
Reprinted from September 1975 Journal of Dynamic Systems, Measurement, and Control

1. S. ALBUSI
Project Manager,

Office of Developmental
Autornatlon and Control Technology,

Institute for Computer
Sciences and Technology,

National Bureau of Standards,
Washington. D.C.

The storage of manipulator control junctions in the CMAC memory i s accomplished
by an iterative process which,ijthe control junction i s sufiiently smooth, wi l l converge.
There are several diferent techniques for loading the CMAC memory depending on
Ihe amount of datu which has already been stored and the degree o j accuracy which i s
desired. The CMAC system lends itself to a "natural" partitioning of the control
problem into manageable subproblems. At each level the CMAC controller translates
commands from the next higher level into sequences of instructions to the next lower
level. Data storage, or training, i s accomplished first at the lowest level and must be
completed, or nearly so, at each level bejwe i t can be initiated at the next higher level.

1 Introduction
T h e computation of control functions by table reference

techniques has seldom been considered as a practical methodology
for manipulator control. The fact that for N input variables
with R distinguishable levels there are R" possible inpnts has
been sufficient to discourage this line of research. I t seems clear,
however, that the control of mechanical devices with many de-
grees of freedom and with enormous numbers of input variables
by means of table reference procedures i s not only practical, but
enormously successful. It almost certainly is the principle used
hy living creatures of every description. People do not con-
sciously control each individual muscle or joint when manipulat -
ing their limbs, and there i s no evidence to suggest that animals
do either. Yet, somehow high level decisions to perform specific
movements result in coordinated control signals being sent to the
individual muscles. Unless one i s prepared t o believe that the
brain performs matrix inversions of the type used in resolved
motion rate control [5],2 i t must be assumed that biological
organisms use some form of memory driven control system for
solving the muscle coordination problem. This fact alone sug-
gests that the difficulties posed by potential inputs may be
considerably exaggerated. To begin with, it i s clear that even a

any given class, the sequences of joint actuator control signa!s
are highly redundant. I n fact, even for an entire repertoire of
movements, only a tiny fraction of the RNinputv are e w r actually
used and are thus not physically required for storing the con-
trol functions needed to operate a manipulator in a real enuiron-
ment. Fo r example, in throwing a baseball or swingmg a golf
club, the proper command to each muscle actuator at. eaeh pint
in the throw or swing trajectory is strongly correlated with mm-
mands at neighboring points in the same or similar trajsctories.
I f amemory management scheme could be devised to t
advantage of this redundancy in the data being stored, then it
might be quite practical to store the functions required for ma-
nipulator control in a memory of reasonable size [l].Thiv is the
principle used by the Cerebellar Model Articulation Controller
(CMAC).

The basic theory of how CMAC takes advantage of input
redundancy and how the CMAC memory management algorithm
functions are discussed in a companion paper [Z]. Preliminary
experimental results from a seven-degree-of-freedom manipula-
tor operating under CMAC control have been published else-
where [ll. This paper deals with algorithms by which data
storage can be accomplished in the CMAC system.

biological brain does not have sufficient cells to store RN separate
values of the control function any more than does an electronic 2 Data Storage
computer. Furthermore, upon close examination it becomes

near RNinputs are ever used or even needed for the execution merical contents of each address are distributed over a number

of any single trajectory. In addition, for all trajectories within O
f physics' locatlons. The 'O

ntents Of

memory locations are referred to as weights, and
an address i s defined as the linear sum of all the weights selected
by the CMAC addressing algorithm. The method used for
storing numerical values in a CMAC memory is analwoua to the

far training B Perceptron [3]. In the Pmceptron

tion procedure which, under certain specific conditions, con-

evident that for any physical manipulatorsystem, nowhere CMAC uses 8 distributed storage system whereby the nu-

~

'Contribution of the National Bureau of Standards. Not subject t o copy-
right.

'Numbers in brackets deuignate Referencea at end of paper.

Cotltnhuted by the Automatic Control Division for publioation in the
JOURNAL C 1 6 nYXlMlc &STEMS, MEABURE~NT,AND CONTROL. Manuscript c8se

p
ape tlpically adjusted by aniterative error-eorrec-

received Et AtiUE Headqsarters, June 6, 1975.

228 / S E P T E M B E R 1 9 7 5 Transactions of the ASME

1

P
0

-1
1
1 S 360

Fig. 1 p is the output from a one-input CMAC memory prior to any
data being stored. p’ is the desired output. For this case the maxi -
mum error between p and p^ is 1.0 and the r.m.s. error is 0.707.

I
1 S 360

Fig. 3 After two data storage operations. Maximum error = 0.87 and
r.m.s. error = 0.530.

t
1
1 S 360

Fig. 2 The output of the CMAC memory after a single error correction
data storage operation. p was set equal to 1.0 at s = 90. Maximum
error is still 1.0 (at s = 270) and r.m.s error i s now 0.625.

verges. Similarly, storage of a function in the CMAC memory i s
an iterative procedure which, if the function being st,ored i s suf -
ficient,ly smooth, will converge.

2.1 Choosing the Weights. The procedure for storing a func-
tion in the CMAC memory i s as follows:

A

1 Assume t,hat P is the desired value of the vector to be

2 Address the memory with S and retrieve whatever is cur-

$, For every element in P = (PI, p ~ ,. . . . pk, pr.) and

stored at address S.

rently stored. The current value of the funct.ion is P = h(S).

in P = (pl, pa, &,.. . .AI

where [k i s an acceptable error, then do nothing; the desired value
is already stored in the proper address. However, if

then add A, to every weight which contributed to pk where

J A * / = the number of weights which contrihute to p k

A t present, there exists no formal proof of the Convergence of
this procedure. However, it has been empirically demonstrated
to be effective in loading a CMAC memory for controlling a
manipulator in the performance of anumber of coordinated move -
ments 111. The CMAC training algorithm is qu i te similar to the
Percepwon error-correction algorithms. I t thus seems reasonable
to ~~vtlunwthat the conditions of convergence would be roughly
simllsr to those for convergence of thc Perceptron training
algnri thrns,

In any case, convergence of the CMAC training procedure i s
clearly related to the smoothntw of the function within the
neighborhood over which generalmation takes place. I f the vahe
of the function varie.9 dowly throughout the neighborhood of

S 360
Fig. 4 After five data points are stored. Maximum error = 0.84 and
r.m.s. error = 0.313.

generalization, it should be quite easy to find a set of weights
which can represent the function t o within the acceptable error

everywhere in the neighborhood. However, if the value of
the function changes significantly within the neighborhood of
generalieation, it mav be difficult or impossible to find any set of
weights which can represent the function to the desired accuracy
at every point in the neighborhood. I t therefore i s very important
that the neighborhoods over which the system i s to generalize
be small relative to expected variations in the value of the out-
put function. In general, this may be accomplished by choosing
the proper resolution for the si -+ mi* mapping. I f a manipulator
control signal i s expected to be especially sensitive to a particular
input variable, the si 4 mi* mapping for that variable should be
high resolution. I f the manipulator control signal i s relatively
insensitive to small changes in an input variable, the s i + mi*
mapping for that variable can be low resolution.

2.2 Examples of Data Storage. For the examples shown in
Figs. 1-9 the number of element,s in A * is arbitrarily chosen equal
to 32 and the size of A, i s 4096. I n Figs. 1-6 both the input and
output vectors are one-dimensional, i.e.,

and P = (p)

-4ssume that the value of the input variable s is defined on t,he
interval 1 t,o 360 with a resolution of unity, Le.,

Si = (i)wherei = 1,, 360

Also assume that the desired output p^ = sin (2 ?rs/360). If
all the w i g h t s are originally zero, the value of the function
p = h(s) i s zero for a11 s. The original condition of p and 6 is
shomm in Fig. 1.

Assume now that a data point is stored at a = 90. According
t o the data storage algorithm this implies that each of the 32
weights attached t o an association cel l in the set Ago* will be

Y

A 1
incremented by an amount A = p--p, or -

32 32
Fig. 2 shows the value of p over the entire range of s after it

Journal of Dynamic Systems, Measurement, and Control S E P T E M B E R 1 9 7 5 / 229

1 S 360
Fig. 5 After nine data points are stored. Maximum error = 0.33 and
r.m.s. error = 0.091.

L

1 S 360
Fig. 6 After sixteen data points are stored. Maximum error = 0.09
and r.m.6. error = 0.033.

single data storege at s = 90. At s = 90, p = p* = 1. As the
input vector Si moves away from the s = 90 point at which data
were stored, the overlap IAso* A A,*] decreases until finally i t

s = 90 declines
ide of the range

of s = 90 f32, p = 0 except for spurious overlap due t o hash
coding. The effects of spurious overlap can be seen in the uneven
baseline in Fig. 2.

Fig. 3 shows a plot of p after a second data storage at s = 270.
After each data storage operation, the maximum error and

the root-mean-square error between p and c i s computed over the
entire range of s. I n this series of examples, the point of maximum
error is the value of s chosen for the next data storage. Fig. 4 is
a plot of p after five data storage operatiAns, Fig. 5 after nine,
and Fig. 6 after sixteen.

As can be seen, the CMAC output p rapidly converges t o the
desired function p̂ .

For the examples shown in Figs. 7-9 the input vector is two-
dimensional, Le.,

nfluence of the value o
of separation in input

s = (81, 82)

Assume that the desired output p^ at each point in input space
i s given by

Over the range 1Is, 5 360, 1 _< sa 5 180.
The reference surface defined by p^ i s shown in Fig. 7.
Fig. 8 is a plot of the CMAC output p = h(s1, a) after a

single data storage at s1 = 90, s2 = 90. After sixteen data storage
operations along the s2 = 90 line, the CMAC output p looks like
Fig. 9. In this particular example, a cross section through the
82 = 90 plane is identical to Fig. 6.

I f the strategy of correcting the maximum error i s applied in
storing the function shown in Fig. 7, a plot of rms error versus
number of data points stored i s a classical exponential learning

curve with a - point at 20 data storage operations.
1

Fig. 7 A plot of a desired output ^p for a CMAC with ‘two inputs.

P^ = sin (z) sin (‘3)

i 3E0
Fig. 8 The output of a two-input CMAC memory after a single error
correction data storage operation. p was set equal to 1.0 at SI =
90, 5 2 = SO.

Thus, at least for the type of curves shown in the preceding
examples, CMAC docs a d rather rapidly.

From these exampim it men how CMAC tends to gen-
eralize over small neighborhoods in inpu how quickly
it can approximate a desired function at ely few data
points are stored.

These examples also illustrate how increasing the dimen-
sionality of the input vector affects the concept of an input-space
neighborhood. The triangle of decreasing influence for one-di-
mensional inputs becomes a pyramid in two dimensions and a
complex volume in n dimensions.

2.3 Training for Manipulator Control. CMAC, like the cerebel -
lum in the brain after which it was modeled, does not operate
by mathematically analyzing the dynamics of the control prob-
lem and then solving equations. Instead it operates by doing
something, observing the results of the action, and then adjusting
internal parameters in a direction calculated to improve the cor-
respondence between what was called for and what actually oc-
curred. The problem, of course, i s to determine what internal
parameters need adjustment and by what amount. The error
correction algorithm requires th2t the observed output P bz
compared with a desired output P. In many cases, however, P
i s not known explicitly. Typically, what i s known i s the desired
end-point movement in the form of a particulari,g,ivector.

There are several possibleiechniques which can b e employed
to derive the desired output P. In general these can be classified
into categories of coarse and fine. The coarse techniques typically
are used to initiate the data storage, or training, procedure from
the original starting state where all the CMAC weights are set to
zero. By the time the “coarse”
CMAC system i s capable of con
the output is roughly correct, although perhaps not as precise
as would be desired. From this point on, “fine” training proce-
dures can be utilized to optimize system performance to the theo-
retical limit set by S -+ A,* mapping resolution and by memory
capacity.

There are several possible coarse training techniques. One
i s training by analogy. For example, assume the CMAC is to be
trained to respond toi,g,ivelocity commands. First, the man-

Transactions of the ASME230 S E P T E M B E R 1 9 7 5

1 S I 360

Fig. 9 The output of a two-input CMAC memory after slxteen data
points were stored. A cross section of this figure in the s? = 90 plane
i s identical to Fig. 6.

ipulator can be led t h q h severel representative straight line
trajectories co to the appropriate x, y, i commands.
This may be d y aaaatm-dave techniques, or rate con-
trol teehiqua 141. In either case, npecific straight l ine trajec -

fined by a series of joint angle pwitiitiona recorded
ectories. The manipulator can then be caused to

execute the qmcific trajectories by simply stepping sequentially
through thm recorded points.

For example, assume that a point-by-point trajectory had
been recorded starting from some specific initial point 20, YO, 20,

and proceeding along a specific trajectory defined by some 2,
0,; at each point. Now, at every point on the recorded trajectory
two separate processes take place simultaneously:

1 The manipulator i s physically controlled by a conven-
tional servo system which drives each joint actuator at the
proper velocity along i t s recorded trajectory.

2 The CMAC algorithm computes i t s own estimate of what
the joint drive signals should be at each point by observing the
appropriate feedbmk variables and assuming that the actual
x, Q, 1nt each mint are the commanded velocities from higher
level inputs. In other words, CMAC observes an input vector
S and computes P = h(S).

Now, since the drive signals from the conventlonal servos are
actually what i s required to reach the next point on the recorded
trajectory, these signals make up a desired output vector k.
The CMAC training procedure may then be used at each point
to adjust weights a\d null the difference between the P computed
by CMAC and the P derived from the conventional servo output
signals. Thus the CMAC controller is trained at each point
along the recorded trajectory by observing what i s required t o
move the manipulator to the next point.

D u e to the CMAC property of generalization, the CMAC
controller can learn from observing a limited number of represen -
tative trajectories and generalize so as to operate effectively
over a large number of similar trajectories. I f the representative
trajectories cover the relevant input set adequately, the overlap
in the Ai* sets generates output signals which are close enough
to the proper speed and direction to produce generally satis-
factory results. Of course, the definition of “satisfactory” IS

situation-dependent. The degree of accuracy which CMAC can
produce within any volume of input-space depends upon the
number of representative trajectories selected, and the precision
of the S + A mappings used.

There are, of course, other techniques by which this initial
phase of CMAC training can be accomplished. One i s by analyt -
ical techniques simllar to the resolved motion rate control system.
The desired joint actuator signals P may be computed from x,
0, i commands by the inverse Jacobian technique [Z]. The
CMAC can then be trained to emulate the results of the analytic
computations. Since only a rough approximation of the eventual
desired performance is required at the end of the “coarse” t r in -
ing, numerous simplifications may be introduced so as to make
analytical computations feasible for even rather complex ma-
nipulator systems. For instance, initial training might be accom-

plished at slow speeds so that higher order effects of velocity,
acceleration, cross -products of inertia, and coriolis forces may be
ignored.

2.4 Optimization or Fine Training. Once the initial phase of
training i s completed, it can be assumed that the CMAC control
system can produce all of the desired elemental movements, but
only in a crude and imprecise way. From this point i t i s possible
for the CMAC to proceed in a boot-st,rapping manner. Again,
there are several techniques by which this can be accomplished.
One i s by a time inversion technique.

Ordinarily the CMAC training algorithm proceeds by (1)
observing an input S = (SI, st, sa, %,y, i);(2) comSuting an
output P = h(S); (3) comparing P against a desired P; and (4)
adjusting weights so as to null the difference. In thezrocess of
training, the function h i s modified to h‘ such that P = h’(S).
The critical facbr in this conventional technique i s finding the
desired output P corresponding to the actual input S. In the
time inversion technique this process i s inverted, i.e., the com-
puted output P, is assumed to be the desired output for some un-
known input S. The problem then is not to find the desired
output P corres onding to some actual input S, but instead to
find some input s for which P is the desired output. This may be
done in the following manner:

First, apply the computed outpu: P to the joint actuators and
observe the resulting movement i,$, $. Now i f the original
input S had called for the observed movement 3, y, z instead of
i,0, i,then P would have been exactly the correct output.
Therefore, the input S for ~ + hP i s the desired output, is merely
t,he original input S with x, 0,isubstitu$d fori,p, 2. In other

? r e *
words, 8 = (SI, SZ, sa, 2, y, 2). I f S i s noy applied to the
input, a new output will be computed P’ = h(S). This output
need not be applied to the joint actuators but can be used solely
in adjusting the weights. The weights should be adjusted so as t o
null the difference between the originally computed output P
and the newly computed P’.

This time inversion technique can be utilized while the ma-
nipulator is performing operational maneuvers under higher level
commands. Thus, CMAC training can be performed “on the
job” in an actual work environment. As training proceeds, the
manipulator will respond more and more precisely to the com-
mands being issued by the higher level centers. The time in-
version technique automatically takes into account all the
specific peculiarities resident in the individual manipulator
being control led.^ . Variations and nonlinearities such as drive
motor inefficiencies, joint friction, and gear backlash are auto-
matically incorporated into the CMAC control system along
with inertia cross-products, coriolis forces, and bending or twist -
ing effects of the manipulator structure. The time inversion
training algorithm can be used in real time while performing
movements under actual operating conditions. No analytical
computations are performed. The CMAC simply learns to do
whatever is necessary to produce the output called for by the
higher level input commands regardless of complications and
irregularities existing in the electromechanical mechanisms.
Since the CMAC training procedure is presumed to be con-
vergent, the amount of change to the memory caused by t h i s
iterative training procedure i s finite, and the rate of change a p
proaches zero as performance is optimized.

Performance after t,raining is complete i s limited only by one
of the following:

1 insufficient sensory input data
2 insufficient resolution on the various S -+ A,’ mapping func-
tions
3 insufficient speed in the CMAC computational cycle
4 insufficient memory t o prevent excessive noise caused by
A,* overlaps due t o hash coding
5 nonstationary processes and nonrecurring event.s such as
random sticking in joints.

A 9 .

Journal of Dynamic Systems, Measurement, and Control S E P T E M B E R 1 9 7 5 I 2 3 1

Of course, once a CMAC algorithm is trained to control a
particular manipulator, the distribution of weights in i t s memory
can be duplicated and used in CMAC controllers for other ma-
nipulators of similar configurations. Additional “fine” training
will be necessary only if dissimilarities in manipulators or dif-
ferences in task requirements cause one manipulator control
function to differ appreciably from another.

3 Implications of CMAC
CMAC is essentially a sampled servo control sy,:+,em with a

great number of very useful features. For example:

I CMAC can handle arbitrarily large numbers of feedback
variables with many different types of nonlinear cross -products.

2 Feedback variables can be expressed in arbitrary units
derived from sensors arranged in unconventional coordinate
systems.

3 Feedback sensors need not be linear, nor even free from
hysteresis, if direction of approach is included as a varia,ble.
They merely need t o be repeatable.

4 The designer of a CMAC control system need not be able
to express the control function in t,erms of mathematical equa-
tions.
,iThe CMAC control system can incorporate many different

control functions, any one of which can be activated or switched
into effect by changing the command signal from higher centers.

6 The CMAC controller not only i s a servo controller, but i s a
coordinate system transformer which enables higher level input
signals to be expressed in any convenient coordinate system.

CMAC has several unique features which distinguish it from
other adaptive manipulator control techniques such as have been
proposed by Freedy, e t al. [6], or Lawrence and Lin 171. First,
CMAC represents a serious attempt t,o model the neurophysi -
ological functioning of the mammalian cerebellum. Each math-
ematical transformation performed by CMAC has a specific
analog in the structure and/or function of the living cerebellum.

Second, the complexity of accessing the CMAC memory
increases only linearly BS the number of input dimensions.
Each si + mi* mapping i s independent of all the others, and
the computation of A * is simply by concatenation of respec -
tive elements from each m*. The number of cells in A * and A,,
need not change as the dimensionality of t8he input increases as

long asR N < (V - I)”,where V = lA--? I and U = [A*\ . See
1.4 * I

reference [2].
This implies that a CMAC controller with several tens or

even hundreds of input variables is potentially feasible. Much of
the processing of input variables can be done independently and
in parallel, or ifspeed is not a critical requirement, the entire
task can be handled by a single computer.

The computer program which implemented the examples in
this paper was used to measure the timeI‘required for a complete
CMAC memory access cycle. The following formula was found
to obt.ain:

2’ = (0.4N + 5.d)L millisec

where I\T = number of inputs

L = number of outputs

This relat,ionship was for a CMAC where /A* (= 32. It, was
measured on a computer with a basic instruction cycle time of 1.2
microsec.

The number of data storage operations required to load t’he
CMAC memory, of course, increwes as some power of the num-
ber of inputs. Thus, the length of time required t o store a func-
tion to some desired accuracy may be the limiting parameter in
the case of multidimensional inputs.

Finally CMAC is structured so as to make it. practical to

232 / S E P T E M B E R 1 9 7 5

COMPLEX TASK (assemble parts,1 put away tools, etc.)ICMACE

OBSERVED
TASK I CMACIU I

DATA U

& (reach, go to,lwist,etc.)

CMACII
OBSERVED

MOVEMENT
DATA

DATA U
JOINT ACTUATOR
SIGNALS

OBSERVED
JOINT POSITION.

VELOCITY, etc.

Fig. 10 A hlerarchlcal structure of CMAC controllers. In response to
each Input command from a hlgher level, each CMAC computer
generates a string of output commands to a lower level. These out-
put commands are functlons of feedback varlables as well as higher
level inputs. The CMAC concept can be used to partltlon the ma-
nlpulator control problem into a manageable set of subproblems.

partition the control problem into a hierarchy of CMAC control
levels. Each CMAC input vector S is composed of two parts,
feedback from the periphery, and command variables from
higher level control centers. Each input vector SI produces an
output vector PI which drives the joint actuators t o a new posi-
tion, thereby creating a new input vector Sp. As this process i s
repeated, a string of input vectors S&S3 . . . and output driving
signals PLPzP~ . . is produced and the manipulator moves along
some trajectory in space. I f the command variables in each of
the input vectors S1S& . . . are held constant throughout the
entire sequence, the resultant trajectory will be characteristic of
that particular set of command variables. For example, if the
command variables are set to 35 = IO, Q = - 3, i = 0 for a
sequence of inputs S S Z S ~. . ., the manipulator end point will
move along i t s entire trajectory with the velocities x = 10,
y = - 3, andi = 0. The feedback variables, of course, reflect
external conditions along the trajectory and the CMAC con-
troller compensates for all disturbing influences so as t o produce
the trajectory commanded. The CMAC thus can be viewed as a
form of function subroutine which accepts an input command
and produces a string of outputs so as to carry out the input
command. The input signal from a higher center is analogous to
a subroutine call. The resulting series of output signals from the
CMAC system to the joint actuators i s analogous to the opera-
tional steps in the called subroutine.

This analogy to a computer subroutine suggests a possible
hierarchical structure whereby the higher level input signals t o
a CMAC controller may be generated by another CMAC con-
troller. For example, i f a CMAC controller can be structured
and trained to produce an appropriate string of output signals
in response t o higher level 3, 0,iinputs, it i s possible for a second
CMAC controller to produce a string of x, Q,i commands in
response to a still higher level input describing the type of tra-

Transactions of the ASME

Tabla 1

CMAC levels Analogous levels of computer language-
com lex task main source program
sim$e task source language subroutine
elemental movement

command source language statement
x, y,icommand assembly language instruction
joint actuator signds internal machine code

An analogy between various steps in the CMAC control hierarchy
and various levels of computer language coding.

jectory, or elemental movement, desired. This second CMAC
controller can itself be commanded from above by a third level
CMAC, and so on indefinitely as shown in Fig. 10. This type of
hierarchical structure is a means of partitioning the control prob-
lem into manageable subproblems.

In a biological organism the highest level inputs may consist
of commands like “fight,” “flee,” “build nest,” “eat,” etc.
McCulloch and Ki lmer [8] have hypothesized that the reticular
formation of the brainstem functions so as to commit an animal
to one or another of these “modes of behavior.” Sutro and
Kilmer [9], Friedman [lo], Fikes, Hart, and Nilsson [ll],and
others have suggested that the same sort of higher level “select -
ing” or “planning” mechanism is essential in the control struc -
ture of an autonomous robot.

The decision of how to partition the control problem for a
hierarchy of CMAC controllers depends on how complex are the
highest level commands, how many and what t y p e of feedback
variables are available at each level, and what methods are to be
used in training. For example, in the case of a simple ma-
nipulator where very few feedback variables are used, it is pos-
sible for a single CMAC to accept eiemental movement com-
mands and produce joint actuator signals directly. However,
for a more complex manipulator with many feedback variables,
it may be best to partition the control problem such that the
lowest level CMAC i s controlled by a second CMAC which gen-
erates z, Zi,i commands in response to elemental movement
commands.

In many respects a CMAC controller is similar to a computer
language translator which accepts input in a higher level lan-
guage and generates strings of output statements in a lower level
language. One might draw an analogy between each step in the
CMAC hierarchy of Fig. 1 and a level of code in a computer
program as shown in Table 1. At the very top, a high level goal
(or main program) is selected and a command i s issued to initiate
the execution of th i s program. At each level the CMAC con-
troller accepts a higher level command and generates a sequence
of lower level instructions which carry out the higher goal.
These instructions are generat fed on the basis of feedback varia-
bles together with prior training in how to respond t o particular
feedback patterns.

Training, of course, must begin at the bottom. Training must
be complete, or nearly so, at each level before it can even begin
at the next higher level in the hierarchy.

4 Summary and Conclusions
The storage of data in CMAC can be accomplished by one of

several iterative training procedures. I f a set of training tra-
jectories is available, error correction techniques can be applied
until performance reaches some predetermined level of ac-
ceptability. Otherwise, techniques are available by which the

error correction information can be derived from observed dm-
crepancies between input commands and output actions. The
basic form of CMAC makes it amenable t o a hierarchical struc -
ture whereby input commands from the next higher level are
translated into strings of output commands to the next lower
level.

Research on the CMAC control concept is st i l l in i ts very
early stages. Only preliminary experimental results are available
even for the first level CMAC controller. The entire question of
how to partition the control problem into a hierarchical structure
ha4 yet to be investigated in any depth. In particular, the
question of how to structure the feedback for higher level CMAC
controllers has not even been addressed. Undoubtedly, higher
level feedback should undergo the preproceasing and pattern
recognition procedures. Training techniques have not been fully
explored, especially for the higher levels.

In spite of the very preliminary state of the present research,
there is much about the CMAC system which suggests that it
may be a valuable control concept for complex manipulator sys-
tems in the future. The CMAC approach is not limited to con-
tro l problems where the relevant computations can be described
in analytic mathematical form. Many different kinds of uncon-
ventional coordinate system transformations can be handled
with equal ease. Furthermore, the computations fundamental
to the CMAC dgorithm are of such a nature that they seem
readily amenable to construction in largescale integrated circuit
technology. Indications are that CMAC controllers could be
constructed quite simply and cheaply as special purpose micro -
computers. I f this turns out to be feasible in practice, the CMAC
hierarchical control technique may make it practical in the
future t o build extremely sophisticated manipulator systems
which will be capable of operating far beyond the l im i t s of the
human arm in speed, strength, and even dexterity.

References
1 Albus, J. S., “Theoretical and Experimental Aspects of a

Cerebellar Model,” PhD thesis, University of Maryland, Dec.
1972.

2 Albus, J. S., “A New Approach to Mani ulator Control:
The Cerebellar Model Articulation Controter (CMAC),”

TRANS. ASME, Series G, Vol. 97, No. 3, Sept. 1975.
3 Rosenblatt, F., Principles of Neurodynamics: Perceptrons

and the Theory of BrainMechanisms, Spartan Books, Washington,
D. C., 1961.

4 Corliss, W. R., and Johnsen, E. G., Teleoperator Controls,
NASA SP-5070, 1968.

5 Whitney, D. E., “Resolved Mption Rate Control of Ma-
nipulators and Human Prostheses, IEEE Trans. on Man-
Machine Systems, Vol. MMR-10, No. 2, June 1969, p. 47-53.

6 Freedy, A,, Hull, F..C., Lucaccini, L. F., aniLyman, J.,
“A Comguter-Based Learmng SyEtem for Remote Manipulator
Control, IEEE Trans. on Systems, Man, and Cybernetics, Vol.
SMC-1, No. 4, Oct. 1971, pp. 356363.

7 Lawrence, P. D., and Lin, W. C., “Statistical Decision
Making in the Real-Time Control of an Arm Aid for the Di5
abled,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.
SMC-2, No. 1, Jan. 1972, p. 3542.

8 Kilmer, W., McCulroch, W. S., and Blum, J., “A Model
of the Vertebrate Central Command System,” International
Journal Man-Machine Studies, 1, 1969, pp. 279-309.

9 Sutro, L. L., and Kilmer, W. L., “An Assembly of Com-
puters to Command and Control a Robot,” Proceedings of Spring
Joint Computer Conference, AFIPS Press, 1969, p. 131.

10 Friedman, L., “Instinctive Behavior andIts Computer
Synthesis,” Behavioral Science, 12, 1967, pp. 85-108.

11 Fikes, R. E., Hart, P. E., and Nilsson, N. J., “Learning
and Executing Generalized Robot Plans,” Artificial Intelligence,
Vol. 3, No. 4, Winter 1972, pp. 251-288.

JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL

Journal of Dynamic Systems, Measurement, and Control S E P T E M B E R 1 9 7 5 I 2 3 3

