NASREM
THE NASA/NBS STANDARD REFERENCE MODEL
FOR
TELEROBOT CONTROL SYSTEM ARCHITECTURE

James S. Albus
Ronald Lumia
John Fiala
Albert Wavering

Robot Systems Division
National Institute of Standards and Technology
(formerly the National Bureau of Standards)
Bldg. 220, Room B-124
Gaithersburg, MD 20899
United States of America

ABSTRACT

There are five major elements required for the development of an
intelligent robot system.

Four of these are architectures:

1. Conceptual architecture

2. Functional architecture

3. Software architecture

4. Hardware architecture

The fifth element is the software development environment.

The original NASREM document describes the conceptual
architecture, and suggests the outlines of a functional
architecture.

Recent work at NIST is defining the functional architecture of
the servo and primitive levels, and suggesting the outlines of
software and hardware architectures, and software development
environments.

NASREM: THE CONCEPTUAL ARCHITECTURE

NASREM represents the culmination of more than 15 years of
research at NIST on Real-time Control Systems (RCS) for
robots and intelligent machines. The first version of RCS was
developed for laboratory robotics and adapted for manufacturing
control in the NIST Automated Manufacturing Research Facility
(AMRF) during the early 1980's {1,2,3,4,5]. Since 1986, RCS
has been implemented for a number of additional applications,
including the NBS/DARPA Multiple Autonomous Undersea
Vehicle (MAUYV) project [6], the Army Field Material Handling
Robot (FMR)(7], and the Army TEAM (Technology
Enhancement for Autonomous Vehicles) semi-autonomous land
vehicle project. In 1987, RCS was adapted for use on the space
station Flight Telerobotic Servicer, becoming the NASA/NBS

Standard Reference Model Telerobot Control System Architecture
(NASREM)[8].

The fundamental paradigm of the NASREM conceptual
architecture is shown in Figure 1. The control system is
represented as a three legged hierarchy of computing modules,
serviced by a communications system and a global memory.
The task decomposition modules perform real-time planning and
task monitoring functions; they decompose task goals both
spatially and temporally. The sensory processing modules filter,
correlate, detect, and integrate sensory information over both
space and time in order to recognize and measure patterns,
features, objects, events, and relationships in the external world.
The world modeling modules answer queries, make predictions,
and compute evaluation functions on the state space defined by
the information stored in global memory. Global memory is a
database which contains the system's best estimate of the state of
the external world. The world modeling modules keep the global
memory database current and consistent.

TASK DECOMPOSITION

The first leg of the hierarchy consists of task decomposition
modules which plan and execute the decomposition of high level
goals into low level actions. Task decomposition involves both
a temporal decomposition (into sequential actions along the time
line) and a spatial decomposition (into concurrent actions by
different subsystems). Each task decomposition module at each
level of the hierarchy consists of a job assignment manager, a set
of planners, and a set of executors.

WORLD MODELING

The second leg of the hierarchy consists of world modeling
modules which model and evaluate the state of the world. The

"world model"” is the system's best estimate and evaluation of the
history, current state, and possible future states of the world,
including the states of the system being controlled. The "world
model” includes both the world modeling modules and a
knowledge base stored in a global memory database where state
variables, maps, lists of objects and events, and attributes of
objects and events are maintained. The world model maintains
the global memory knowledge base by accepting information
from the sensory system, provides predictions of expected
sensory input to the corresponding sensory system modules,
based on the state of the task and estimates of the external world,
answers "What is?" questions asked by the executors in the
corresponding task decomposition modules, and answers "What
if?7" questions asked by the planners in the corresponding task
decomposition modules.

SENSORY PROCESSING

The third leg of the hierarchy consists of sensory system
modules. These recognize patterns, detect events, and filter and
integrate sensory information over space and time. The sensory
system modules at each level compare world model predictions
with sensory observations and compute correlation and difference
functions. These are integrated over time and space so as to fuse
sensory information from multiple sources over extended time
intervals. Newly detected or recognized events, objects, and
relationships are entered by the world modeling modules into the
world model global memory database, and objects or
relationships perceived to no longer exist are removed. The
sensory system modules also contain functions which can
compute confidence factors and probabilities of recognized
events, and statistical estimates of stochastic state variable
values.

OPERATOR INTERFACE

The control architecture has an operator interface at each level in
the hierarchy. The operator interface provides a means by which
human operators, either in the space station or on the ground,
can observe and supervise the telerobot. Each level of the task
decomposition hierarchy provides an interface where the human
operator can assume control. The task commands into any level
can be derived either from the higher level task decomposition
module, from the operator interface, or from some combination
of the two. Using a variety of input devices, a human operator
can enter the control hierarchy at any level, at any time of his
choosing, to monitor a process, to insert information, to
interrupt automatic operation and take control of the task being
performed, or to apply human intelligence to sensory processing
or world modeling functions.

The sharing of command input between human and autonomous
control need not be all or none. It is possible in many cases for
the human and the automatic controllers to simultaneously share

control of a telerobot system. For example, in an assembly
operation, a human might control the position of an end effector
while the robot automatically controls its orientation.

TIMING

For the control hierarchy shown in Figure 1 we can construct a
timing diagram as shown in Figure 2. The range of the time
scale, and hence the planning horizon and event summary
interval increases exponentially by an order of magnitude at each
higher level. The loop bandwidth and frequency of subgoal
events decreases exponentially at each higher level.

The origin of the time axis is the present, i.e. t=0. Future plans
lie to the right of t=0, past history to the left. The open
triangles in the right half-plane represent task goals in a future
plan. The filled triangles in the left half- plane represent task
completion events in a past history. At each level there is a
planning horizon and a historical event summary interval.

This timing diagram suggests a duality between the task
decomposition and the sensory processing hierarchies. At each
hierarchical level, planner modules decompose task commands
into strings of planned subtasks for execution. At each level,
strings of sensed events are summarized, integrated, and
"chunked” into single events at the next higher level. At each
level, planning horizons extend into the future about as far, and
with about the same level of detail, as historical traces reach into
the past.

At each level, plans consist of at least 2, and an average 10
subtasks. The planners have a planning horizon that extends
about one average input command interval into the future,
Figure 3 illustrates this principle.

Replanning may be done at cyclic intervals, or whenever
necessary. Emergency replanning begins immediately upon the
detection of an emergency condition. Under full alert status, the
cyclic replanning interval should be about an order of magnitude
less than the planning horizon (or about equal to the expected
output subtask time duration). This requires that real-time
planners search to the planning horizon about an order of
magnitude faster than real time.

Plan executors at each level have the task of reacting to feedback
every control cycle interval. If the feedback indicates the failure
of a planned subtask, the executor branches immediately to a
preplanned emergency subtask. The planner simultaneously
selects or generates an error recovery sequence which then can be
substituted for the former plan which failed.

When a task goal is achieved at time t=0, it becomes a task
completion event in the historical trace. To the extent that a
historical trace is an exact duplicate of a former future plan, the

I-AANOIA

NOILOV ISNIS >
7

OPERATOR INTERFACE

] | |
OAY3S
WHOASNVHL IH w 1) ‘
J1VYNIQHOO0D ; [
| | |
pr————— 1
JAILINING CH (4" [45)
————— -
)
[[[
IAOW-3 €H : tnw _ 1315)
ft———— -
¥ S3114 WYHOOHd
| | |
- > SNO4 NOILVYNIVAI
WSVYL VH W 145) S319VIHVA J1VIS
] S1S11 103180
¥ SdVYW
T I
AVE IDIAHIS SH SwW _ Sy
)
1 {
NOISSIN > SN
30IAY3S 9H | 9w . 99 Asowa
7 jeqoio
YOO
31no3ax3 31VNIVA3 JLVHODILNI
NV1d 1300W 123130
NOILISOdWO023a ONIT3AON YNISSII0Hd

ASVL aiHom AHOSN3S

NASREM TIMING DIAGRAM

HISTORICAL FUTURE
TRACES PLANS I
start of goal of
mission =0 mission
T-1hr T+1hr
short term memory from MISSION replanning interval ~ 6 min
beginning of mission clock =4 sec >1 hr planning horizon to
~lhr to end of mission
. command update interval ~1.7 min
SERVICE N Jreplanning interval ~ 1 min
short term memo: clo?l?:l sec \
~ 10 min / 3 >10 min planning
LN\ horizon
command update interval ~ 10 sec
TASK replanning interval ~3 sec
short term memory clock = 250 msed e
~30 sec - _~30 sec planning
\\ horizon
command update interval ~ 1 sec
E-MOVE B replanning interval ~ 200 msec
short term memory clock = 50 msec T 0 2 sec planni
~2 sec e et ~2 sec planning
77, NIA A horizon
&) command update interval ~ 100 msec
o replanning interval ~30 msec
short term memory cllc:ck]_ II’I(;IXEec \. _)
~ 300 msec - . - »~300 msec plam'ung
, o horizon
command n;pdate interval = 10 msec
SERVO replanning interval ~2 msec
clock = 1 msec

short term memory
15 msec 7 : i

1

OUTPUT
update interval = 1 msec

15 msec planning
horizon

FIGURE :2

£ HANOIA

fuluueld [edIydJesdiy

plan was followed, and every task was accomplished as planned.
To the extent that a historical trace is different from the former
plan, there were surprises.

At each level in the control hierarchy, the difference vector
between planned and observed events is an error signal, that can
be used by executor submodules for servo feedback control.

INTERFACES

In order to implement a functional architecture, especially one
like NASREM which allows evolution with technology, the
interfaces must be carefully defined. Although the NASREM
functional architecture specifies the purpose of each module in
the control system hierarchy, it does not completely specify the
interfaces between modules. This section will describe the
method by which the interfaces for the SERVO level of the
hierarchy have been defined. The method involves gathering all
of the algorithms available for SERVO level control, dividing
each algorithm into the parts which inherently belong to task
decomposition, world modeling, and sensory processing, and
then deriving the interfaces which will support these algorithms.

The NASA/NBS Standard Reference Model (NASREM)
Telerobot Control System Architecture, as presented in {8],
defines the basic architecture for a robot control system capable
of teleoperation and autonomy in one system. Recently, efforts
have been directed at specifying in detail the architecture
requirements for robotic manipulation. An important criterion
for the design is that it support the algorithms for manipulator
control found in the literature. This assures that the control
system can serve as a vehicle for evaluating algorithms and
comparing approaches. Any design, however, must constrain the
problem sufficiently so that detailed interfaces can be devised.

SERVO LEVEL

With this in mind, the Servo Level design was based on a
fundamental control approach which computes a motor command
as a function of feedback system state y, desired state (attractor)
yd, and control gains. In this approach, the gains are coefficients
of a linear combination of state errors (y-yd). The system state
and its attractor are composed from the physical quantities to be
controlled, (i.e. position, force, etc.,) and can be expressed in an
arbitrary coordinate system. This type of algorithm is the basis
for almost all manipulator control schemes [9]. However, this
basic algorithm is inadequate for controlling the gross aspects of
manipulator motion, as described in [10]. The servo algorithm
can provide "small” motions so that the algorithm's transient
dynamics are not significant in shaping the gross motion. This
means that the Primitive Level must generate the gross motion
through a sequence of inputs to the Servo Level. This can be
achieved through an appropriate sequence of either attractor
points [9,11] or gain values [10].

Figure 4 depicts the detailed Servo Level design. The task
decomposition module at the Servo Level receives input from
Primitive in the form of the command specification parameters.
The command parameters include a coordinate system
specification Cz which indicates the coordinate system in which
the current command is to be executed. Cz can specify joint, end-
effector, or Cartesian (world) coordinates. Given with respect to
this coordinate system are desired position, velocity, and
acceleration vectors (zd, zd, zd) for the manipulator, and the
desired force and rate of change of force vectors (fd, fd). These
command vectors form the attractor set for the manipulator. The
K's are the gain coefficient matrices for error terms in the control
equations. The selection matrices (S,S') apply to certain hybrid
force/position control algorithms. Finally, the "Algorithm"
specifier selects the control algorithm to be executed by the
Servo Level.

When the Servo Level planner receives a new command

specification, the planner transmits certain information to world
modeling. This information includes an attention function
which tells world modeling where to concentrate its efforts, i.e.
what information to compute for the executor. The executor
simply executes the algorithm indicated in the command
specification, using data supplied by world modeling as needed.

The world modeling module at the Servo Level computes model-
based quantities for the executor, such as Jacobians, inertia
matrices, gravity compensations, Coriolis and centrifugal force
compensations, and potential field (obstacle) compensations. In
addition, world modeling provides its best guess of the state of
the manipulator in terms of positions, velocities, end-effector
forces and joint torques. To do this, the module may have to
resolve conflicts between sensor data, such as between joint
position and Cartesian position sensors.

Sensory processing, as shown in Figure 4, reads sensors relevant
to Servo and provides the filtered sensor readings to world
modeling. In addition, certain information is transmitted up to
the Primitive Level of the sensory processing hierarchy.
Primitive uses this information, as well as information from
Servo Level world modeling, to monitor execution of its
trajectory. Based on this data, Primitive computes the stiffness
(gains) of the control, or switches control algorithms altogether.
For example, when Primitive detects a contact with a surface, it
may switch Servo to a control algorithm that accommodates
contact forces.

A more complete description of the Servo Level is available in
{91 where the vast majority of the existing algorithms in the
literature are described. The same process for developing the
interfaces based on the literature has also been performed for the
Primitive level and is available in [11]. While the procedure is
planned for each level in the hierarchy, the amount of literature
support tends to decrease as one moves up the hierarchy.

)Rl
JojesdQ

smeis—dQ

Eu .Em

w, Ay
wipuoljedo
.$‘S

s000000cc0scsrrssecrsavssrasnssctacenss

--

b HANOIA

..

o suuNdNURA(.

uonnaaxy

Am.—vunm -y o
J'2'20y

.
Y
.

T mgos »

sesach s

sassao0ld

sassadald

| 1opojy onwuraury

................

........

$3559001]

$SI0014
uonwiadodja],

$59001] JORUIPIOD)

Y

A <SRBT PR
' : :
[} :
y ! :

(vr R JW|
wawudissy qof !
1 @

R

smelg P
1303 :
En—-. —<r —wN .—VN .ﬂN .ﬁN

.S’S -t T 4
s J

lllllllllllllllllllll

eyl (L

oATISPAMNWILIG

0everrdeceronsovcnvonssrssrvecrrnsrrorsonsrsssevrssssrrrvsssvsssessvrsssssresrvvne
)

$$90014 13ZNIOUY

HARDWARE AND SOFTWARE ARCHITECTURES

Once the interfaces are defined, it is possible to choose a
computer architecture and begin to realize the system. This
section will describe the specific implementation under
construction at NIST. While every effort is being made to do the
job properly, there is no reason to assume that this
implementation is optimal in any way. It is simply illustrates
one realistic method to implement the NASREM architecture.

While a functional architecture is technology independent, its
implementation obviously depends entirely on the state-of-the-art
of technology. The designer must choose existing computers,
buses, languages, etc., and, from these tools, produce a computer
architecture capable of performing the functions of the functional
architecture. The system must adequately meet the real-time
aspects of the controller so that adequate performance is achieved
through careful consideration of computer choice, multiple
processor real-time operating system, inter-processing
communication requirements, tasking within certain processors,
etc. For a more detailed description of this methodology, see
12].

SOFTWARE DEVELOPMENT ENVIRONMENT

The NIST implementation considers two aspects of the process:
the development environment in which the code is developed,
debugged, and tested as well as possible, and the target
environment where the code for the real-time robot control
system is executed. Figure 5 shows the approach. A network of
SUN workstations running UNIX is used for the development
environment, sacrificing the speed of the developed code for the
ease of development. Once the code is tested as well as possible,
it is downloaded to the target system. The target system consists
of a VME backplane of several (currently 6) Motorola 68020
processors. For rapid iconic image processing, the PIPE system
[13] is interfaced. The target hardware drives the Robotics
Research Corporation arm.

From the software side, the multiprocessing operating system
used for the target is required to be as simple as possible so that
the overhead is minimized. The duties of the operating system
are limited to very simple actions such as downloading and
starting up the processors and interprocessor communication.
Tasking is not performed at the lower levels of the hierarchy
because of the overhead associated with context switches, NIST
researchers are currently investigating three alternatives for
tasking: tasking provided by the native compiler, pSOS tasking,
and ADA tasking. Interprocessor communications alternatives
including pRISM, sockets, etc., must also be evaluated
empirically. The actual application code is written in ADA.
Although ADA compilers usually cannot currently produce code
as efficient as other languages such as C, NIST researchers have
shown that the gap is steadily decreasing [14].

The application code is developed by programming the processes
which achieve the functions associated with the boxes in the
functional architecture. The problem then becomes one of
assigning each of the processes, such as those shown in Figure
2, to a particular processor. There is a clear trade-off between the
cost of the solution and the performance of the system. There
are currently no software tools which automatically perform this
assignment based on an arbitrary index of performance. The
approach at NIST is step-wise refinement of the performance of
the system. Given the particular hardware being used, a certain
number of processors is chosen arbitrarily. For that
configuration, the processes are assigned to the processors.
Then, the system is evaluated in terms of its performance. If the
performance is unacceptable, the designer has several options.
The first option is to add more processors. This alternative is
balanced against the possibility of the additional communication
requirements of the processors. Another alternative is to add
faster processors or special purpose processors, such as dynamics
chips, which optimize particularly compute intensive operations.
This trade-off clearly relates to cost. Another alternative is to
reassign the processes to the processors in order to balance the
workload of each processor. Each of the alternatives can be used
by the designer in order to improve the performance of the
system. This allows a particular configuration which
implements the functional architecture to change with time as
improvements in technology are realized.

CONCLUSION

The NASREM functional architecture provides the technology
independent paradigm which serves as the foundation from which
any NASREM implementation can be derived. Interfaces may be
developed for the NASREM architecture which will take into
account the research already published in the literature. When a
NASREM implementation is desired, the result is, by necessity,
a reflection of the current state-of-the-art. However, since the
interfaces are carefully specified, alternative software and hardware
solutions may easily be tested and integrated. This will allow
the Flight Telerobotic Servicer (FTS) to evolve with technology,
both for space as well as for terrestrial applications.

REFERENCES

{1] J.S. Albus, AJ. Barbera, R.N. Nagel, "Theory and
Practice of Hierarchical Control,” Proceedings of the
23rd IEEE Computer Society International Conference,
September 1981.

2] AJ. Barbera, J.S. Albus, M.L. Fitzgerald, L.S. Haynes,
"RCS: The NBS Real-Time Control System," Robots 8
Conference and Exposition, Detroit, M, June 1984,

SYSTEM DEVELOPMENT
(View at Hardware)

—» REAL-TIME (1ms-1sec)

ETHERNET
l
SUN |
3/280 | FILE SERVERS |
4/280
I
IRIS
SUNS I
X | | prrE
” | l
I
SUN | 68020 (N processors)
~g¢—p>] TARGET SYSTEM
3/160 | VME BUS
1\
| DOWNLOAD OF EXECUTABLE
CODE
| RETURN OF TARGET VARIABLES
OFF-LINE | TO DISPLAY FOR USER
SOFTWARE
DEVELOPMENT l
I
|

FIGURE: §

[3] S. Leake, R.D. Kilmer, "The NBS Real-Time Control
System User's Reference Manual,” NBS Technical Note
1258, June 1988.

{41 M.O. Shneier, E'W. Kent, J.S. Albus, P. Mansbach, M.
Nashman, L. Palombo, W. Rutkowski, T.E.Wheatley,
"Robot Sensing for a Hierarchical Control System,"
Proceedings of the 13th ISIR/Robots 7 Symposium,
Chicago, IL, April 1983.

{S] E.W. Kent, J.S. Albus, "Servoed World Models as Interfaces
between Robot Control Systems and Sensory Data,”
Robotica (1984) volume 2, pp. 17-25.

[6] J.S. Albus, "System Description and Design Architecture for
Multiple Autonomous Undersea Vehicles,” NIST Technical
Note 1251, September 1988.

{7] H.G. McCain, R.D. Kilmer, S. Szabo, A. Abrishamian, "A
Hierarchically Controlled Autonomous Robot for Heavy
Payload Military Field Applications,” Proceedings of the
International Congress on Intelligent Autonomous Systems,
Amsterdam, The Netherlands, December 8-11, 1986.

[8] 1.S. Albus, R. Lumia, H.G. McCain, "NASA/NBS Standard
Reference Model For Telerobot Control System Architecture
(NASREM)," NBS Technical Note #1235, also as NASA
document SS- GSFC-0027.

[9] J. Fiala, "Manipulator Servo Level Task Decomposition,”
NIST Technical Note #1255, April 20, 1988.

[101J. Fiala, "Generation of Smooth Trajectories without
Planning,” (in progress).

[11] AJ. Wavering, "Manipulator Primitive Level Task Decom-
position,” NIST Technical Note #1256, January 5, 1988.

[12] J. Michaloski, T. Wheatley, and R. Lumia, "Timing
Analysis for a Parallel Pipelined Hierarchical Control
System”, 9th Real-Time Systems Symposium, (submitted).

[13] E.W. Kent, M.O. Shneier, and R. Lumia, "PIPE,"” Journal
of Parallel and Distributed Computing, Vol. 2, 1985, pp.
50-78.

{14] S. Leake, "A Comparison of Robot Kinematics in ADA and
C on Sun and microVAX," Robotics and Automation
Session, IASTED, Santa Barbara, CA., May 25-27,1988.

