended weight W’ As can be seen again the mathematical
models predict the stiffness with good accuracy. For lighter
weights the pendulum-induced component of the stiffness
decreases.

Figures 7 and 8 show the external force f versus the
displacement éu, plots for the same suspended weights B but
longer wire length /. Comparing these figures with Figs. 5
and 6 shows a significant decrease of stiffness as a result of
the increase in the wire length. This time both components
of stiffness are affected. The Fig. 9 plot reveals an interesting
phenomenon caused by the combination of low suspended
weight W and long wire length /. For low externa! side force
values f, there appears to exist a linear relationship between
/i and éu,. As the value of the side force increases though it
results in larger and larger displacements of the lower platform
resulting in a nonlinear relationship between f, and éu, . Closer
examination of the model revealed that this was caused by
the buckling of the suspension wires as they reached the zero
tension level. The phenomenon was simulated by the com-
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puter model by setting the wire tension to zero as soon as it
reached negative values. The computer simulation plot is

0 05 1. . . .

shown on the same figure. 4.5 d ols -o 1'5 210 2.5

Figure 10 shows how the stiffness, to an external force f;,
varies with the suspended weight and wire length. For this 4.0 —3.0
figure the stiffness was calculated from the computer model
assuming small external forces and displacements. As can be 38
seen from this figure, the stiffness can be assumed to be a ’ —2.5
linear function of the suspended weight W, for the model o
dimensions considered here. This can be verified from equa- g 30 x
tion (19) after subsiituting for the numerical values. The = q20 £
coefficients of all the nonlinear W terms are very small and - 25 =
can be ignored. 2 2

< -

Single External Moment in the Vertical Direction. During g 20 5 g
this series of tests a single moment was applied on the lower g 3
platform in the z-axis direction, as is shown in Fig. 3. The 1.5 Jd1o =
amplitude of the moment, and the total supported weight H#’ )
were varied. From equation (18) it can be seen that the 1.0
expected stiffness to that type of load is K. dos

Figures 11 and 12 show the external moment M. versus the 0.5 '
angular displacement é¢ plot from the experimental test and
computer model data for a certain wire length /, and two 0.0 | | | 1 0.0
different suspended weights B’ As can be seen from those 0.00 0.01 0.02 0.03 0.04 0.05

figures for the range of external moments used in this test,
the relationship between moment and angular displacement
1s very close to linear. There is a small drop in the pendulum
component of stiffness due to the decrease of the suspended
weight. In this case it appears that the stiffness is dominated
by the component of stiffness due to the elastic deformation
of the wires.

Figure 13 shows how the stiffness, to an external moment
M., varies with the suspended weight and wire length. For
this figure the stiffness was caiculated from the computer
model assuming small external moments and displacements.
As can be seen, from this figure, the stiffness can be assumed
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Fig. 11 Experimental testing and computer simulation results

Fig. 10 Computer model results Fig. 12 Experimental testing and computer simulation results
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to be a linear function of the suspended weight W, for the
model dimensions considered here.

Single External Force in the Vertical Direction. During
this series of tests a single force was applied on the lower
platform in the z-axis direction, as is shown in Fig. 3. The
amplitude of the force, and the total supported weight W were
varied. From equation (18) it can be seen that the expected
stiffness to that type of load is K. The experimentally meas-
ured stiffness came close to that value.

Conclusions

The linearized mathematical model of the proposed robot
crane suspension mechanism of equation (18) seems to pro-
vide an adequate prediction of the lower platform external
load to displacement relationship, at least for the experimen-
tally tested cases and for small displacements.

For small displacements the overall stiffness seems to con-
sist of the superposition of two terms; the first is due to the
elastic deformation of the suspension wires, acting as linear
springs, and the second is due to the pendulum stiffness
induced by the suspended weight.

A decrease in the suspended weight magnitude causes a
decrease of the pendulum component of stiffness. An increase
in the wire length causes a significant decrease in overall
stiffness. In this case both components of stiffness are affected.

The stiffness can be assumed to be a linear function of the
suspended weight for the chosen model dimensions and range
of weights.

The stiffness of the proposed robot crane mechanism is
significantly higher than that of a conventional single-wire
crane.

Of course, these conclusions apply only for the selected
robot crane design of the two equilateral triangles and six
wireropes shown in Fig. 1. The analysis technique used though
1s general and independent of the selected design.
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APPENDIX 1

Robot Crane Stiffness Matrix for No Suspended
Weight

In (McCallion et al., 1979) the stiffness matrix of a robot
wrist device with kinematic properties similar to the robot

crane suspension mechanism proposed here was derived. In
that work it was assumed that the wrist displacements are

Transactions of the ASME



small, that the wrist weight can be ignored (W = 0), and that
b= 2a (see Fig. 3).
Here the generalized stiffness matrix X, of the same mech-

anism for any values of a or b, with no suspended weight (¥~

= () and small displacements is derived. This stiffness is
produced by the elastic deformation of the lower platform
suspension system of the six wireropes each one acting as a
linear spring of constant stiffness k.

For a small rigid body displacement dy =
[ou, 8u, 6u.56 5y 6¢]' of the lower triangle platform from its
resting steady state position, where §u is expressed with respect
to the (x, y, z) Cartesian coordinate frame embedded in the
lower triangle (see Fig. 4), the wireropes length change is given
by

o[ = Adu 20)

where §f = [8/,8/.81,81.81.8l.) and 4 is the compatibility
matrix.

It can easily be shown that for small changes in the wire-
ropes length '

ol, = [LL." = D))/, forn=11t06 @n

where [, and [,’ represent the nth wirerope vector before and
after the rigid body movement. respectively, and /, represents
the length of the nth wirerope before movement. In this case
1,, = lu. .

For small angular displacements &8, &y, é¢. the rotational
transformation matrix Q given by equation (5) can be written

as

1 =8¢ &
Q0= |38 1 -3 (22)
-5y 8 1
Then, substituting in equation (7) gives
I’ =A-D'=(-b-2a3/38¢ - su,,
—b/3/3 + 2aV3/3 = bu,, —h + 2av/3/380 - du.)  (23)

I, and h are the resting steadv-state position wirerope length
and the height of the lower platform from the overhead
carriage, respectively. 2a and 2b are the lengths of the sides
of the two triangles (see Fig. 3).

Since
L=A-D=(=bQ2a-b)Y3/3,-h), (24
substituting in equation (21) gives
8l, = {béu, + (b — 2a)V3/36u, + hou.
~ 2ahV3/350 + 2abV3/38¢)  (25)

The same sequence of operations can be repeated to deter-
mine 6/, 8/, 8, 8l<, &l,, in terms of §u and the kinematic
parameters of the six wires suspension mechanism. Then the
compatibility matrix is found to be

b (b-2a)V3/3

-b (b-za)j3/3
@-b) (b+a)v3/3
A=W/ 7 - 2myv3ss
-a (a-2b)V3/3
(b—a) (a+b)V3/3
h =2ahV3/3 0  2abV3/3
h =2ahV3/3 0 -2abv3/3
h o ahv3/3 —ah 2ab¥3/3 | o
h ahv3/3  —ah —2abv33 | 20
h ahVv3/3 ah 2abv3/3
h  ahv3/3 ah -2abv3/3
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Using the virtual work principle, it is possible to prove
(Asada et al., 1986) that the stiffness matrix is given by

Ko=4'k4 @7

where k is a diagonal stiffness matrix whose elements are the
stiffnesses of the individual wireropes, which in this case are
all equal to k.

Substituting from equation (26) into (27) gives

K/ 0 0 0 —-K' 0
0 K’ 0 K/ 0 0
o 0o k0 0 o _
=19 k" 0 kK’ 0o o0 (28)
K’ 0 0 0 K<’ 0

0 0 0 o0 0 K.

where

K.’ = dka® + b° — ab)l—lz
0

K. = 2%ka(2a ~ b)h =
0

L

K;' = 6kh” =
10'
13 l
K.’ = 4ka’h’ 5
10'
Ks’ = 8kazb: ia
10‘

lo=vh"+ &b> + a° - ab)/3

Comparing equations (28) and (18) reveals that K,’, K-’,
K.', K.’, K.’, are equal to the first term of X, K-, K:, K,
K., respectively, if /, = l, and A, = A.

APPENDIX 11

Robot Crane Stiffness Matrix due to the Weight
Pendulum Effect

In this section the stiffness matrix K. due to the pendulum
effect of the suspended weight ¥ is derived.

Single External Force in the Horizontal Direction.
Assume that the six wireropes crane suspension mechanism
is modelied by a single wirerope of length A, with a payload
of total weight B’ Let an external horizontal direction force
/. along the x-axis be applied to the center of gravity of the
payload giving rise to a small displacement éu, as it is shown
in Fig. 14.

t, a—.
v
s,
Fig. 14 Pendulum mode! schematic
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If B is the angular displacement of the wirerope from its
vertical resting position and 7 its new tension force (see Fig.
14), then the force balance equations give

W=Tcos8 and f.,=Tsin§8 29)

Solving equations (29) for /. assuming a small angular dis-
placement 8 and that the wirerope elongation can be neglected
gives
w
fo=— bu, (30)
h.
Similarly, for an external horizontal force /. along the -

axis applied to the center of gravity of the payload and giving
rise to a displacement du,

w
L= . ou, (31
Single External Force in the Vertical Direction. Let T be
the tension force and / the length of the six wireropes at the
resting steady-state position when a weight ¥ is suspended.
Then the force balance gives
W=6 T%ﬁ . (32)
Let a vertical direction force /. along the s-axis, which is much
smaller than W, be applied to the center of gravity of the
lower platform resulting in a small displacement du.. Again
assuming that the wirerope elongation can be neglected the
force balance gives

W f=or it o +1 Su; (33)
Solving equations (32) and (33) for f gives
w
f= -’: du- (34)
Single External Moment in the Horizontal Direc-

tion. Figure 15 shows the lower triangular platform and the
no. 2 wirerope at the resting steady-state position and total
suspended weight W. The vertical direction component 7T-.-
along the z-axis, of the wirerope tension force T is given by

A
T..=T 7

(35)

Fig. 15 Lower plattorm and wirerope
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Let an external moment M, along the x-axis direction be
applied to the lower platform resulting in a small angular
displacement 86 (see Fig. 15). Again assuming that the wire-
rope elongation can be neglected the change in the wirerope
tension component 7. is given by

oT.s = T's—hl“—

"~

(36)

where éA. - is the amount of vertical displacement by which
the point D rises due to the platform rotation given by

oh.. = ~Rd6 = —2£a69

3 (37

S}xbstituting from equations (37) and (32) into equation (36)
gives

V3aw
0T .~ = —-3—2' —h:- a0 (38)
Similarly, it can be shown that
6T.‘2 = bT:h 67‘.‘3 = 6T:4 = 5T.—5
V3 aw
=6T., = —3— ‘67. ) 39)

Taking the moments of the wirerope tension forces with
respect to the x-axis passing through center of gravity of the
overhead carriage platform gives

;M,\ = 213—2[7(67'_—4 + 6T:5)

- —?b(a]‘:, + 6T-: + 8T-3 + 6T.) (40)
Substituting from equations (38) and (39) gives
w
= _ 4
M, = ab . &0 41

The same procedure can be followed in the case of an external
moment M, along the y-axis direction of the lower platform
resulting in a small angular displacement ¢ to obtain

aWw

8T.s = —8T:e = =80 (42)
w
M, =b(T: = 8T:)=abo-0y (43)

In this case, only wireropes nos. 3 and 6 contribute to the
moment expression.

Single External Moment in the Vertical Direction. Let an
external moment M. along the vertical z-axis direction be
applied to the lower platform resulting in a small angular
displacement 6¢ (see Fig. 15). Again, assuming that the
wirerope elongation can be neglected, the change in the wire-
rope horizontal tension force component 7., is given by

w V3 aw
6T, = -mRM =-3 h—,.ad’ (44)
Due to symmetry
M. = -6 5T = av2 %5 @5)
2 = 03000 = 05500
Transactions of the ASME



Combining equations (30), (31), (34), (41), (43), (45), the
stiffness matrix of the suspension mechanism due to the
weight pendulum effect K. becomes

K" 0 0 0 0 0
0 K" 0 0 0 0
_lo o x 0 0o o0
B=lo o o & 0 o (46)
0 0 0 0 K" 0
0 0 0 0 0 K-
where
4
K=K =

Joumal of Offshore Mechanics and Arctic Engineering

I
K —ab3hn
2w

K" = ab 3

Comparing equations (46) and (18) reveals that K,”, K,”,
K.”, K.”, are equal to the second term of X, K;, K., K,
respectively. Thus, the suspension mechanism linearized
model stiffness matrix K can be expressed as the superposition
of the no load model stiffness matrix X, and the pendulum
effect model stiffness matrix K.
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