
A Standardized Approach for Transducer Interfacing:
Implementing IEEE-P1451 Smart Transducer Interface

Draft Standards

Kang B. Lee,                                            Richard D. Schneeman,
Leader, Sensor Integration Group            Computer Scientist, Sensor Integration Group
kang.lee@nist.gov                                    rschneeman@nist.gov
Telephone: (301) 975-6604                     Telephone: (301) 975-4352

United States Department of Commerce
National Institute of Standards and Technology
Manufacturing Engineering Laboratory
Automated Production Technology Division
Gaithersburg, Maryland 20899 USA



2

Abstract

NIST researchers have developed a reference implementation and companion demonstration for this
currently defined set of specifications to provide a concrete example of the IEEE P1451, Draft Standard
for a Smart Transducer Interface for Sensors and Actuators. The reference implementation includes both
hardware and software components that when integrated together yield an environment for illustrating
complete P1451 functional aspects and capabilities. This document briefly provides an overview of both
parts of the standard and more specifically how they relate to this demonstration. The reference
implementation approach used as well as resources required are also discussed to familiarize the reader
with the demonstration environment. Specific implementation issues are then discussed concerning the
several main areas of the software and hardware components used in this implementation. The first
software component, called NCAPTool, written in C++, provides a graphical user interface (GUI) -based
Windows environment in which various functional aspects of the standards can be exercised. The second
component is a dynamic link library (DLL), also written in C++, that provides an Application
Programming Interface (API) to the P1451.1, Draft  Standard for a Network Capable Application
Processor (NCAP) Information Model. The third component provides the hardware necessary to illustrate
a tangible implementation of the P1451.2, Draft Standard for a Transducer to Microprocessor
Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats. All three components
together illustrate the integration of both P1451.1 and P1451.2 as well as providing a visual capability for
demonstrating the standards’ key functional aspects.

Keywords: actuators, application programming interfaces, interoperability, graphical user interface,
network independent, portability, reference implementation, sensors, sensor interface, transducers.



3

Table of Contents

1. INTRODUCTION ...............................................................................................................4

1.1 TRANSDUCER DEVICE OVERVIEW ....................................................................................4
1.2 WHAT IS A SMART TRANSDUCER? ...................................................................................5
1.3 TRANSDUCER INTEGRATION PROBLEMS..........................................................................5
1.4 A STANDARDS-BASED SOLUTION.....................................................................................5

2. IEEE P1451 OVERVIEW..................................................................................................5

2.1 P1451.1 - INFORMATION MODEL .....................................................................................6
2.1.1 Using Object-Oriented Design..................................................................................7
2.1.2 Block Classes ............................................................................................................7
2.1.3 Base Classes..............................................................................................................8

2. 2 P1451.2 - TRANSDUCER TO MICROPROCESSOR INTERFACE.........................................9
2.2.1 STIM ...........................................................................................................................9
2.2.2 TEDS ..........................................................................................................................9
2.2.3 Digital Interface..........................................................................................................9

3. IMPLEMENTING THE OBJECT MODEL ..................................................................10

3.1 CLASS IMPLEMENTATION................................................................................................10
3.2 A LIBRARY-BASED IMPLEMENTATION ............................................................................11

4. P1451.2 HARDWARE RESOURCES .........................................................................11

5. DEMONSTRATION ARCHITECTURE .......................................................................11

5.1 SYSTEM CONFIGURATION...............................................................................................11
5.1.1 Server Configuration ...............................................................................................12
5.1.2 Client Configuration ................................................................................................13

6. DEMONSTRATING THE STANDARD .......................................................................13

7. SUMMARY ........................................................................................................................14

8. REFERENCES .................................................................................................................14

9.  ACKNOWLEDGMENT.................................................................................................15



4

1. Introduction

Researchers at the National Institute of Standards and
Technology (NIST) have developed a Reference
Implementation of the proposed IEEE P1451 Draft
Standard for a Smart Transducer Interface for Sensors
and Actuators [1][2]. The standard defines a set of
specifications minimizing the hardware and software
problems associated with interfacing  transducers to
multivendor networks, multistandard buses, and a variety
of microprocessor-based platforms. The set of
specifications addresses these concerns by focusing on
three key areas, including: (1) application-level portability
for transducer-based software, (2) network-independent
access for transducer-based applications, and (3)
transducer interoperability using a plug-and-play
approach to connecting transducers to a microprocessor
platform and a network.

In order to highlight key aspects of the draft
specifications, a demonstration in the form of a reference
implementation was developed. The reference
implementation provides NIST researchers and interested
parties with:

• A standards-based software and hardware platform in
which to provide a venue for the demonstration.

 
• A concrete proof-of-concept implementation in which

to test the standards’ effectiveness, provide useful
feedback, and expedite the standards definition
process through experimentation.

 
• A useful graphical software tool to demonstrate the

standards by exercising key functional interfaces from
the specification.

Before we begin a detailed examination of the reference
implementation, we first need to frame our discussion
with a brief description of the relevant parts of a
networked transducer. In addition, the capabilities that
make a transducer device smart also need to be briefly
summarized.

1.1 Transducer Device Overview

A transducer is a device that converts energy from one
domain into another. The resulting quantity is calibrated
to minimize errors during the conversion process. A
transducer is either a sensor (i.e., a device that senses

pressure or temperature) or an actuator (i.e., a controllable
device such as a valve or a relay). Figure 1 illustrates the
components found in a typical transducer connected to a
network.

Physical
World

Analog-to-Digital
   Conversion
 (ADC) Process

Transducer

 Microprocessor

Transducer
Application

 Network Interface  Digital  Interface

Network

Figure 1: A Typical  Network Transducer.

In its most general form, a transducer physically
interfaces with an embedded microprocessor in order to
support some form of hardware input and output channels
from the microprocessor to the transducer, as shown in
Figure 1. This interface provides a data path between the
microprocessor and the transducer.

In addition, note that in Figure 1  the interface from the
microprocessor to the network forms a communication
pathway to a networking substrate. This leads to the
definition of a networked transducer, which simply means
the transducer has the ability to provide calibrated data to
the network and the ability to respond to queries from the
network.

Located onboard the microprocessor, shown in Figure 1, a
network-capable application typically executes a variety of
algorithms suited to the particular transducer’s
application domain, such as interacting with a pressure or
temperature sensor. In order  to use the network
communication medium, an applicator must be aware of
and interact with the specific control network technology.
In addition, the application must also be capable of using
the transducer interface connected to the control network
microprocessor to send and receive data to and from the
transducer. This in effect positions the application as a
laminated structure uniting both a network interface on
one side with a transducer  interface on the other.



5

1.2 What is a Smart Transducer?

What additional features does a generic transducer device
have to exhibit for it to be considered smart? A smart
transducer  needs to provide additional capabilities other
then merely the correct representation of a sensed or
controlled physical quantity. In relation to the standard’s
definition, as defined in the IEEE P1451 drafts, a
transducer is smart if it contains additional functionality
that simplifies the integration of the transducer into any
networked application environment. Another smart
feature is the ability  of  self-identification of  the
transducer to the system.  This is accomplished by
providing the capability to embed key information about
the transducer and its performance in a standardized
format in a small amount of nonvolatile memory
associated with the transducer.  At power up or query
from the system the transducer can identify itself to the
host processor.  This feature enables the automation of
diagnostic, configuration, and identification procedures
across a multivendor environment. In fact, these and other
capability-based standardized features provide the generic
transducer with a smart moniker that connotes greater
functionality, portability, and extensibility.
Standardization of these features increases
interoperability.

1.3 Transducer Interface Problems

One motivating reason for defining the interface standard
is current problems transducer manufacturers face when
integrating their devices into multivendor networks and
heterogeneous hardware environs. Because the network
and the transducer must expose their two interfaces
directly to the application, any attempt to migrate the
application to another platform is just cause for a
complete redesign of the application’s interface to the new
environment. Transducer manufacturers and system
integrators currently struggle with these issues while
trying to manufacture and market sensors for cross-
industry application domains and multivendor networks.
The redesign process is time-consuming and expensive
leading to transducer products that take a longer time to
market with higher price tags. In addition, all prospects
for interoperable, plug-and-play sensors and actuator
devices are lost because of proprietary or unique
interfaces. Transducer manufacturers must now expend a
great deal of engineering effort to cover several control
network vendor technologies instead of designing the
device once for all networks that adhere to the
standardized interfaces.

The interface between the microprocessor and transducer
that presents many problems for transducer manufacturers
when they want to interface their products with a
multitude of microprocessor buses. A different
hardware/software interface must be designed for each bus
the vendor chooses to support.

1.4 A Standards-based Solution

If a standardized approach to interfacing both the
application with the network and the microprocessor with
the transducer device is available, then companies can
leverage it to more effectively provide cross-industry
support for their products while reducing the engineering
and time to market issues that currently plague
implementers. That is, through this standardized or
common interface, the same transducers can be used on
multiple control networks, and the selection of a control
network for measurement, and control application is
totally free of transducer compatibility constraints.
Moreover, expanding and crossing into different markets
increases competition while driving down prices.
Transducer application designers can focus more on
adding value to their applications without being
concerned about developing interfaces for every possible
network or microprocessor that their respective companies
decide to target. Increasing value-added features will lead
to more innovative applications for end-users. More
importantly, the standardization process provides a level
playing field for development. That is, smaller transducer
manufacturers could now enter markets whereas before
only companies commanding enough resources and
capital can afford to develop products across multiple
nonstandardized interfaces.

These issues have become the key motivation for forming
cross-industry based working groups to define a
networked smart transducer standard. In an attempt to
provide a concrete representation of the standard, a
reference implementation of the standard has been
developed and will be the focus of the discussion in the
next section.

2. IEEE P1451 Overview

Recognizing a need to remedy the transducer interfacing
problems, the Committee on Sensor Technology of the
Instrumentation and Measurement Society of the Institute
of Electrical and Electronics Engineers (IEEE) has been
working on defining a standard for a Networked Smart



6

Transducer. The proposed IEEE P1451 is a two-part
standard that essentially combines a smart transducer
device Information Model targeting software-based,
network-independent, transducer application
environments (P1451.1) with a standardized digital
interface and communication protocols for accessing
transducer data from the transducer via the
microprocessor (P1451.2).  Figure 2 shows the component
layout of the proposed interface for a P1451 Networked
Transducer.

P  h  y  s  i  c  a l
W  o  r  l  d

N  e  t  w  o  r  k
C  a  p  a  b  l  e

A  p  p  l  i  c  a  t  i  o  n
P  r  o  c  e  s  s  o  r

(  N  C  A  P  )

A  D  C

L  o  g  i  c

T  E  D  S

T  r  a  n  s -
   d  u  c  e  r

P 1 4 5 1 . 2     D   i  g  i  t  a  l    I  n  t  e  r  f  a  c  e

S  T  I  M

  P  1  4  5  1   N  e  t w   o  r  k  e  d
  T  r  a  n  s  d  u  c  e  r

 N  e  t  w  o  r  k

Figure 2: A P1451 Networked Transducer.

N  e  t  w  o  r  k
D  r  i  v  e  r

M  u  l  t  i  p  l  e
T  r  a  n  s  d  u  c  e  r

D  r  i  v  e  r  s
H  a  r  d  w  a  r  e

  M  u  l  t  i  p  l  e
  N  e  t  w  o  r  k  s

T  r  a  n  s  d  u  c  e  r
 I  n  t  e  r  f  a  c  e

S  p  e  c  i  f  i  c a  t  i o  n
(  P  1  4  5  1  .  2  )

S  m  a  r  t
T  r  a  n  s  d  u  c  e  r
I  n  t  e  r  f  a  c  e

M   o  d  u  l  e
(  S  T  I  M  )

  S  e  n  s  o  r  s

A  c  t  u  a  t  o  r

S  m  a  r  t
T  r  a  n  s  d  u  c  e  r

O   b  j  e  c  t    M   o  d  e  l
(  P  1  4  5  1  .  1  )

N e t w o r k    C a p a b l e
A p p l i c a t i o n    P r o c e s s o r

N  e  t  w  o  r  k
H  a  r  d  w  a  r  e

Figure 3: A Standardized P1451 Smart Transducer.

Figure 3 illustrates the complete P1451 smart transducer
standards model comprising both the interface to the
Information/Object Model along with the Transducer
Interface specification. Notice in Figure 3 where the
standardization process specifically address the transducer
industry’s two most problematic areas. These are the
definitions of a standardized digital interface between the
transducer and the microprocessor, as well as a
standardization of the application elements that impact
network communication.

The P1451.1 specification provides an abstract interface
description that ultimately will be transcribed into a
concrete application programming interface (API) when
developers implement the model. The functional API
interface of P1451.1 is used to demonstrate the reference
implementation and likewise requires greater coverage in
order to properly address the implementation. The
hardware resources used in this demonstration are based
completely on P1451.2; however, the specification
implementation is not discussed in detail. These two areas
of the standard will be further discussed in the next
sections.

2.1 P1451.1 - Information Model

The proposed P1451.1 Draft Standard, the Network
Capable Application Processor (NCAP) Information
Model, centers around the object-oriented definition of an
NCAP. The NCAP  is the object-oriented embodiment of a
transducer device. This includes the definition of all
application-level access to network resources as well as
the framework for application access to transducer
hardware, as shown in Figure 3.

 The complete definition and specification of the NCAP
constitutes the Information Model and is the basis for the
P1451.1 specification. The Information Model strives to
lay out a framework that abstracts the characteristics of a
networked Smart Transducer device using object-oriented
design techniques. In the standard, the object-based aspect
of the Information Model is referred to as the Smart
Transducer Object Model and is shown in the center of
the NCAP in Figure 3. The NCAP definition encompasses
a set of object classes, attributes, methods, and behaviors
that provide a concise description of a transducer and the
network to which it may connect. By modeling the
transducer device in object-oriented terms, an abstract
view of device characteristics can be coalesced into a
singular model. The model is sufficiently general to
encompass a wide variety of networked transducer
application services. Moreover, the Object Model tackles



7

the two specific problem areas by standardizing on the
linkages between how applications interact with physical
sensors and actuators in the system and how these same
applications interact with the attached networking
medium.

The Object Model provides standardized access for NCAP
applications to the network by defining a network-neutral
communication model for both intra- and inter-device
interaction. Standardized access to the physical transducer
is provided by a programmatic interface based on a device
driver interface model. In effect, the NCAP application is
laminated between two standardized device driver models
 one a network driver and the other a transducer
interface driver as shown in Figure 3. By adhering to both
models consistently, applications may be reused and
migrated to other networks without major reengineering
effort. Network and transducer vendors simply provide
these driver stubs to link with an NCAP to facilitate a
portable and interoperable, plug-and-play transducer
application environment. The specifics of how the
standard addresses these issues will be discussed in the
next section.

2.1.1 Using Object-Oriented Design

The Object Model uses an object-oriented design
methodology for describing smart transducers. Therefore,
the major objective of the P1451.1 working group was to
define a class containment hierarchy that identified
specific classes, methods, attributes, and behaviors that
accurately define a networked smart transducer device
object. Figure 4 illustrates the class containment used in
the draft that makes up the Smart Transducer device.

The P1451.1 draft models the capabilities of a network
capable transducer using the familiar rack or card-cage
paradigm used to describe plug-in I/O cards in a personal
computer (PC). That is, a PC consists of a backplane or
bus where special I/O cards representing specific
functionality can be plugged in. The cards are represented
in the model by blocks. The blocks are essentially block
classes and represent the highest form of functionality in
the model. The standard uses the card-cage model to
describe the transducer device. It uses two types of classes
to construct these cards between most notably Base and
Block classes.

Transducers
with
P1451.2
Interface

Transducer
Block

Physical
Block

Function
Block

Actions
Events
Files

Parameters

 Network

Ports

 Network Block

Figure 4: The P1451.1 Containment Hierarchy.

The classes defined by P1451.1 consists of four Block
classes: one Physical Block, and one or more Transducer
Blocks, Function Blocks, and Network Blocks. Notice how
each Block class may include specific Base classes from
the model. The Base classes include Parameters, Actions,
Events, and Files, and provide component class. It is
important to note that the details of the P1451.1
specification reflect Version 1.75 of the Draft Standard,
and may change in later version. Each of these will be
briefly discussed.

All classes in the model have an abstract or root class
from which they are derived. This abstract class includes
several attributes and methods that are common to all
classes in the model. This provides a central class
definition to be used for instantiation and deletion. In
addition, methods for getting and setting attributes within
each class are also provided.

2.1.2 Block Classes

Block classes form the major blocks of functionality that
can be plugged into the card-cage to create various types
of devices. One Physical Block is mandatory as it defines
the card-cage and abstracts the hardware and software
resources that are used by the device. All other blocks and
component Base classes can be referenced from the
Physical Block.

A Physical Block represents the card-cage and contains
all the logical hardware and software resources in the
model. These resources determine the basic characteristics
of the device being assembled. Information contained in
the Physical Block as attributes include the



8

manufacturer’s identification, serial number, hardware
and software revision information, and more importantly,
data structures that provide a repository for other class
components. As previously mentioned, the Physical Block
is the logical container for all components in the device
model; therefore, it must have access to and be able to
locate all available resources instantiated by the device.
The data structures provided by the Physical Block house
pointers (Instance_ID) to these components thereby
providing easy indirect access to them. In order for the
Physical Block to resolve address queries from the
network (i.e., a remote NCAP requests an attribute from
the Physical Block), a hierarchical addressing scheme
based on unique Tags (ASCII descriptions of the block or
component name) that can be concatenated together to
form fully qualified addresses is used to communicate
with the device or device object across the network. The
Physical Block is the centralized logical connector or
backplane that the other Block classes plug into.
Therefore, for the Physical Block to find other
components in the system it must provide a Locate
method.

The Transducer Block abstracts all the capabilities of each
transducer that is physically connected to the NCAP I/O
system. That is, during the device configuration phase, the
TEDS information from the hardware device is read. This
information describes what kind of sensors and actuators
are connected to the system. This information is used by
the physical block to create and configure the necessary
type of transducer block.

The transducer block includes an I/O device driver style
interface for communication with the hardware. The I/O
interface includes methods for reading and writing to the
transducer from the application-based function block
using a standardized interface (i.e., io_read and io_write).
The I/O device driver paradigm provides both plug-and-
play capability  and hot-swap feature for transducers. This
means any application written to this interface should
work interchangeably with multiple vendor transducers.
In a similar fashion the transducer vendors provide an I/O
driver to the network vendors with their product that
supports this interface. The driver is integrated with the
transducer’s application environment to provide access to
their hardware. This approach is identical to the Ioctl
interface found in device drivers for mainstream operating
systems such as MS-DOS and UNIX.

The Function Block provides a transducer device with a
skeletal area in which to place application-specific code.
The interface does not place any restrictions on how an
application is developed. In addition to a State variable
(which all block classes maintain), the Function Block

contains several lists of Parameters that typically are used
to access network-visible data or to make internal data
available remotely. That is, any application-specific
algorithms or data structures are contained within these
blocks to separately allow for integration of application-
specific functionality using a portable approach.

The Network Block is used to abstract all access to the
network by the Block and Base classes using a network-
neutral, object-based programming interface. The network
model provides an application interaction mechanism
based on the familiar remote procedure call (RPC)
paradigm found in today’s client-server distributed
computing settings[3]. The RPC mechanism supports both
a client-server and a publisher-subscriber paradigm for
event and message generation. In support of the two types
of application interaction, a communication model that
centers around the notion of a port is defined in the
specification. This means, if a block wishes to
communicate with any other block in the device or across
the network, it must first create a port that logically binds
the block to the port name. Once enough information
about the addressing of the port is known, the port can be
bound to a network-specific block address. At this point
the logical port address has been bound to the actual
destination address by the underlying control network
technology.  Any transducer application’s use of the port
name is now resolved to the endpoint associated with the
logical destination. This allows a late binding effect on
application uses of the ports so that addresses are not
hard-coded or dependent upon a specific architecture. The
port capability is similar to the TCP/IP application-level
socket programming interface where a socket is created
and bound using the TCP/IP specific tuple: port number
and Internet address in dotted notation. Once bound, the
socket can be used for message and data transfer.

2.1.3 Base Classes

Base classes represent the basic building blocks used by
the block classes. They are generally used within block
classes to provide application functionality. The base
classes include: Actions, Events, Parameters, and Files.

Actions provide a model for control interactions between
the various block classes that define a system. Essentially,
all actions are called using an Invoke method and may be
either blocking or nonblocking in their communication of
the action.

Events model the generation of asynchronous
communication of signals in the system. That is, if an



9

application wishes to have a certain occurrence of
something to happen at a given time in the system, then
the designer simply creates an event with a certain time
period. The underlying event generation and control
mechanisms provided by the network will be used to
support this capability.

The Parameter class represents network-visible variables
in the model. Parameters have two methods associated
with this class for reading and writing to these network
accessible data storage locations. Parameters are typically
found in the Function blocks to give access to network
variables to executing applications.

Files provide a means for applications to up and download
information to the device. The kinds of transfers of
information are not specified nor are the structure of the
data. Either stream or record-oriented data streams are
used. A minimal file transfer state machine is defined in
the specification.

This ends the brief discussion on the P1451.1
specification. The P1451.1 draft implemented for the
demonstration results in a suite of software that represents
the concrete reference implementation. Other parts of the
demonstration require hardware resources and the
implementation of the P1451.2 protocol specification. The
hardware portion of the standard will be briefly discussed
in the next section to provide the reader with some
background information. The implementation as it relates
to the demonstration will be discussed later in the
demonstration architecture area.

2.2 P1451.2 - Transducer to Microprocessor
Interface

The P1451.2 draft specification, the Transducer to
Microprocessor Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats,
provides a standardized digital interface and
communication protocol that directly addresses the
problem of interfacing multiple connection schemes with
different buses and microprocessors. In addition, the
standard includes the definition of a smart transducer
interface module (STIM) and a transducer electronic data
sheet (TEDS).

2.2.1  STIM

A STIM consists of a transducer, signal conditioning and
conversion circuitry, a TEDS, and necessary logic circuit
to implement the P1451.2 9-wire digital interface and
protocols to communicate with a NCAP.  A single

transducer or up to 255 transducers can be supported by a
STIM.  Each transducer in a STIM is defined as a
channel.  A multichannel STIM is one that contains
multiple transducers and thus form a multivariable STIM;
for example, a temperature sensor, pressure sensor, and
air flow sensor combined together to form a mass-flow
sensor.

2.2.2  TEDS

A TEDS is a scaleable and  extensible   electronic data
sheet that allows transducer manufacturers to burn in
specific fields about their product such as manufacture
date, version information, and calibration specifics, etc.,
into a small nonvolatile memory associated with the
transducer hardware. The TEDS structure is divided into
Meta-TEDS, Channel TEDS, Calibration TEDS,
Application-specific TEDS, and Extension TEDS.  Meta-
TEDS contains the TEDS data field that is common to all
transducers connected to the STIM. The field contains
information  such as  overall description of the TEDS data
structure, worst case STIM timing parameters, etc.
Channel TEDS contains information for one specific
transducer in a STIM.  Each transducer has its associated
Channel TEDS containing information such as physical
units, uncertainty, upper/lower range limits, warm-up
time, etc.

The Calibration TEDS contains valuable information such
as calibration parameters, and calibration interval.  The
Application-specific TEDS are for application specific use
by end-users, while Extension TEDS is reserved for
implementing future and industry extension to P1451.2.
The TEDS information provides a self-identification
capability for transducers that is invaluable for
maintenance, diagnostics, and determining mean-time-
before-failure characteristics. This capability has
generated a great deal of enthusiasm and is considered to
be a potential boon to the sensor manufacturing industry.

2.2.3   Digital Interface

Communications between the STIM and NCAP are
defined by a 9-wire physical specification and a set of
protocol to  access the TEDS information, read sensors,
and set actuators.  The data transfers are based on SPI-like
(serial peripheral interface), bit-transfer protocol.  The
NCAP usually initiates a measurement or action by means
of triggering the STIM, and the STIM responds with an
acknowledgment once the requested function is
completed.  The STIM can interrupt the NCAP if an
exception such as a hardware error, calibration failure, or
self-test failure occurred.



10

3. Implementing the Object Model

The P1451.1 Object Model represents an abstract, object-
oriented model for describing a network-capable
transducer device, and is a good method for capturing the
design requirements for such a device. However, in order
to realize a reference implementation in software, the
P1451.1 specification must first be transcribed from an
abstract interface definition into an application
programming interface based on a conventional
programming language. Because the P1451.1 Object
Model was defined using an object-oriented methodology,
using C++ as the object-oriented language environment
become a natural choice to map the model. The next
section revisits each block class and briefly describes how
they are implemented during migration from abstract
interface definition to concrete reference implementation.

3.1 Class Implementation
The majority of the software development effort involving
the reference implementation was spent on constructing
and integrating the P1451.1 Object Model. This effort
concentrated on implementing a C++ framework to
support the Block and Base classes from the P1451.1
specification. The software necessary to realize an
implementation of the P1451.1 classes will be discussed
below in greater detail. The class implementation
includes:

• The Physical Block provides a central hub for
resources in the NCAP. In order to provide this
capability certain implementation aspects have been
derived. Namely, using the list attributes defined in
the specification, a data structure can be built to
house the pointers to the various components in the
system. A Locate method is provided that parses the
string addressing information to determine what
pointer in the data structure needs to be de-
referenced.

 
• The Network Block provides all the underlying

network support needed by the transducer device. In
order to support the networking aspects of the
P1451.1 Draft, we needed to implement the network-
neutral parts of the specification using a specific
networking technology. Instead of using a vendor-
specific control networking technology, we wanted to
implement the network protocol using the ubiquitous
TCP/IP protocol bundled with the Windows 95***
operating system. Specifically, the application-level
implementation of the TCP/IP protocol suite from
Microsoft  called WinSock Version 2.0. Therefore
any P1451.1 API method or function call that

requires the services of an underlying control network
(i.e., SendRequest), would now use an equivalent
application-level TCP/IP based function or macro to
emulate those requests for services (i.e., send).
TCP/IP was chosen because of its ubiquity,
availability, and the developers familiarity with
integrating it into the application environment.
Before a block could communicate a request using the
SendRequest API however, a port structure needed to
be created and connected. The port capability was
implemented using the socket API of TCP/IP.
Clearly, in a real implementation of the standard
however, ports represent a slightly lower-level of
integration then do sockets in the parlance of TCP/IP.
That is, whenever a block wants to communicate with
another block, a new socket-like endpoint would not
be created. Moreover, in this implementation, one
socket is created using TCP/IP and every port
structure created would simply use the singular socket
connection to send its information. A socket for each
port creation would be too much overhead on the
operating system. Therefore the receiver of the
message from the block in the TCP/IP
implementation simply determines what port the
message came from and redirects the message to the
specific block. This method is more consistent with
how current control network vendors would provide
their implementations, i.e., using a pseudo interrupt-
driven scheme for message arrival and delivery.

 
• The Function Block contains all vestiges of  the

user’s custom transducer application environment.
The function block with its defined attributes provides
a skeletal envelope in which to package a user
application. The function block uses the parameters it
defined to communicate network variable
information. In this implementation, the function
block is rather generic in that it does not support a
great deal of custom functionality. It merely sets up
parameters to read the transducer information when
called upon by a query process from across the
network. In addition, the function block contains an
event that can be initiated to simulate the event-based
communication of reading sensor data from the
NCAP. All these capabilities are set up in a rather
sterile fashion so that the software tool developed for
the demonstration can trigger or query the function
block for the desired results.

 
• The Transducer Block provides the capability for the

application to interact directly with the transducer
interface using a device driver interface paradigm. As
previously mentioned, in order for the transducer



11

device to communicate with the application in a
standardized fashion, an I/O driver interface must be
used. In the implementation, the driver interface has
been setup to be a simplistic subset of the complete
specification. This was a reasonable approach as all
the demonstration required was the ability to read
both the TEDS information and actual sensor
readings from the transducer device. Therefore, the
only method from the abstract interface definition
given by the standard that was need by the
implementation was by the io_read method. We have
not yet implemented  the capability to write actuator
data because we did not utilize any physical actuators
in the demonstration system. Likewise, we have not
yet implemented the capability to write information to
the TEDS fields.

3.2 A Library-based Implementation

The P1451.1 portion of the reference implementation was
developed as a C++ dynamic link library (DLL). A
dynamic link library contains executable images of
function calls that an application will call and use. When
an application calls a method or function contained in a
dynamically linked library, the library that contains the
image of the target function must be found by the
Windows operating system and brought into main
memory. Once this process has completed, the actual
function executes and proceeds as if the called function
were statically linked with the application’s image.
Clearly, this process occurs rapidly and provides an
efficient means for managing reusable code and memory
space within the operating system. The dynamic link
library implementing all the P1451.1 NCAP functionality
provides a convenient and centralized area for defining
the functional interface definition of the specification.
Applications that require NCAP-based services simply
link with the DLL to access all the standardized methods
defined in the P1451.1 specification.

The integration of the class software provides the
reference implementation with the capability to support
and interact with NCAP-based transducer applications. In
order to utilize the software to retrieve and interact with
actual sensors in the system, however, several hardware
components representing the P1451.2 draft standard are
needed. The next section provides a brief introduction to
the hardware pieces used and how they were integrated in
the reference implementation.

4. P1451.2 Hardware Resources

The hardware that was needed to demonstrate the P1451.2
digital interface between microprocessor and transducer
included an actual pressure sensor input to the
demonstration. In addition, the pressure sensor contains
an on-board TEDS description to allow up and
downloading of these fields. The hardware component of
this demonstration illustrates how sensor/actuator
manufacturers would use the P1451.2 standard to provide
portable, plug-and-play, interoperable products for the
process control industry as an example.

The hardware area as specified in P1451.2 has been
encapsulated in this demonstration by using the parallel
port in a PC connected to the pressure sensor through the
9-wire interface. The parallel port was used as it provides
easy access to the software/hardware environment and it
lends itself to easy integration into the PC environment - a
major concern for us when developing this scenario.

5. Demonstration Architecture

In order to demonstrate the capabilities of the P1451
standard as proposed, it became necessary to pull all the
software and hardware pieces together to form the
reference implementation. The reference implementation
provide the means to demonstrate the capabilities of the
standard in an interesting venue.

This demonstration uses a software tool in a way that will
exercise both aspects of the P1451 standard reference
implementation. The tool uses the P1451.1 functional API
to configure and query a remote NCAP over the network.
As part of the configuration process, the hardware
interface defined by the P1451.2 specification is implicitly
used and exercised as well. A closer look at the system
pieces that make up the demonstration are discussed next.

5.1 System Configuration

Figure 5 illustrates a high-level view of the architectural
components needed to demonstrate the reference
implementation. Two notebook computers form a small
sub-network consisting of two nodes. The notebook
computers, each simulating NCAP, connects to the
network via an  internal PCMCIA Ethernet interface card.
Both notebooks run the Microsoft Windows 95 operating
system and are configured to use the TCP/IP protocol
stack (WinSock V2.0) that comes bundled with the
system.



12

The physical network consists of an Ethernet-based,       
10 Mbps, 10BaseT twisted-pair network. For compactness
and demonstrative purposes, each node is connected
directly to a pocket-sized 4-port 10BaseT Ethernet hub.
This device provides the physical backbone network
needed for the demonstration.

Essentially, the two notebooks form a client-server
relationship over the network in order to demonstrate the
standard. That is, one notebook (shown in Figure 5 as the
Application PC) executes a client software application
tool called NCAPTool.

           P1451.1
 Network Block API

   TCP/IP

       NCAPTool
    Application   PC

   NCAP-PC
   P1451.1

TRANSDUCER
 APPLICATION

P1451.2
Compatible
Pressure

Transducer

P1451.2
Hardware
Interface

 NCAPTool   v1.0

Application

    PC

  NCAP
    PC

4-Port
Ethernet

Hub

 10 Mbps 10BaseT Ethernet Network

Figure 5: NIST Demonstration Architecture.

This software tool drives the demonstration by exercising
the API associated with P1451.1 to query a server process
executing on the remote NCAP-based notebook (shown in
Figure 5 as the NCAP PC). The query process results in
message-based method invocations sent from the client to
the server API calls in this demonstration. All messages
and invocations utilize the P1451.1 standard interface
exclusively. All results from the server sent back to the
client are packaged and received in a standardized form as
well. Therefore, all interactions between the client and the
server are carried out using the standardized interfaces
defined by P1451.1, providing a complete standards-based
environment for NCAP interactions.

5.1.1 Server Configuration

The server-based NCAP-PC is a fully functional PC-based
version of a standard P1451 smart networked transducer
device. Physically, the only difference between the PC
implementation and an embedded application is that one
has been targeted to the PC environment for
demonstration purposes.

The software portion of the NCAP-PC implements the
P1451.1 Information Model. The core software
component found in both notebooks is comprised of the
C++ DLL that implements the P1451.1 standard;
however, the way in which the standard API and
subsequent DLL interface are used varies between the
Application-PC and NCAP-PC. For instance, using
NCAPTool, the Application-PC only uses the standard
P1451.1 network block interface API to configure and
exercise the remote NCAP-PC for demonstrative
purposes. Because the Application-PC does not have any
associated transducer hardware, it does not require any
P1451.2 standard capabilities. It merely uses the
standardized functional interface provided by the P1451.1
based C++ DLL to access and manipulate the remote
NCAP-PC capabilities. In fact, many test and diagnostic
tools on the control networking market today use this style
of interaction where the specific API of the vendor
network is used as the PC-based entry point to access and
manage remote node hardware and software via the
network during configuration.

In theory, the C++ DLL developed for the NCAP-PC
could be cross-compiled target to an embedded
microprocessor environment “as is”. The underlying
TCP/IP networking code used to implement the network
block would of course need to be rewritten to conform to
the new target control network.

The hardware portion of the server-based NCAP-PC
implements a fully compliant P1451.2 hardware interface
that connects a pressure transducer to the demonstration
system. Figure 6 illustrates a close-up view of the  parallel
port hardware connection that provides a means for
physically connecting the P1451.2 9-wire interface to the
parallel port.

Notice the use of the parallel port device on NCAP-PC.
The parallel port provides a reasonable way to
demonstrate a PC-based implementation of the 9-wire
digital interface proposed in P1451.2. The P1451.2
compatible pressure sensor was built and provided by SSI
Technologies. The sensor’s 9-wire interface is terminated
with a DB-9 connector.  The DB-9 connector was then



13

mated with a 25- pin parallel port cable and plugged into
the printer port of the notebook computer. A special
device driver was developed that would translate the
application request for hardware service into standard API
calls using the Transducer Block of P1451.1.

This special parallel port driver was needed to supplant
the original printer port device driver in order to provide
the software linkage to all P1451.1 compliant transducer
block API calls bound for the pressure sensor. The driver
then translates any P1451.1 transducer block API method
(i.e., a function call such as io_read that actually reads the
sensor data) into its compatible 9-wire signaling protocol
as defined in the P1451.2 digital interface specification.
The firmware implementation of the digital interface
would then interact with the pressure sensor hardware to
request the data; ultimately sending the data back to the
transducer block where the request originated.

Parallel Port
Cable

P1451.2 9-Wire
Interface Connector
to Printer Connector

Parallel
Port

PCMCIA
Ethernet

Card

 P1451.2
 Interface

Network

NCAP-
PC

Noteboo

Pressure
Sensor

Figure 6: Parallel Port Interface Implementation.

This transducer interface was completely built conforming
to the P1451.2 interface specification. A specially
developed parallel-port device driver was used to create
the PC-based platform from which the application of the
standard could be tested. This provide both accessability
and ease of use.

The SSI Technologies’ pressure sensor is the key
hardware component illustrated in this demonstration.

Having the hardware located on NCAP-PC, combined
with the ability to access the data from it remotely,
illustrates the powerful accessibility options from both

standards. NCAP-PC implements the full P1451 standard
providing intra- as well as inter-NCAP access to its object
attributes, embedded TEDS information, and sensor data.

5.1.2 Client Configuration

The client configuration does not require all the services
of P1451.1 to operate. However, we used the same DLL
based on the C++ implementation of the P1451.1
specification that the server application uses. This was
possible, because all that we needed from the DLL was the
class definition for the network block. To drive the
NCAP-PC demonstration, we developed a Windows 95-
based configuration tool to interact with an NCAP across
the network using the portable application and network-
capable framework of P1451.1. The graphical user
interface based diagnostic tool we developed, called
NCAPTool, was compiled and linked with the P1451.1-
based DLL to provide a visual front-end into the
standardized NCAP methods or function calls.

The NCAPTool application links with the C++ DLL to
supply a class instantiation of the network block. As part
of the NCAPTool initialization, a network block class is
instantiated or created. From this point on all queries
made to the remote NCAP-PC using the tool would be
facilitated through the network block of NCAPTool. When
the server process executes, one of its functions is to wait
or listen to incoming connections (using the parlance of
TCP/IP). When a connection occurs (the client is trying to
communicate) a duplex transport connect is then
established between the client and server. Queries and
other requests then use the channel that has just been
established. All TCP/IP functions have been embedded
into the network block to envelope the associated API.   
This facilitates network-neutral control network
technology.

6. Demonstrating the Standard

A useful question one might ask at this point is, “what
elements from the P1451 draft standard can be shown and
how can they be demonstrated using this reference
implementation?” To answer this question we need to
focus on the capabilities of a Windows 95-based client
NCAPTool application we developed for this purpose.

Using NCAPTool, a user can configure, diagnose,
exercise, and control a remote device on the network by
interactively issuing API-based methods defined by the
P1451.1 Draft. The tool allows the operator to access
specific object attributes, read sensor data from the device,



14

and retrieve the TEDS’s manufacturing and calibration
data from across a network protocol based on TCP/IP.
Specifically, the tool demonstrates how the standard may
be used in a diagnostic setting to illustrate several key
ideas from both parts of the P1451 standard; including the
ability to:

• provide standardized read and write access to the
smart transducer device over a network,

 
• exercise the digital communication protocol and

hardware interface to access the sensor data and
TEDS information from the transducer device
remotely,

 
• illustrate the logical block addressing scheme to

access object attributes, and finally,
 
• demonstrate the network-neutral API for sending and

receiving information over the network.

In general, the software tool accomplishes these tasks by
allowing the operator of the NCAPTool to enter specific
query instructions using text boxes, pull-down menus and
individual windows. For instance, an operator may enter a
request for a serial number or software revision number
on the remote NCAP-PC. Alternately, an operator may
issue read requests on the remote NCAP-PC to obtain the
sensor data directly from the transducer. In addition, the
TEDS information may be retrieved from the remote
NCAP. Object addressing and block interactions are also
demonstrated using individual windows with specific
menus for requesting the information. A graphical
window can be popped up which shows a dial gauge of the
pressure sensor updated with the current pressure in real-
time illustrating events and data transfer over the network
directly from the remote NCAP-PC.

It becomes easy to envision how such a tool might be used
remotely over the Internet to help a technician retrieve
information about a particular sensor. That being said, we
chose the diagnostic and monitoring venue because it is
familiar to most network vendors, system integrators,
sensor manufacturers, and users.

7. Summary

Currently  transducer manufacturers, system integrators,
network vendors, and users are faced an enormous
problem of trying to support multivendor networks and

bridge the smart transducer market across industries. In
order to motivate the necessity of the IEEE P1451
standards effort, the relevant problems have been
presented here in detail. The solutions to these problems
have also been addressed by the two-part P1451 draft
standard, A Smart Transducer Interface for Sensors and
Actuators. To illustrate the salient features of these draft
specifications in a demonstration setting, a reference
implementation has been developed by NIST researchers.
The reference implementation represents a concrete
example of the Information Model from P1451.1 as well
as the digital hardware interface implementation from
P1451.2.

To exercise various features from the standard, a software
tool called NCAPTool was developed to provide visual
interaction so that a user can query the NCAP for specific
standardized information. This information includes
object attributes, TEDS information, and sensor data from
the transducer.

In an effort to illustrate the integration of the P1451.1 and
P1451.2 draft standard implementation, a P1451.2-
compatible pressure sensor is interfaced to the P1451.2
reference implementation through a parallel port.   The
software tool combines all the key features of the IEEE
P1451 Draft Standard to provide a demonstration of its
most pragmatic elements.

8. References

[1] IEEE P1451.1, Draft Standard for a Smart Transducer
Interface for Sensors and Actuators  Network Capable
Application Processor (NCAP) Information Model.
Institute of Electrical and Electronics Engineers, Inc.,
New York, to be submitted, 1996.

[2] IEEE P1451.2, Draft Standard for a Smart Transducer
Interface for Sensors and Actuators  Transducer to
Microprocessor Communication Protocols and
Transducer Electronic Data Sheet (TEDS) Formats.
Institute of Electrical and Electronics Engineers, Inc.,
New York, August 1996.

[3] Birrel, D. A., Nelson, B. J., Implementing Remote
Procedure Calls, ACM Transactions on Computer
Systems, Vol. 2, No. 1, February 1984, Pages 39-59.



15

9. Acknowledgment

During the development and integration of the reference
implementation, several companies and individuals were
very helpful in bringing this demonstration to fruition.

A special thanks to Stan Woods and Alec Dara-Abrams of
Hewlett-Packard who have been instrumental in providing
the special parallel port driver for use in the
implementation.

SSI Technologies supplied much of the hardware both in
emulation form and actual hardware implementations of
the P1451.2 draft standard. The hardware provided by SSI
was instrumental in developing the interfacing between
the transducer block and the hardware I/O driver
software.

We would especially like to thank the reviewers of this
document for their advice and encouragement during this
manuscript development process.

*** Certain commercial products are identified in this
paper in order to adequately describe the proposed
standard. Such identification does not imply
recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the
products identified are necessarily the best available for
the purpose or the only ones that could be used.


