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ABSTRACT

Classical AND/OR goal, or task, decomposition techniques are generalized to deal with
the problem of sensory -interactive goal-directed behavior in biological organisms. A
neurophysiological model is described which demonstrates the capacity to learn, to
generalize, to compute multivariate mathematical functions, and to decompose input
commands into sequences of output commands ina context -sensitivemanner. Evidence is
presented that clusters of neurons with such properties are arranged in hierarchical
structures in the brain so as to produce AND/OR task compositions. At the lowest levels in
the motor system these clusters transform coordinates and compute servo functions. At
the middle levels they decompose input commands into sequences of output commands
which give rise to behavior patterns. Mechanisms by which feedback can alter these
decomposition sequences to compensate for perturbations and uncertainties in the en-
vironment are described. At the highest levels of the hierarchy there are goal selecting and
evaluating mechanisms. I t is argued that in higher mammals these upper levels of the
motor hierarchy are the mechanisms of planning and problem solving.

PREFACE

The following paper attempts as far as possible to present a notation
which i s both intuitively clear and mathematically precise, and to offer
supporting evidence wherever possible. The reader should understand,
however, that any model of neuronal mechanisms of the higher cognitive
processes must of necessity involve speculation and metaphorical language.
I t should also be understood that a multidisciplinary approach to such a
large and complex subject cannot avoid a mixing of jargon and an over
simplification of many difficult issues.

1. INTRODUCTION

Planning and problem solving are fundamental components of intelligent
behavior in humans, animals, or machines. Being able to contemplate the
potential costs and benefits of future actions, to imagine goals, and to plan
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sequences of actions directed toward the attainment of those goals may in
fact be taken as (at least in part) a definition of intelligence.

I t i s for this reason that computer -science research in artificial intell i -
gence has historically focused on techniques for problem solving and
planning [37]. These methods typically involve a heuristically guided, trial-
and-error search through a space of possible solutions [38].

One of the fundamental techniques used in problem solving i s the
decomposition of problems into subproblems which are simpler to solve
than the original problem. Th is procedure can be repeatedly applied to
subproblems, and then to sub-subproblems, until finally the end product is
a set of primitive problems for which there are known one-step solutions.

T h e concept of solving difficult problems, and the closely related concept
of controlling large systems, by problem or task decomposition are old ones.
I t i s implicit in many forms of control hierarchies such as exist in military
command structures, business management organizations, and industrial
manufacturing procedures, and has for more than a century been assumed
to be a mechanism used by the brain for generating and controlling
behavior [25].

The mathematical notation of AND/OR trees or graphs which can be used
to conveniently represent the process of problem decomposition was first
introduced by Slagle [55] inhis work on symbolic integration. I t was applied
to the analysis of serial action work in an industrial environment by Rigney
and Towne [50]. Today it st i l l forms the principal theoretical framework for
the most advanced and successful work in means-ends analysis, situation
action rules, and production based problem solvers [37, 701.

The techniques of problem reduction have also been applied to robot
control in planning and goal-seeking programs such as were developed for
the Stanford Research Institute robot SHAKEY 149, 17, 231. Similar tech-
niques have recently been employed in a hierarchical planning and execu-
tion program called NOAH for robot assembly and disassembly of mechani -
cal equipment [52] as well as in several psychological models [36, 371.

Most artificial -intelligence research in goal or task decomposition has
been done in a planning context as opposed to a control context. In
planning the emphasis naturally tends toward mechanisms for searching
AND/OR graphs to find, and hopefully optimize, solutions. T h i s implies a
detached evaluation of alternatives where the constraints of real-time inter-
action with a dynamic and unpredictable environment can be deemphasized
or ignored altogether. Such an approach is quite adequate for dealing with
problems in abstract mathematics or board games where response time i s
not critical and the resulting physical activity i s trivial or can be simulated
in software. However, there has been a tendency to employ essentially the
same methodology in robot control programs such as those devised for
SHAKEY and the more recent work in robot assembly without adding
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sophisticated sensory interactive mechanisms to translate high-level plans
into low-level actions. The effect i s to place enormous demands on the
planning programs for attending to details, and the resulting behavior
appears most unintelligent because of lengthy interplan periods of open-
loop activity in which there i s l i t t le or no interaction with sensory feedback.

2. PLANNING AND GOAL-SEEKINGINTHE BRAIN

An obvious but seldom recognized fact is that planning i s not character -
istic of the behavior of most biological organisms. In most creatures the
central nervous system is primarily a control mechanism for goal-seeking,
not planning. Only in the most advanced species does the brain demon-
strate any significant capacity for foresight, imagination, and systematic
evaluation of potential future scenarios in the formulation of plans.

The fact that AND/OR trees do not explicitly represent the time variable
tends to blur the important differences between planning and goal-seeking.
The distinguishing feature of goal-seeking, as opposed to planning, is that i t
i s a real-time control process resulting in physical activity. Goal-seeking
produces a sequence of overt actions which may be represented by a single
uninterrupted string of primitive actions, which are terminal symbols of an
AND/OR tree.

Planning, on the other hand, i s not a real-time control process, nor i s it
best characterized by a single uninterrupted trajectory. Planning involves
the postulation of hypothetical situations, the evaluation of predicted or
imagined results, and the optimization of solution paths prior to the
initiation of overt behavioral activity. Planning i s a non-real-time heuristic
search over a space of potential strategies. The benefit of planning is, of
course, that it significantly enhances the first-try success probability of
goal-seeking behavior by preselecting optimum goal and subgoal decom-
positions from a large space of possibilities.

The overwhelming weight of evidence from the evolutionary record [26,
48, 671 as well as from contemporary behavioral science [33] indicates that
the original and still primary function of the brain i s not to think and plan,
but to act and react. When one observes the behavior of creatures in the
lower to middle ranges of intelligence such as ants, bees, fish, birds, and
mice, there i s ample evidence for goal-seeking [61] but virtually none for
planning. Even the mid to upper reaches of the intelligence scale such as
squirrels, dogs, cats, baboons, and apes, one sees very few instances of
planning or problem solving per se. The approach to a problem i s most
often to simply do something, and if that doesn’t work, to do something
else. Trial-and-error goal-seeking, or searching, of this kind contains the
seeds of planning in that i t results in a heuristic search over a space of
possible solutions that can be described by an AND/OR tree. But i t is distinct
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from planning in that it involves overt action at every point in the proce-
dure. Hypothetical situations are not postulated, imaginary results are not
evaluated, and solution paths are not optimized prior to initiation of
behavioral activity.

T h e ability of many lower animals to pursue long-range goals of great
complexity such as migratory behavior, or elaborate sequences of nesting,
mating, and young-rearing behavior, should not be confused with planning.
In allbut the most advanced species, these processes appear to be almost
entirely stored algorithmic procedures which are triggered into execution by
immediate environmental stimuli interacting with harmonal and appetitive
variables [6]. These may affect the selection of goals and strategies but do
not alter the immediacy of response. There i s no evidence for a search of
strategy space prior to the execution of motor activity.

The ability to learn, or modify behavioral algorithms through experience,
also has nothing to do with the ability to plan. Virtually all species can
learn, or modify their responses to sensory stimuli, but only the most
advanced use learned associates to any significant degree for generating
internal representations of future or hypothetical situations which can then
be evaluated in the formulation of plans.

Of course, there do exist species for which there exists clear evidence of
conscious forethought and cost-benefit analysis of contemplated future
action. In humans as well as in higher mammals such as porpoises, whales,
and apes, and even occasionally in dogs and cats, at least the rudiments of
purpose and forethought have been reliably reported [28]. T h u s in a few
cases, in the last paragraphs of evolutionary history, there has emerged the
ability to plan ahead and consciously select among alternative strategies

WI.
The rarity and late arrival of the ability to plan suggests that a highly

developed precursor, or substrate, was required from which planning capa-
bilities could evolve. Both the similarities and the differences between
planning and goal-seeking suggest that the mechanism for sensory -interac -
tive goal-directed behavior may have been this precursor.

The implication i s that a sensory -interactive goal-directed motor system
i s not simply an appendage to the intellect, but is rather the substrate in
which intelligence evolved. There is, in fact, no evidence for a clear
demarcation between the motor system and the intellect. Quite to the
contrary, much anatomical, neurophysiological, and behavioral evidence
suggests that complex behavior i s generated in a multilevel control
hierarchy where motor outputs are merely the terminal symbols of a
behavioral AND/OR tree. This i s a concept which has been put forward in
various forms by Pribram [46], Arbib [6], Greene [21], Tinbergen [61], and
many others. Figure 6 below illustrates Tinbergen’s hypothesis that the
varying degrees of complexity of muscle contractions, motor responses, and
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behavioral patterns result from underlying mechanisms consisting of motor
centers “organized in a hierarchical system like the staff organization of an
army” [61]. Sensory data interact with all levels of the motor hierarchy to
select goals, modify task decompositions, and generate behavioral
sequences.

Only i f the motor system is very narrowly defined as the last few levels in
the goal-seeking control hierarchy can motor control be divorced from the
higher functions of goal selection, strategy modification, and task decom-
position. T h e implication i s that the motor system i s much more intimately
involved with intelligence than has been generally thought. I f so, then an
understanding of the human capacities to think and plan may be greatly
enhanced by knowledge of how the motor system generates and controls
behavior.

3. AND/OR TRAJECTORIES

In order to use classical AND/OR graph theory in dealing with real-time
control in a neurophysiological motor hierarchy two basic adaptations are
needed:

first, the discrete nature of AND/OR graphs needs to be generalized to

second, a neurophysiological mechanism needs to be proposed which can
cope with the continuous requirements of real-time control, and

implement the task decomposition operators.

AND/OR problem reduction analysis, l ike most artificial intelligence
graph generating and searching techniques, was developed in the context of
list-processing languages such as LISP where nodes correspond to discrete
memory locations and edges are presented by discrete pointers. In order to
generalize th is theory for continuous control problems a notation is required
which can merge sequences of AND nodes into smooth trajectories and let
alternative OR nodes be capable of lying anywhere within large regions of
multidimensional space.

In order to visualize this concept, let us define a task decomposition
operator as a continuous single-valued function H which transforms an
input vector S=(s,,sZ, ...,sN) composed of continuous variables si into an
output vector P-(p,,p2,. ..,pL) composed of continuous variablesp j.H thus
maps each input vector S in input space into an output vector P in output
space. I f the input vector moves as a function of time (as a result of any of
i ts components changing with time) then S will describe a trajectory T,
through input space. Assume the function H samples the input periodically
and after a short computation delay produces an output. Thus as S moves
along T,,Pwillmove along q.T h i s i s illustrated in Fig. 1.
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FIQ. 1. The function H maps each point in input space into a point in output space.
Thus each point on the trajectory T, is mapped into a point on the trajectory Tp.

FIG. 2. The input vector S can be divided into a command vector C and a feedback
vector F such that S=C+F. The output vector is a function of the input such that
P=H(S).

FIG. 3. A continuous AND/OR decomposition where C selects an OR node and F
traces out an AND trajectory.

W e can now divide the input vector into two parts,

c=(s,, ...,si, 0,. ..,O)
and

such that S=C+F as shown in Fig. 2.
Assume for the moment that C is held constant while F i s allowed to

vary. I f F varies smoothly, the vector S will trace out the trajectory T, as
shown in Fig. 3. T h e function H maps each point on into a point on T,.

F=(O,. ..,O,si+ 1, ...,sN),
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The tip of the vector C now corresponds to the selection of an OR node.
The tip of the vector F traces out a series of ANDnodes under this OR node.
In the case where F varies smoothly the ANDnodes merge into a continuous
trajectory. I f F moves in steps from FI to F2 to F3, then the vector S jumps
from one discrete point along T, to another. Thus the continuous analysis
degenerates to the discrete case when the inputs are discrete.

A different value of C defines a different generalized OR node such that
as F drives the sequence of subtasks, a different trajectory and hence a
different sequence of subtasks is selected, as in Fig. 4.

I t i s now possible to construct a hierarchy of task decomposition opera-
tors such that the output from the highest level becomes input to the second
highest level and so on down to the lowest level where the output i s a string
of terminal symbols, or a trajectory of time-dependent variables which drive
physical actuators. Thus is illustrated in Fig. 5. Here the input command to
the highest level i s a variable list which defines a complex task ASSEMBLE AB.

T h i s complex task combined with feedback forms an input vector which i s
transformed by the highest -level H operator into a simple task command
mcn A. As the highest -level feedback changes, the output vector moves along
a trajectory, creating a sequence of simple tasks FETCH B, MATE B TO A, FASTEN B TO A,

etc. The second H operator accepts these commands and generates a
sequence of elemental moves REACH TO A, GRASP, MOVE TO c, RELEASE, etc. as i t s
feedback changes. The third-level H operator accepts each elemental move
combined with feedback and produces a sequence of velocity commands in
x,y,z coordinates. At the bottom level the H operator uses feedback to
transform from Cartesian coordinates into rotary-joint angle coordinates to
drive the actuators.

Feedback enters this hierarchy at every level. At the lowest levels th is
feedback may simply be unprocessed position, velocity, or force informa -
tion required for servo control. At higher levels this feedback may have
passed through several stages of feature extraction and pattern recognition
in order to detect the completion of subtasks or errors in subtask perfor-

FIG. 4. Two different commands C and C’ select two different OR nodes.
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mance. This allows the decomposition operator to step to the next subtask
in sequence or to an alternative subtask for error correction. The feedback
thus closes a real-time control loop at each level in the hierarchy.

The F vector (or at least every element in the F vector) need not
originate from the environment in every case. I f the sequence of subtasks is
fixed, i.e. not dependent on the environment, then F may simply convey
timing information to drive P along a predetermined trajectory. Elements in
F may also derive from the P vector at the same or a lower level of the
hierarchy, or from another hierarchy in a different sensory -motor system.

Note that Fig. 5 has only ANDnodes at each level. Only the trajectories
of the P vectors at each level were shown, in order to simplify the figure.
Note also that the time axis i s explicitly represented. Th is means that the
nodes of Fig. 5 are analogous to world points (in relativity theory (291) and
the trajectories analogous to world lines. Each point on a trajectory corre -
sponds to the value of a P vector at a moment in time. The C and F vectors
which define the trajectories in Fig. 5 exist in a space which i s orthogonal to
the time axis. Thus, for example, the C, command FETCH A combines with the
initial F3 feedback to produce the initial P3 output REACH TO A. A s F3 changes
the output P3 moves to GRASP, then to MOVE TO c, and then to RELEASE. The
explicit representation of time stretches the trajectory q

3
out along the

horizontal axis so as to produce a left-to-right ordering.
Alternative trajectories which might have been selected under a different

set of command and feedback vectors are not shown. To illustrate all of the
trajectories which might have occurred over the time interval of Fig. 5
would clearly be impossible.

I t i s possible, however, at a single instant of time to illustrate the entire
set of alternative P vectors which might have occurred. Figure 6 illustrates a
snapshot of the feedback -dependent selection of alternative P vectors in the
behavior -generating hierarchy of the male three-spined stickleback fish [61].
Figure 6 represents a single cut through world space orthogonal to the time
axis. Figure 7 suggests how as time progresses P vectors produced at each
instant combine to trace out trajectories.

The discreteness of the nodes in Figure 6 is, of course, an oversimplifica -
tion. Although the processing of sensory feedback through several layers of
pattern recognition operators tends to make potential P vectors at the
higher levels cluster in reasonably compact regions of space, nevertheless,
these regions are by no means points. Tinbergen reports variations in the
“intensity” of behavioral patterns such as THREATENor DANCE as well as in the
“intensity” of the feedback stimulus required to elicit particular patterns
[61]. At all levels variations in F vectors due to irregularities in the
environment cause all the nodes selected to vary more or less from one task
performance to the next. Such variations cause trajectories such as are
shown in Figs. 5-7 to differ from one task performance to the next. Th i s
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FIG. 7. As t ime progresses the P vectors selected at each instant flow together to
generate trajectories.

implies that while there may exist an ideal trajectory through S and P space
at each level of the hierarchy corresponding to an ideal, or perfect, task
performance, there also must be an envelope of close-to-ideal trajectories at
each level which correspond to successful task performance. Furthermore,
the H functions must be such as to provide restoring forces which com-
pensate for perturbances and so keep the vectors corresponding to any
particular instantiation of a task performance within an envelope of
successful trajectories.

Small perturbations can be corrected by low-level feedback loops as in
Fig. 8. These involve very little processing of the feedback data and hence
are fast acting.

Large perturbations in the environment may require strategy changes at
higher levels in order to accomplish the top-level input command, as
illustrated in Fig. 9. Major changes in the environment are detected at
higher levels after processing through several levels of pattern recognizers.
T h i s produces differences in the F vector at the higher level, which in turn
produces different C vectors to the lower levels. Again assuming the proper
H function, th is produces an alternative high-level strategy to cope with the
perturbation. Of course, if the H functions do not provide stability, or if the
environment is so perverse that the system is overwhelmed, then
the trajectories diverge from the region of successful performance and
failure occurs.
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p3

p2

T

T

p1
T

FIG. 8. A small perturbation in the trajectory Tp, can be corrected by a low-level H
function.

Overlearned tasks correspond to those for which the H functions at the
lower levels are sufficiently well defined over a large enough region of their
input space so as to maintain the terminal trajectory well within regions of
stability and success without requiring intervention by the higher levels for
strategy modification. In such cases, the upper levels of the hierarchy need
only select and issue the proper mid-level task command. T h e remainder of
the hierarchy executes this command using only low-level feedback. Only
when unusual environmental conditions arise is additional processing re-
quired by the higher levels.

p3

p2

p1

T

T

T

FIG. 9. A large perturbation in the trajectory Tp, may require a strategy change at
higher level. T h e change in Tp

2
represents the selection of a different OR trajectory.
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This suggests how the mechanisms of thinking and planning could evolve
in the upper levels of a multilevel hierarchy. Once the hierarchy i s
sufficiently complex and the lower-level operation sufficiently well learned,
then the upper levels need not be continuously involved in supervising the
execution of routine tasks. They may instead be diverted into other uses
such as planning, problem solving, or simply daydreaming. This might
explain how it is possible for a person to get into a car in the morning and
drive to work with hardly a second thought given to the details of driving.
These details are adequately handled by the lower-level feedback loops. The
upper levels of the motor hierarchy are then free to attend to other things.

I t i s evident that the properties of the H function and C and F vectors
are different at different levels of the hierarchy. At the lowest levels H may
implement a set of coordinate transformations or servo computations. In
this case C and F are l is ts of arguments and P i s a vector of computed
solutions. At another level, H may implement a task decomposition opera-
tor which breaks tasks into a sequence of subtasks. In t h i s case C may be
interpreted as a symbolic command plus a variable list which defines a
procedure. The feedback vector F carries information from the environ-
ment, which in combination with C determines the particular output which
the procedure produces. Each output P is itself a l ist of symbols defining a
procedure for the next lower level. At the upper levels, the H operator has
the characteristics of an IF/THEN production rule. The S vector i s the
premise IF, the P vector the THEN output. Recent work in artificial intelli -
gence [lo] has shown that IF/THEN production rules are a very convenient
and successful formalism for representing knowledge, solving problems,
making plans, and generating English-language translations of logical in-
ference.

The important feature of the H operator i s that despite differences in the
function embodied at the different levels in the hierarchy, the basic struc-
ture of the H operator remains the same. T h e differences result from
different characteristics of the input C and F vectors and different transfer
functions inH. Th is suggests that the same type of anatomical components
which are used by the brain in the lower and mid levels of the control
hierarchy to produce sensory interactive motor behavior may, with only
minor modifications, be used at the upper levels of the same hierarchy to
plan and solve problems.

T h e implication again i s that the intellect i s merely an extrapolation of
the motor system, i.e., that it uses the same basic components arranged in
the same basic structure. In this analysis the phenomena of memory, of
conditioning, of instinct, of discrimination learning are not separate from
the sensory -motor system but are embedded in the H functions which
compose the sensory-motor system.

f
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4. A NEUROPHYSIOLOGICAL MODEL

The foregoing discussion is based almost entirely on concepts drawn
from artificial -intelligence research, physiological and behavioral psychol-
ogy, and control theory. These arguments would be much more satisfying if
there were some solid evidence that structures capable of producing such
performance actually existed in the brain.

I t was a elegant series of experiments during the 1960s by Eccles, Ito,
and Szentagothai [121 which produced the evidence for a mathematical
model of the cerebellum which was independently developed in Great
Britain by David Marr [34] and in the United States by the author [3]. Marr
published his model first in 1969, and since then it has become a widely
accepted working hypothesis among cerebellar neurophysiologists [8]. The
essential outline of this model i s shown in Fig. 10.

Further work on this model has led to a mathematical formalism which
has all the properties of the H functions described in the preceding section.
T h i s formalism, called the cerebellar model arithmetic computer (CMAC)
[1,2,4], can be described as a computing device which accepts an input

SELECTION
OF ACTM

lAlUuEL ADJUSTABLE
MOSSY FIBER
INPUT FROM

HIGHER CENTFOPn
SYNAPSES

GRANULE
CELL

LAYER

FEEDBACK
FROM LIMBS

CUMBIN6 FIBER
INPUT

FIG. 10. A model of the cerebellar cortex. Commands and feedback both enter via
mossy fibers. The granular layer maps mossy fiber input vectors into subsets of active
parallel fibers. Adjustable synaptic weights produce a discriminate function on the parallel
fibers. The Purkinje sums positive inputs directly and negative inputs via basket and
stellate cells. Weight adjustment training i s controlled by the climbing fiber input.
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vector S=(sI,s2,. ..,sN) and produces an output value p=h(S). L of these
devices operating on the same input vector produces an output vector
P=H(S).

Each CMAC may be represented as a series of mappings

S+M-+A-+P,

where

S= {input vectors},

M= {intermediate variables},

A = {association cell vectors},

P= {output vectors}.

CMAC i s similar in overall form to the perceptron [51,3], but the special
character of the S+M mapping and the nonbinary input and output
capability give it computational powers which far exceed those of the
perceptron family of learning machines, or similar devices such as maxi-
mum-likelihood classifiers and threshold logic units [39].

4.1. THE S+M MAPPING

Each input vector S=(s,, s2,. ..,sN) i s composed of N variables, which

The S+M mapping i s a series of mappings, one for each input variable:
may be either continuous or discrete.

T h e range of each si i s coarsely quantized by K quantizing functions
C1,C2, ...,CK, each of which i s offset by one Kth of the quantization
interval. mi* i s the set of values given by the K quantizing functions.

A simple example of t h i s mapping is illustrated in Fig. 11. Here the two
input variables s, and s, are represented with unity resolution on the range 0
to 16. The range of each input variable i s also covered by four intermediate
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variables or quantizing functions of lower resolution. In Figure 11, s, is
mapped into a set m, composed of four intermediate variables:

where

For every value of sl, there exists a unique set of elements m:, one from
each set of intermediate variables in m,, such that the value of s, uniquely
defines the set mf and vice versa. For example, in Fig. 11 the value s, =7
maps into the set mf = { B,H, P, V} and vice versa. Similarly, the value
s2= 10 maps into the setrn;= { c,j,q,o} and vice versa.

The S+ M mapping corresponds to that accomplished by sensory end-
organs in biological systems. In the body, the angular position of a joint, the
tension in a tendon, the velocity of contraction of a muscle are all precise
physical parameters analogous to the variables si. Each of these is encoded
by a multiplicity of sensory organs into firing rates on neuron axons, which
are relatively imprecise information channels. m: corresponds to the set of
nerve fibers which are maximally stimulated by the instantiation of the
variable si.

One result of the S+M transformation i s that a single precise variable si
can be transmitted over a multiplicity of imprecise information channels
such as neuron axons. A second, equally important result i s that small
changes in the value of the input variable si have no effect on most of the
elements in m,*. T h i s leads to the property of generalization, which i s so
important to learning and recall in a world where no two situations are ever
exactly the same.

4.2. THE M+A MAPPING

In the cerebellum, incoming nerve fibers enter what is known as the
granular layer, where they make contact with a set of association cells,
called granule cells. A system of negative feedback similar to an automatic.
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gain control regulates the overall activity in the granular layer so that a
small and fairly constant percentage of the granule cells are stimulated into
an active state. Th i s i s simulated in CMAC by the concatenation of
respective elements in m,t to select a set of nonzero elements A * out of the
association cell vector A. For example, in Fig. 11 the setsrn:= {B,H,P, V)
and rnt={c,j,q,v) are combined to select the set of elements A * =
(Bc,Hj, Pq, Vu}. The number of elements in A * i s thus equal to K, the
number of quantizing functions chosen for the S+M mapping.

Note that the element Bc will be in A * so long as the input vector S
remains within the region {(s,,s,)14 <sl < 7, 8 <s, < 1l}.A similar region
exists for each of the elements in A*. T h e selection of each element in A *
corresponds to the instantiation of the input vector within a region of input
space. The extent of these regions is dependent on the quantization resolu-
tion of the intermediate variables mi.

Any two input vectors which lie close together in input space willoccupy
many of the same regions. T h i s gives CMAC its property of generalization,
i.e. the tendency to produce similar outputs for similar inputs. I f S,+A:
and Sz+A;, then the amount of generalization between SI and S, corre-
sponds to the number of elements in the intersection A:n A;. For example,
in Fig. 12, S, selects three out of four association cells that SI does. Thus
the output h(S,) will differ from h(S,) only by the contents of the single
weight which i s not in the intersection A: nA;.

T h e nature of the S+M mapping causes the number of elements in
A ?n A,* to decrease as the input-space distance between the two input
vectors grows larger. Finally, at some distance the intersection is null and
the subsets A? and Af are disjoint. At that point S, can be said to be
outside the neighborhood of generalization of S,. The value of the function
h(&) is then independent of h(S,).

4.3. THE A-tp MAPPING

In the cerebellum, mons from the granule cells contact a large nuinber
of Purkinje cells directly through a set of weighted synaptic connections and
indirectly through inverting interneurons. In CMAC all of the Purkinje cells
with the same S+A mapping are lumped together as a single element of the
output vector. Thus, each element of the output P=(p,,p2,. ..,pL) is com-
puted by a separate CMAC from the formula

p k = 2uisuik,
I

where A"=(uf, ....uh) i s the association cell vector of the kth CMAC and
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SE

ASSOCIATION WEIGHT
CELL VECTOR VECTOR

T OF ALL POSSIBLE
INPUT VECTORS

A* 1=(a 4, ag, aI3, ala)

A*2= (a4, an, all, a16)

A*,nA*2=(o,. ag, o16)

. .

FIG. 12. CMACs ability to generalize derives from the overlap, or intersection,
A: n Af. The response cell is affected in the same way for both input patterns S, and S,
by all weights in the intersection A rnA;. Only if the intersection i s null will the outputs
be independent.

Wk=(wf, wt, ...w,") i s the weight vector of the kth CMAC. Of course, only
the nonzero elements of A which constitute A contribute to the output

In the example in Fig. 11 there i s only one output p, and the weights
Pk.

pointed to by A * are

w,, =1.o,
ww= 2.0,

wpq= 1.o,

W"" =0.
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These weights are summed to produce the output

p=4.0.

Thus, the input S=(7,10) produces the output h(S)=4. T h e entire set of
weights shown inFig. 11 defines the function inFig. 13.

At every point in input space, four weights are selected whose sum i s the
value of the output. A s the input vector moves from one point in input
space to an adjacent point, one weight drops out to be replaced by another.
The new weight minus the old i s the difference in the values of the output at
the two adjacent points. Thus, the difference in adjacent weights is the
partial derivative (really the partial difference) of the function at that point.

0 1 2 3 4 5 6 7 8 9 I O 11 12 1 3 1 4 I S l 6

FIG. 13. A two-input function of the type which CMAC c+n readily store
particular set of weights in Fig. 11 produces the above function.

'I

. The
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For example, in Fig. 11, i f the input vector moves from S=(7,10) to
S=(8,10) the weight Bc= 1.0 drops out and i s replaced by Cc =2.0. The
value of the output thus changes from 4 to 5.

4.4. DETERMINATION OF THE H FUNCTION

In the cerebellum each Purkinje cell has a unique fiber, called a climbing
fiber, which is believed to be related to learning. There have also recently
been discovered fibers from the locus ceruleus which may also be involved
in learning [20]. While the exact mechanisms for memory storage are as yet
unknown, it has been hypothesized-and some recent evidence suggests
[35]-that climbing fibers carry error -correction information which
punishes synapses which participate in erroneous firings of the Purkinje cell.

A procedure for entering a function in CMAC i s as follows:

(1) Assume that fi i s the function we want CMAC to compute. Then
p- fi(S) i s the desired value of the output vector for each point in the input
space.

(2) Select a point S in input space where P i s to b e stored. Compute the
current value of the function at that point P= H(S).

(3) For every element in P=(p,,p, ,...,pL) and in P=(@,,j 2,...,h), if

Id,-Pi1 ti,

where .$ i s an acceptable error, then do nothing; the desired value is already
stored. However, if

l$i-pfl>ti,

then add to every weight which contributed topi the quantity

where (A*l=the number of weights which contributed top,.

At present there exists no formal criterion for the convergence of this
procedure. Convergence clearly depends on the sue of the acceptable error
band 4. It also depends on the relationship between the size of the
neighborhood of generalization and the highest spatial frequency compo-
nent in the desired function p.

An example of how an arbitrary function such as@=sinx siny, where

x=2ns,/360,

y =2mJ360,
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can be stored in CMAC is shown in Figs. 14-16. In this example the input
i s defined with unity resolution over the space

S={(S,,SZ)JO< S~ G360, O<S,< 180),

and the number of weights selected by each input i s

In this case CMAC will generalize so that any two input vectors which
differ by only one resolution element will have 31 weights in common. Not
until two input vectors are 32 resolution elements apart will they map into a
pair of disjoint subsets A *.

Initially, the weights were all set to zero and the point S,=(90,90) was
chosen for the first data entry. The value of the desired function at (90,90)
i s 1. By Eq. (I)each of the weights selected by SI=(90,90) i s set to &,
causing the proper value to be stored at S, as shown in Fig. 14. Following
th is operation we find that a second input vector S2=(91,90) will produce
the output g. This i s because S2 shares 31 weights with the vector SI. A
third vector S,=(92,90) [or S, =(90,92)] will have an output h because of
sharing 30 weights with SI, etc. The resul t i s that the CMAC memory
generalizes. Adjacent memory locations are not independent, and a plot of
values stored at each point in input space has the appearance of a stretched
rubber sheet. Pulling one point to a particular value, as in Fig. 14, affects
adjacent points.

Generalization has the advantage that training (or data storage) i s not
required at every point in the input space in order for an approximately
correct response to be obtained. This means that a good first approximation
to the correct H function can be stored for a suable envelope around an
AND trajectory by training at only a few points along that trajectory. For
example, Fig. 15 demonstrates the effect of training at only 16 points along
the trajectory

Further training at 175 points scattered over the entire input space S=
{(sl,s2)l0<s, <360, O<s, G 180) produced the result shown in Figure 16.

Generalization enables CMAC to predict on the basis of a few experi -
ences what the appropriate behavioral response will be in a similar situa -
tion. Needless to say, such predictions are not always correct and some-
times need to be corrected by further learning. Nevertheless, generalization
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1 Sl 360

FIG. 14. An illustration of the neighborhood of generalization around a CMAC input
vector. In this example the value 1 stored at S=(90,90) generalizes to neighboring points
in input space. The amount of generalization falls off with distance from the stored input.
T h i s causes a plot of the CMAC output to appear l ike a stretched rubber sheet.

1
1 S l 360

FI~.15. T h e effect of training with the functiona=sinxsiny at 16 points along the
s,-W axis.

1 360

Flo. 16. The effect of training with the functiond=sinxsiny at 175 points over the
entire range of the input variables.
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i s essential in order to cope with real-world environments where the
identical set of AND/OR trajectories never recurrs.

The ability of the CMAC H function to discriminate (i.e. produce
different outputs for different inputs S, and S,) depends upon how many
weights in A: are not in A; and how different in value those weights are. I f
two inputs which are close together in input space are required to produce
significantly different outputs, then repeated training may be required to
overcome the (in this case erroneous) tendency to generalize by building up
large different values in the few weights which are not in common.

The extent of the neighborhood of generalization is a function of the
number of elements in the set A * and the resolution of the si+m, mapping.
These may be selected by the system designer to model the properties of
various regions of the brain.

4.5. MEMORY RE& UIREMENTS

Using conventional methods, computation of a function by table lookup
procedures requires RN memory locations for N variables where each
variable can take on R distinguishable values. CMAC, however, does not
require a unique table entry for each possible input vector. I t maps each
input into a set of memory locations such that the amount of memory
required i s substantially reduced. For example in Fig. 11, the input space is
a 17X 17 array, or 289 potential input vectors. The CMAC memory,
however, has only 100 elements.

For larger input spaces such as are encountered in real-world computa -
tions, hash coding techniques are representative of the neurological interac -
tions used to compress much further the number of physical memory
locations required to store a function. In Figs. 14-16 the 360x 180-element
input space was represented in a 1024-location memory by hash coding. An
extensive discussion of these hash coding procedures and the neurophysio -
logical processes they represent appears elsewhere [1,4].

Hash coding ~“collisions” introduce noise which is distributed randomly
over the entire input space. Hashing noise can be seen in the base plane in
Figures 14 and 15. Each time new data are stored, previously stored data
are degraded somewhat. Thus, the H function i s most precisely defined in
the regions where training i s most recent, and gradually degrades due to
learning interference in regions where training i s not recent. In this sense
CMAC, like the brain, tends to forget.

In the cerebellum of the cat, where most of the experimental data were
obtained, each output Purkinje has about 200,000 synaptic weights and i t s
interneurons have about that many again. Furthermore, as many as 100
Purkinje cells may be driven by essentially the same S+A* mapping. Thus,
the physical memory for each cerebellar CMAC may be as high as 40
million weights. T h i s is quite an adequate -size memory to store functions of
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several tens of input variables. Th i s allows the cerebellum to include in i t s
control computations many parameters with subtle effects such as flexing of
structural components, nonlinearities in actuator drive, and Coriolis forces
due to moving inertial frames.

T h e large number of weights used by the cerebellum does not, however,
preclude the use of CMAC as a practical device for servo control. A CMAC
with 7168 words of memory has been used to control a six-axis robot
manipulator [4], and one with 2047 weights has successfully controlled a
two-degree -of-freedombiped walking device 191. Even smaller CMACs such
as the one shown in Fig. 11 may have many applications for servo control.
A CMAC with up to 12 input variables can readily b e implemented with
microprocessor technology.

4.6. GENERALITY

The anatomical structure of the cerebellum happens to be particularly
suitable for neurophysiological experiments, making it feasible to collect
sufficient quantitative data for the construction of mathematically tractable
models such as CMAC. There is, however, little reason to believe that the
cerebellum is fundamentally different from many other parts of the brain in
the manner in which information is processed and stored. T h e basic
structures of a large output cell (sometimes called a principle, relay, or
projection neuron) served by a cluster of interneurons i s qu i te typical
throughout t h e brain [53]. These clusters commonly receive input from a
large number of nonspecific neural fibers similar to the mossy fibers in the
cerebellum. In many instances they also receive specific inputs from fiber
systems which are more or less analogous to climbing fibers in the cerebel -
lum. I t i s also known that the basic neural interactions between fiber and
cell systems i s quite similar throughout the brains of all mammals. For
example, in the spinal cord the motor neurons are the principle neurons and
the Renshaw cells are the interneurons. In the neocortex the principle
neurons are the pyramidal cells and the interneurons are of several different
types. Specific and nonspecific input fibers to the neocortex differ in their
points of origin and in their mode of interaction with principle neurons and
interneurons. Also in the thalamus, as well as in the olfactory bulb, the
hippocampus, and even to a large degree in the retina, there is the familiar
architectural pattern of a principle neuron, served by a group of interneu -
rons with a more or less distinct separation between specific and nonspecific
input fibers [53].

There are also, of course, many differences from one region of the brain
to another in the character of these cell systems and in their interactions. In
addition there are complicating factors such as axon-axon and dendrite -
dendrite synaptic connections, which play undoubtedly important but un-
known roles in information processing, storage, and retrieval in the brain.
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Nevertheless, there are clear regularities in organization and similarities in
function from one region to another which are significant and which
suggest that, at least to a first approximation, the basic processes are
similar. The implication i s that the basic model of information processing
suggested by CMAC (i.e. the concept of a group of principle neurons
together with their interneurons transforming an input vector into an output
vector in accordance with a mathematically definable relationship) may be
useful in analyzing the properties of many different cortical regions and
subcortical nuclei.

5. COMPUTATIONAL CAPABILITIES

The ability of CMAC to store and recall a very general class of
multivariant mathematical functions i s an extremely powerful result. I t
suggests a single elementary mechanism by which the central nervous
system can perform many different complex operations.

5.1. ARITHMETIC COMPUTATION

The ability of CMAC to compute P=H(S) demonstrates how a rela-
tively small cluster of neurons can calculate the type of mathematical
functions required for multivariant servos, coordinate transformations, and
task decomposition operators. These are minimum requirements for the
activities of running, jumping, throwing, catching, and flying which are
accomplished with apparent ease by the tiniest rodents, birds, and even
insects. In the simplest of creatures, the weighted synaptic connections
which produce the H function may be genetically predetermined with only
minor adjustments left to be. accomplished through a trial-and-error learn-
ing process. At the lower levels of the motor hierarchy these predetermined
circuits correspond to reflexes. At higher levels they produce the types of
behavior known as instinct.

5.2. CONDITIONAL BRANCHING

The multivariant nature of CMAC means that one or more of the input
variables in S can be used to select different regions in input space where
entirely different functions may b e stored. Such variables can thus produce
the equivalent of a conditional branch in a computer program.

Assume for example that in Fig. 16 a third variable sj had been included
in the input vector. Assume that s3 is held constant at s, =0 while storing
the functionp =sinx siny. Following that, an entirely different function, say
p=x+9y z, could be stored with s3 held constant at sj=50. Since every
point in the input space for s3=0 i s outside the neighborhood of generaliza -
tion of the input space for s3=50, there would be no interference except for
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p=sinxsiny if s3=0,

p=x+9y z i f S3=50.

In the interval O<s3 <50 the function would change smoothly from p=
sinx shy to p= x+9yz. Additional functions could be stored for other
values of s,. Other conditional variables s,, s5, ... might also be used to
select additional functions.

I f these conditional variables are part of the command vector, then each
different input command can select a different stored function. I f they are
part of the feedback, then different environmental conditions can trigger
entirely different response patterns.

5.3. FUZZY-STATE AUTOMATA

In the cerebellum, as in many other parts of the brain, fibers from output
cells send branches directly back into their own interneuron clusters to
become inputs. For CMAC this implies that some of the elements in the
output vector P may loop back to become elements in the input vector S as
shown in Fig. 17.

An H function can now be defined such that for binary inputs the
CMAC behaves l ike a finite -state automaton. In t h i s case the feedback
inputs s1 and s2 define the state of the machine, and s3 corresponds to the
input.

I I

P1

p2

s1 s2 s3 p1 p2

0 0 0 1 0

1 0 0 0 0

0 1 0 0 1

1 1 0 1 1

0 0 1 1 1

1 0 1 0 1

0 1 1 0 0F1 1 1 1 0

FIG. 17. Feedback loops can transform CMAC into the equivalent of a finitestate
automaton. The feedback inputs s, and s2 define the state of the machine, and sg

corresponds to the input. The transition table is determined by the CMAC weights.
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I f the S+A mapping for the machine in Fig. 17 i s chosen similar to that
in Fig. 11 (except for the range of the variables, whch extends from 0 to 1
rather from 0 to 16), then Fig. 18 shows the input space and the value of the
output P for points along lines connecting the vertices representing the
binary Input vectors.

The CMAC in Fig. 17 i s equivalent to the finite -state automaton di-
agrammed in Fig. 19. In general i t i s possible to construct t h e CMAC
equivalent of any finite state automaton. Of course, the CMAC can accept
inputs and produce outputs which are not binary values. CMAC is thus a
sort of fuzzy-state automaton. CMAC reduces to a regular finite automaton
in the limiting case where the resolution on the s, inputs goes to one (i.e.,
where each set { rq*} contains only one binary variable).

Assume in Fig. 17 that the input variable sj is the command vector C,
and the feedback variables sI and sa are the vector F. I t i s now clear how a
neural cluster modeled by CMAC can generate a string of outputs in
response to a constant (unchanging string of) input command(s). A dif-
ferent unchanging string of input commands generates a different output

FIG. 18. The input space of the CMAC in Fig. 17 with the value of the output P for
points along the lines connecting the vertices. The dotted lines correspond to pI and the
solid topz.
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FIG. 19. T h e state diagram for a finite-state automaton for which the CMAC in
Figure 17 i s the equivalent.

string or trajectory. Additional variables added to F from an external
source, or context, increases the dimensionality of the input space and thus
can alter the output string in a “context -sensitive” way.

Th i s configuration of the CMAC model is relevant to a long-standing
controversy in neurophysiology regarding whether behavior patterns are
generated by “stimulus -response chaining” (i.e. a sequence of actions in
which feedback from the sensory organs i s required to step from one action
to the next) or by “central -patterning” (i.e. a sequence of actions which is
generated by internal means alone) [141. A CMAC hierarchy may have tight
feedback loops from the output of one level back to i t s own input, as well as
longer internal loops from one level to another in the same hierarchy. I t
may in addition have feedback from the environment to alter the centrally
patterned movements in accordance with environmental conditions.

The capability of CMAC to simulate a finite -state automaton, to execute
the equivalent of conditional branches, and to compute a broad class of
multivariant mathematical functions makes i t possible to construct the
CMAC equivalent of a simple computer program. Alternatively, it is possi-
ble to construct a program equivalent of each H module in a CMAC
hierarchy. A hierarchically structured robot control system based on
CMAC theory is currently under development by Anthony Barbera at the
National Bureau of Standards [7].

5.4. PATTERN RECOGNITION

The computation of the CMAC output by the formula

means thatp is equivalent to a linear discriminant function on the A vector.
I f the input vector S is a pattern, then the addition of a threshold device to
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NAME

FIG. 20. Patterns in two overlapping or ambiguous classes may be inseparable
without the addition of context variables. Context can increase the dimensionality of the
input space and disambiguate overlapping classes.

the output i s all that i s required to turn CMAC into a classical pattern
recognizer.

T h e S+A mapping gives CMAC the ability to restrict the neighborhood
of generalization on the input space. T h i s means that the A * for any two
regions in input space can be made disjoint as long as the regions are
nonoverlapping. Thus, CMAC can be trained to perform a very broad class
of pattern -recognition tasks.

I f we assume that a CMAC pattern classifier includes in i ts input S a set
of context variables as well as a set of pattern variables, as shown in Fig. 20,
then the context vector can be used to shift the total input vector to
different parts of input space depending on the context. Thus an ambiguous
pattern can be recognized as in classIwhen accompanied by contextI,and
in class I1 when accompanied by context 11.

5.5. ASSOCIA TIVE MEMORY

Assume CMAC is embedded in a sensory data pathway such that the
training input p to the CMAC carries sensory data, as shown in Fig. 21.
The input alters the synaptic weights of the active parallel fibers so that
the difference between the training input p and the CMAC memory P i s
reduced or nulled. The effect is that the sensory data carried on the training
input as fi are now stored in an address which is the S vector present when
the training data occurred. Any time th is same S vector recurs in the future,
the CMAC will output the stored sensory data which were previously
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present on the sensory pathway. The precision with which the sensory data
can be recalled is proportional to the precision with which the S address i s
reproduced. The sensory data are thus stored “in association with” the S
address which was present when they occurred. In Fig. 21 the S addresses
are derived from the behavior -generating hierarchy. Thus, sensory data are
stored in association with the P vectors in the generating hierarchy that
were present while the data was being stored. I f these S addresses trace out
a behavior trajectory T, while the sensory data are changing with time, then
an entire sensory experience will be stored as a sequence of recalled P
vectors in association with the sequence of S-vector addresses which con-
stitute the behavior trajectory T,. I f at a later time the S vector traces out
the same trajectory T, (as, for example, when the same action sequence is
being generated by the generating hierarchy), then the sensory experience
willbe replayed much l i ke a tape recording. Again the fidelity of recall will
depend on the accuracy with which the S vector retraces the storage
trajectory T,.

If, during learning, the gain factor in the weight adjustment procedure is
small, many passes along T, may be required to record a sensory experience
with a good signal-to-noise ratio.

In such a memory system, the alteration of synaptic weights is thought to
be accomplished by a series of chemical reactions caused by synaptic
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Fro. 21. Sensory experiences may be stored “‘in association with” motor behavior ‘;f
the S inputs to memory CMACs are derived from the generating hierarchy and the P
“desired outputs” are derived from the sensory-processing hierarchy.
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transmitter substances released by the active fibers. The decay phenomenon
of short-term memory may simply be the exponential decay of concentra -
tion of these transmitters. The consolidation of long-term memory appears
to involve protein synthesis causing permanent growth at the synaptic sites.
A more extensive discussion of this type of associative memory is contained
in [5].

6. HIERARCHIES IN THE BRAIN

There i s considerable neurophysiological and anatomical evidence that
hierarchies of CMAC-like processing modules similar to that shown in Fig.
5 actually exist in the neurological substrate of the central nervous system,
although certainly not in such a simple schematic form.

6.1. THE DESCENDING MOTOR HIERARCHY

At the very bottom of the motor hierarchy are the motor neurons which
Sherrington called the “final common path.” These motor neurons actually
drive the muscles, and their output firing rate can be considered the
terminal trajectory of the AND/OR tree. T h e motor neurons and their
associated interneurons receive feedback directly from stretch receptors in
the muscles being controlled. T h i s lowest -level feedback loop, the stretch
reflex or “gamma loop,” is the most studied and best understood of all the
levels in the hierarchy.

A CMAC representing a spinal motor neuron and its interneurons
receive feedback F from stretch receptors via the dorsal roots as well as
from other motor neurons reporting ongoing activity in related muscles. The
command vector C to this lowest level comes from the vestibular system,
which provides inertial reference signals necessary for balance and stability
[69], as well as from the reticular formation and basal ganglia [22], and in
primates also directly from the motor cortex [8]. Much of the vestibular
system input passes through, or is modulated by, the cerebellum, which
receives feedback from joint position sensors, tendon tension sensors, and
skin touch sensors [42]. Thus, parts of the motor cortex, particularly sources
of the pyramidal fibers, together with the cerebellum and basal ganglia
represent a second level in the motor hierarchy. The structure of the
command and feedback inputs to the CMACs representing the cerebellum
has already been extensively discussed.

The motor cortex contribution to the second level has been called the
transcortical servo loop by Phillips [MI. Evarts and Tanji [13] have observed
cells in the motor cortex whose response P to a stretch stimulus F can be
altered (indeed, completely reversed) by different command inputs C. An
experimental animal was trained to pull a lever upon feeling a jerk if a red
light preceded the stimulus, and push the lever if a green light preceded the
stimulus. Both the command C (highfiring rate =red, low=green) and the
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altered response P (pull if C=high, push if C=low) were observed. There is
a measurable time delay which clearly separates the effect of feedback to
the lowest level (10-20 msec), feedback to the second level (30-50 msec),
and changes in command inputs to the second level (100-200 msec) [13,541.

Other experiments by Evarts [15,16] and Thach [60] have shown that
neurons in the cerebellum, thalamus, and motor cortex alter their firing
rates at various intervals prior to learned movements, and well in advance
of any response feedback. T h i s suggests the propagation of goals and
subgoals down the motor hierarchy as the various levels receive commands
and issue subwmmands in preparation for the initiation of a task.

Further evidence that hierarchical structures exist and function as
AND/OR task decomposition operators in the generation and control of
motor behavior can b e found in almost any neurophysiological textbook.
For example, brain-stem transection experiments have demonstrated that
stereotyped elemental movements such as extension, rotation, and turning
movements of the head and body are generated and controlled in the
mesencephalic and lower diencephalic brain stem [22]. Rotational move-
ments of the head and eyes are controlled by the interstitial nucleus, raising
movements of the head and body by the prestitial nucleus, and flexing
movements by the nucleus precommissuralis. Turning movements of the
entire body, which are coordinated strings of these elemental movements,
do not occur unless the higher brain-stem regions of the pontile and
mesencephalic reticular formation are intact. Fully expressed coordinated
circling movements require the candate nucleus and the cingulate gyrus of
the cerebral cortex [181.

The candate nucleus is part of the basal gangba. Disease of another part
of the basal ganglia, the striate body, can cause a person to perfom a
perfectly normal pattern of movements for a few seconds and then suddenly
switch to a different pattern, and then to another. This disease i s commonly
known as St. Vitus’ dance [I11.

The precise identification of higher levels in the motor hierarchy be-
comes increasingly difficult because of the enormous increase in wmplexity
of behavior which results from each additional level of control. Further-
more, it i s clear that the hierarchies which actually exist in the nervous
system are by no means schematically simple. The motor system is certainly
not a single linear hierarchy, but a multiplicity of partially interrelated
partly redundant hierarchies. The pyramidal system which l i n k s the motor
cortex directly to the lowest level motor neuron circuitry exists in parallel
with the extrapyramidal system which involves the red nucleus, the cerebel -
lum,and the vestibular nuclei [42]. These both interact with the postura l
control system of the basal gangha and reticular formation. There are
strong indications that at least four different hierarchies exist in the lan-
guage area, one for each of reading, writing, speaking, and hearing [57].
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There are clearly separate hierarchies for the right and left sides of the brain
with cross-links through the corpus callosum. Furthermore there are many
looping structures, which may or may not fit neatly within the framework of
a linear hierarchy. The motor cortex transmits to the pons, which transmits
to the cerebellum. The cerebellum transmits to the thalamus and then back
to the motor cortex. These regions are by no means homogeneous, and
there is no reason to assume that all cells in the same anatomical structure
occupy the same functional level of a hierarchy. Such loops may simply
connect various levels in the hierarchy which are microscopically, and
hence logically, distinct even though they occupy the same macroscopic
neural structures.

6.2. THE ASCENDING SENSORY HIERARCHY

Different types of feedback inputs at each level of the descending motor
hierarchy imply the existence of an ascending hierarchy of information -
processing operators. At each level of the ascending hierarchy, input vectors
and trajectories correspond to sensory data which are transformed by
pattern-recognition operators into output vectors and trajectories corre-
sponding to recognized features. Here, the existence of an output vector
within a particular region of output space corresponds to the recognition of
a particular event.

There i s considerable independent neurophysiological evidence for
ascending sensory processing hierarchies. Hubel and Wiesel [24] have
demonstrated increasingly sophisticated pattern recognizers in at least four
clearly distinguishable hierarchical levels in the v i s u a l system. Similar
sensory processing hierarchies have been studied in the auditory system [191
and also in the proprioceptive and kinesthetic pathways [42]. Use of th is
information for controlling behavior clearly requires cross-couplings from
the sensory processing hierarchy to the motor generating hierarchy. At each
level output vectors form inputs to the next higher processing stage as well
as feedback to the parallel generating hierarchy.

Signal -detection theory predicts that the efficiency of the sensory
processing hierarchy should be enhanced if there are complementary l i n k s
from the motor generating hierarchy to the sensory processing hierarchy.
This type of information pathway i s what researchers such as von Helm-
holtz [62] and later Sperry, [58] von Holst and Mittelstaedt, [63] and others
[14] have called an “efference copy.” T h i s information gives the sensory
processing hierarchy a priori knowledge of what the motor generating
hierarchy is doing so that, among other things, sensory signals resulting
from movement of the body can be distinguished from sensory signals
resulting from movement of objects in the environment. This, for example,
enables the visual system to distinguish between a rotation of the eyes and a
rotation of the room about the eyes. It shi f ts the output trajectories of
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processing Cu4Cs into different recognition regions depending on what
the motor generating hierarchy is doing while sensory data are being
processed.

I f the l i nks from the generating hierarchy to the processing hierarchy
include associative memory modules as shown in Fig. 21, then these
pathways also provide the sensory system with a memory trace of what
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FIG. 22. A processing -generating hierarchy developed for the control of advanced
sensory -interactive industrial robotic systems.
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sensory data had occurred on previous occasions when the motor generat - .
ing hierarchy was in the same or a similar state along a similar trajectory.
T h i s provides the sensory processing system with predictions of what
sensory data to expect. T h i s in turn enables the sensory hierarchy to do
predictive filtering, to recognize unexpected events (as well as the absence
of expected events), and to perform context -sensitive recognitions.

Figure 22 shows a cross-coupled processing -generating hierarchy which
i s being developed at the National Bureau of Standards for robot control. I t
illustrates the kinds of information that flow back and forth between the
processing -generating hierarchies in an advanced sensory -interactive in-
dustrial robot system.

6.3. LOOPS AND RHYTHMS

Cross l i nks between the generating and processing hierarchies produce a
series of loops. Analysis of information flow in such a looping structure
resembles the analysis of phase-lock loops. Th is is illustrated in Fig. 23.
Inputs from various levels of the generating hierarchy behave in many ways
like local oscillators, or s igna l predictors. Sensory input is compared against
the predicted signal, and systematic errors tend to “pull” the generating
hierarchy into synchrony with trajectories in the sensory stimuli. Von Holst
called this the “magnet effect” [64]. When synchrony i s achieved, the
processing -generating hierarchy “locks on” to the sensory input. This lock-
on phenomenon corresponds to detection or recognition of temporal
patterns in the incoming signals.

Assume for example that the two Ch4ACs in Fig. 23 are a phase-lock
loop such that the input PAITERN i s a signal f(t) and the PREDICTION is another
signal Kt-7). I f the processing CMAC on the left computes the product
PAITERNXPREDICTION, then the output NAME i s f(t)f(t - 7). When 7 corresponds to

NAME COMMAND

1 1
PATTERN

SUBCOMMANO

FIG. 23. A pair of CMACs may act as a phaselock loop. Context can provide
information on which to base a prediction. An error signal can refine, or pull, the
prediction so as to lock on to the incoming pattern.
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of the period of the input f(t), a low-pass filter applied to the output will
produce a phase ERROR signal which when applied to the generating CMAC
on the right will cause the PREDICTION signalf(t -r) to track and lock on to the
input PAmwf( f ) . A multiplicity of such loops with different delays (r>0) or
different predictive intervals (r < 0) will produce a multiplicity of outputs
which when processed through low-pass filters produce an approximation to
an autocorrelation function:

such that

PL/2 =R(7L/2),

where r,>r2> - .. >rLI2 > . . >rL and rLI2=O. Wightman [68] has shown
that such an autocorrelation function yields a subjective perception of pitch
which is in good agreement with psychophysical data. In terms of the
diagram in Fig. 23 the existence, of an output on element pi would corre-
spond to the perception of pitch at a frequency l/ri.The existence of an
output on element pLIz corresponds to a confidence factor indicating the
strength of the lock-on.

Figure 24 suggests how a hierarchy of phase-lock loops might interact to
generate and recognize language and/or music. In the language model
suggested here the intent to communicate a message or to encode a
high-level behavioral trajectory into language symbols corresponds to the
selection of a top-!eve1 input command, or goal. T h i s goal is then decom-
posed through the H operators at the remaining levels until at the bottom
an output string of muscle commands drive the lungs, larynx, lips, and
tongue. These H operators embody the syntax, characteristic expressions,
and language habits of the speaker. The resulting behavioral patterns, which
may involve bodily and facial gestures as well as vocalizations, are thus a
product of all the learned and prewired decomposition functions stored
throughout the entire processing -generating hierarchy.

In this model, the message to be communicated is encoded by the H
functions which generate the language behavior. The understanding of a
message received is accomplished when the incoming sensory data can pull
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PHRASE ERROR
BE EXPRESSED

PHRASE SELECTED

PREDICTED woRn
WORD GENERATE0

PHONEME (PITCH)

PHONEME
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COMMAND
TO MUSCLES
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VOICE
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COCHLEA RECEPTORS
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I---____.
FIG. 24. Crosscoupling at many different levels between motor-generating and

sensory-processing hierarchies produces the capability to detect, recognize, and track
many different, but related, phrase structures such as exist in speech and music.

the processing -generating hierarchy of the listener into synchrony with the
processing -generating hierarchy of the speaker.

In a phase-lock loop, lock-on usually occurs with a positive snap, or
“thunk,” even if preceded by an extended search. T h i s may correspond to
the gestalt experience when we say “Aha!” or “Isee!” Once lock-on is
achieved the hierarchy can track lengthy sequences of signals even in the
presence of noise or interference from similar signals.

Typically vectors at higher levels have a slower t ime rate of change, and
the trajectories defined by these vectors represent greater levels of abstrac-
tion. T h i s implies that the higher -level loops lock on to longer-term peri -
odicies. Lock-on at many different levels gives the hierarchy the ability to
detect, recognize, and track patterns with many different, but harmonious,
phrase structures such as are present in spoken language and music. This
may explain the peculiar affinity of the ear for the rhythmic character of
poetry and the numerical relationships involved in musical harmony. I t may
also explain the ability of the ear to ignore bursts of noise and to “flywheel”
through auditory dropouts with apparent ease.
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The model, with i t s hierarchy of locked loops, emphasizes the impor-
tance of periodic (i.e. repeating) patterns and rhythms. Periodic phenomena
are intimately involved in behavior in general and learning in particular for
at least four reasons:

(1) Neural activity in the brain, to the extent that i t is periodic, provides
a predictably recumng pattern of relationships at all levels. T h i s i s a
prerequisite to recognition, to prediction, to the testing of predictions
against observations, and to the learning of systematic variations which
form the basis of more sophisticated predictions.

(2) Many learned activities such as walking, running, dancing, singing,
speaking, and gesturing have a distinctly rhythmic, and sometimes strictly
periodic, character.

(3) Observation of the learning behavior of children reveals that they are
particularly fascinated by repetition and periodicities of many different
kinds. Ample evidence of this may be found in childrens’ songs and games,
and in the circumstances accompanying the familiar child’s request, “do it
again, do i t again.”

(4) Almost all high-level goal selection (i.e. decisions to engage in
common daily activities such as sleeping, eating, attending to personal
hygiene, going to school or work, playing, attending social or religious
meetings, etc.) i s strongly influenced by periodic factors such as sunlight
and darkness, work or school schedules, meal times, and each individual‘s
own internal rhythms, which have monthly as well as daily and shorter -term
periodici ties.

Learning thus takes place against a background of rhythmic patterns which
permeate the entire processing -generating hierarchy. Within this frame-
work regularly recurring temporal relationships become recognizable and
sequences of events predictable. Recognitions of gradual or small systematic
deviations from the predictable lead to the learning of more sophisticated
recognitions and predictions. Abrupt departures from the predictable elicit
surprise, and large deviations (which are accompanied by intense emotional
responses) become memorable events. Continued or prolonged disruption of
regular patterns, either in the internal rhythms or in external stimuli,
destroy predictability, frustrate learning, and generate emotional stress,
which in severe cases can produce neuroses.

6.4. PERFORMANCE EVALUATION

Output from the highest -level pattern recognizers interacts with the
limbic system, which evaluates the processed sensory data for desirability or
undesirability. Olds [40,41] and many others have located specific regions in
the posterior hypothalamus and medial tegmentum which when stimulated
produce a pleasurable or rewarding effect. Other regions in the posterior
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and lateral diencephalon and lateral tegmentum produce a punishing or
aversive effect. These and other emotional centers make a judgement as to
the goodness or badness of the state of the world as perceived through the
sensory processing system.

Pribram has recently demonstrated that the mediobasal motor cortex i s
intimately involved both in somatomotor and in viceroautonomic activities
[46]. Stimulation as well as lesion experiments in this region strongly suggest
that this i s an area where entire behavioral sequences (Le. high-level goals)
are selected. The viceroautonomic connection with this region suggests a
mechanism by which “gut feelings” influence, and are influenced by, the
choice of behavior patterns.

I t is also well known that chemoreceptors and hormone detectors and
emitters exist in areas such as the hypothalamus and pineal gland, which
provide appetitive and sex-drive variables. In addition there are emotional
centers of fear, pain, pleasure, sorrow, aggression, and sympathy in the
amygdala, the fornix, the hippocampus, and many other regions of the
limbic system. These all provide inputs to the goal-selecting levels and
training mechanisms of the processing -generating hierarchies [65].

Variables generated by all of these different limbic regions combine with
processed sensory data to form the S vectors to the highest levels in the
motor hierarchy as well as to the autonomic system. These mechanisms can
thus decide between one plan and another, one hypothesis and another, or
one goal and another. This information can influence the goal selection
process directly by providing input variables to the highest -level task
decomposition operators, or by providing desired values and reward-
punishment data to the training mechanisms which alter the H functions.

6.5. PUNNING, FORESIGHT, AND IMAGINATION

In a complex structure of many cross-coupled hierarchies representing
many different sensory -motor systems, there are at least three distinctly
different modes of operation.

6.5.1. Task Execution Mode. Fi rs t i s the task execution mode, in
which the motor-generating hierarchy is committed to a goal and the
sensory -processing hierarchy i s primarily engaged in providing feedback
reporting on the effects of those actions. For example, when speaking, the
auditory system i s primarily engaged in hearing the sound of the speaking
voice and providing feedback for controlling intensity, modulation, and
pitch.

6.5.2. Sensory Analysis Mode. A second mode of operation i s analysis
of sensory data from external sources. When in this mode the generating
hierarchy may simply disable i t s motor output levels or command the lower



PLANNING AND PROBLEM SOLVING IN THE BRAIN 287

levels to execute an overlearned routine task. T h i s leaves the rest of the
motor-generating hierarchy available for assisting the sensory -processing
hierarchy by creating hypotheses and subhypotheses, as opposed to task
and subtasks. Sensory input from the environment is now compared with
predictions based on these hypotheses. I f the hypotheses are correct, they
will be confirmed; if only nearly correct, they can be pulled by feedback
from the processing hierarchy. When a high-level hypothesis i s successful in
generating predictions which match incoming sensory data, the entire
processing -generating hierarchy locks on to the incoming sensory data.
Sensory input which cannot be correlated with a hypothesis is rejected as
“just noise” or “without meaning.”

6.5.3. Planning Mode. A third mode of operation i s when both the
motor output and the sensory input are more or less disconnected from the
higher levels of the processing -generating hierarchy. When in this mode
the generating hierarchy can set up a sequence of hypotheses and sub-
hypotheses which generate a context, or an associative address. T h i s recalls
memories of sensory experiences which were stored at a previous time when
a simi lar context or associative address existed. These internally recalled
experiences can then be processed by the rest of the sensory-processing
hierarchy as if they were externally derived sensory data.

In this way a person can step through an imaginary task and predict the
potential consequences. T h e generating hierarchy generates what might best
be called an idea or a plan. T h i s stimulates the memories of previous
sensory experiences associated with that plan, i.e. sensory data stored when
a similar task was actually performed. The sensory processing system
analyses the recalled data, providing feedback to the generating hierarchy
such that it cycles through an entire past experience, or a potential future
action. The emotional centers perform an evaluation of these self-induced
data. For purposes of planning any number of imaginary tasks can be tried,
and the one with the highest evaluation rating (i.e. the most satisfying
emotional response) can be selected for actual execution.

This procedure is identical to the familiar artificial -intelligence technique
of searching an AND-OR tree for an optimum solution. The heuristics which
guide this search are the H functions, which are stored throughout the
entire cross-coupled processing -generating hierarchy. These constitute a
knowledge frame or belief structure which i s acquired over a lifetime of
experience and education.

Such an internally driven planning -evaluating structure has obvious
survival benefits which would tend to drive i t s evolutionary development.
Once developed, however, it may be used for other purposes. For example,
the practice of generating imaginary experiences for the sole purpose of
producing positive effects on the emotional evaluators constitutes day-
dreaming or fantasizing. T h i s third mode of self-induced operation of the
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processing -generating hierarchy may also be relevant to the phenomena of
dreams and hallucinations.

T h e complexity and parallelism of the cross-coupled network of process -
ing-generating hierarchies in the human brain makes i t possible for more
than one mode to be operative in different areas of the brain simulta-
neously. Nevertheless, no single operator can execute more than one trajec-
tory at a time, and no single hierarchy can be committed to more than one
goal at a time.

6.6. LEARNING

The highest -level decision mechanisms and performance evaluators must
exist from the very first. Even the most primitive nervous system requires a
goal-selecting mechanism from the beginning of its independent existence to
commit the organism to food-seeking, danger-avoidance, pleasure -seeking,
pain-avoidance, etc. Also as a prerequisite to learning there must be
mechanisms which evaluate performance and provide error correcting and
reinforcement inputs to the levels being trained. Learning also requires
information regarding the level of importance, or emotional arousal,
associated with each learning experience. Thus, these highest -level goal-
selecting mechanisms must develop early and influence actions throughout
life.

In the remainder of the hierarchy, however, motor-sensory learning of
specific tasks and skil ls must develop at the lowest leoelsjrst. Learning has
to be well under way at each level in the hierarchy before i t can effectively
begin at the next higher level. For a creature with many levels in its
processing -generating hierarchy th is requires a lengthy childhood so that the
mid and upper levels can remain plastic until training at the lower levels is
well advanced. I t i s well known that a child's abilities to deal with abstrac-
tions do not develop until after visual processing and motor coordination
has been accomplished [45]. Reading does not begin until speech-generating
and -recognizing abilities have been developed. [30] T h i s suggests, and there
i s much experimental and observational evidence to support the notion, that
speech and language skil ls develop in coordination with and via essentially
the same mechanisms as hand and body gestures and other motor ski l ls
essential to social communication [56]. At each level learning must be well
developed before consistent and clearly defined trajectories emerge to be
used as feedback for the next higher level. Primitive movements, which may
be simple adaptations of prewired reflexes, are learned first. Then sequences
of commands which string together primitive movements are learned next.
As each level in the hierarchy develops, strings of lower-level actions
become controllable by a single higher -level command. Strings of strings
thus become skills and strings of sk i l l s become strategies.
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Learning in the sensory processing hierarchy also develops at the lowest
levels first. Elementary feature extractors which provide feedback to trigger
and control primitive movements must either be prewired genetically or
learned first. Recognitions of sequences of features must be learned next.
As each level in the hierarchy develops, strings of lower-level recognitions
become recognizable as single higher -level events. At all levels sensory
learning i s accomplished against a background of predictions, hypotheses,
and contextual information generated in the motor hierarchy. Error signals
for training (as well as for control) are derived from discrepancies between
prediction and experience. Understanding of sensory input may be said to
occur when long and complex stimuli become predictable, when hypotheses
correspond to experience, and when synchrony is achieved between external
stimuli and internal expectations at many different levels of the processing -
generating hierarchy.

Learning at the lower levels may be primarily through trial-and-error
discovery of which behavior patterns are effective or rewarding and which
are ineffective or punishing. Higher -level learning, however, comes mostly
from imitation of others or from education by teachers. Most of the
knowledge required for higher-level learning in humans i s derived from the
social environment. Society passes on successful strategies which have been
acquired over centuries and millenia of painful trial and error through its
customs and taboos, its literature, i ts religious teachings, and i ts scientific
beliefs.

7. SUMMARY AND CONCLUSION

A theory has been set forth wherein the control mechanism for generat -
ing motor behavior is the medium of thinking andplanning. Language and
vision, which have occupied a central position in artificial -intelligence
research, are seen to be much more intimately involved with the motor
system than has been previously assumed. According to th is view, language
understanding, visual perception, and other complex sensory analyses are
active processes wherein hypotheses, preconceptions, beliefs, and prejudices
are superimposed on the sensory data stream by the motor generating
system.

Language output skil ls are seen as not essentially different from bodily
gestures or other motor skills inhow they are generated and learned. Speech
i s learned like any other motor function when the lower-level primitives of
vocalization become commandable and when auditory feedback at the
appropriate levels of the hierarchy assumes clearly defined recognition
trajectories.

Knowledge is embodied asIF/THEN productions in the transfer functions
of the entire cross-coupled hierarchy. These transfer functions select the
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goals, generate the predictions, and compute the outputs so as to perceive
the world and execute behavior consistent with the stored knowledge.

T h e CMAC formalism provides a mathematical description for a basic
neurological module which can learn, generalize, and compute multivariant
functions. T h e theory of AND/OR goal decomposition suggests how such
modules can be assembled into a hierarchical structure to produce sensory -
interactive goal-directed behavior. A multiplicity of such hierarchies, con-
trolled at the top by a system which can choose between good and bad,
gives rise to a structure in which the abilities to reason abstractly, to learn
from the past, to imagine the future, to solve problems, and to plan
long-range goals are a direct and natural result.

Iam deeply indebted to Dr. Anthony J. Barbera for his advice, suggestions,
and many hours of discussion of the concepts presented in this paper.Ialso
thank Miss Debbie Ingram for @pingnumerous drafts of the manuscript.
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