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Abstract - This paper explores a neural network
approach for empirical nonlinear error modeling. For
systems that have a significant amount of nonlinearity,
nonlinear error models require fewer parameters
compared to linear models and require fewer test points
to achieve the same prediction accuracy. A neural
network with a five-layer structure is investigated. The
test point error predictions from nonlinear modeling
are compared with the results of linear modeling for an
artificial nonlinear model, a circuit with nonlinearity,
anti an instrument with suspected nonlinearity. The
nonlinear modeling shows more improvement when the
data set contains more nonlinearity.

I. INTRODUCTION

For many electronic devices and instruments, over
50percent of the product's cost can be attributed to
testing costs. Thus, to perform the tests efficiently and
economically is very important. To meet the requirement
of formulating economical test plans, model-based
approaches with optimized testing tools have been
developed by using an optimized small set of selected
test points to predict the overall performance of the
tested products [1]. This is based on the fact that the
behavior of many devices is governed by a relatively
small set of underlying variables, which consequently
determine the results of a large number of
measurements [2].

The linear approach [1,3] optimizes the testing process
by developing a linear model for the type of devices
being tested. This is done by analyzing data taken on a
large number of similar devices. The singular value

decomposition (SYD) is used to determine the principal
components of the data set, which become the model for
this device type. A minimal subset of test points is
determined from this model.

The test data of interest are the deviations of the
measurements from their nominal values for each test
point. Ifa full set of test data Ton a device is given by m
measurements tn test points) and this is done for r
independent devices, it is assumed that T can be related
to an underlying model A and parametersXby

TmXr =Amxn * X n:xr + £ ,

where the model matrix Amxn relates the n parameters X
to the m measured deviations for each of the r devices.

The data is corrupted by random measurement error t;
which adds noise to each measurement. The model is

specific to the device type and incorporates information
that depends on the device design, its components, its
production process, etc. XnXr consists of parameters that
vary for each individual device [3].

A model is linear if for any devicej all of the parameters
Xij(i=1,2,...n) are independent. The model is nonlinear if
the parameters can be chosen such that for any device j
one or more of the parameters Xij can be expressed as a
nonlinear function of one or more of the other
parameters. This type of nonlinear model can be used to
approximate most types of nonlinear models. To
determine the behavior of any device the linear model
requires n independent parameters or data from at least n
selected test points. This is true even if the underlying
model is nonlinear. However, when the model is
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Fig. I. The structure of three-layer NN with linear
functions in second layer-linear modeling.

nonlinear and the nonlinear relations are known, less
than n parameters or data from less than n test points are.
sufficient to determine the device behavior. Thus, to
realize the benefits of any nonlinear behavior requires a
model that makes use of the nonlinear relations between
parameters. A neural network (NN) of two layers, where
the first layer is sigmoid and the second layer is linear,
can be trained to approximate any function (with a finite
number of discontinuities) arbitrarily well [4]. This
nonlinear capability is applied in this paper to empirical
error modeling.

Nonlinear modeling has the potential of giving more
economical test plans than linear modeling and of
applying to a broader range of devices. With the more
economical test plans, the number of measured test
points can be traded off for more accuracy in the error
predictions.

The next section describes the relation between a three-
layer NN model and linear models. Section III introduces
the five-layer nonlinear NN used in this paper and
applies it to an artificial model with known nonlinearity.
Section IV compares the application of this model with
the linear model for a circuit with nonlinearity and data
from an instrument that may have nonlinearity. Finally,
the conclusions from this study are summarized.

II. LINEAR MODELING WITH NN

The NN analog of the linear model given by (1) is the
three-layer NN shown in fig.1.The k nodes or neurons of

la,

the first or input layer are the reduced measurement data
P for a device. The outputs of the second layer nodes are
the model parametersX for that device and the outputs of
third layer nodes are the full set of m test point results T
for the device. The lines between nodes are weights W
that are multiplication factors. All the inputs to a node
are summed, a threshold factor B is subtracted, and the
result transformed by a function! Thus, the node output
values T for layer I are given by

(

q~

)r;({)=1(1) t;W;y>or/-I) - B;I) (2)

whereII) is the function for all layer I nodes, 1j(/-I)is the
output of layer I-I node}, ~f) is the connecting weight
from layer!-I node} to layer! nodet, B/) is the
threshold value of layer I node t, and q is the number of
nodes at layer I-I. The index t varies over the nodes at
layer I. For this NN the functionsfat both the second and
third layers are identity functions, i.e.,f(x) = x.

,itl!
!I
,

".

In the analogy with the linear model, the weights
between the second layer and the output layer are related
to' an estimate for the model matrix A. The weights
between the first and second layer are the inverse of the
reduced model that solves for the device parameters
based on the reduced measurements at the selected test
points.

Even though this NN is equivalent to the linear model,
the methods used to solve it differ. Both methods use the
modeling (training) data set T. The linear approach uses
the SVD to determine the principal components, which
estimate model A. The NN approach iteratively adjusts
the weights W in the model to minimize the differences
between the model output data and the training data set.
The linear approach is more efficient but only produces
linear models. The NN approach can be extended to
nonlinear models as described in the next section.

III. NONLINEAR MODELING

For the purpose of nonlinear modeling a five-layer NN is
used which has sigmoidal (hyperbolic tangent) functions
in the second and fourth layers and linear functions in the

third and fifth lalers; thus, for I = 3 or 5,II) (x) = x, andfor I = 2 or 4, II (x) = tanh(x). The structure of the five-
layer NN is shown in fig. 2. The outputs of the third
layer are the nonlinear principal component coefficients
for the devices [5].

To test this approach an artificial nonlinear model was
computed from random matrices. Devices with 120 test
points and four parameters were simulated using a I20x4
model matrix A. A training matrix T was computed that

642
I

!':1

,I'



Five-layer Neural Network
~1, ~-

~~~,_ ,-:1--(
\\~""'" r:~ !-7! ,.'''#':'lp ~>..:.'. '. i.7.:i i2:i".. .'.'. ,.)-
':~"':\"":'::?1(\.. . ..r(:77,1,f. --
'. \~),;~i'r \ !-Z. '~1 \:-~.,t:'S'.

.,;~~g.~; . <>. ~~._i /1 ,. ~'x/. :"'f.{ '\-._
. '1:~ ).:",---' ~ Yf "--I-:~ ~.:r;c;;*''"',;.1"'1''. y, ;t/, \"\. ~ ,. \"\ : ..",."( .") J>1.,.

~..).r:..~'" . J('<'.' ./ ~./.. \..<'")..-/."'-:.".AY!...~. 'c . ~.,. .!", ,.",1.. . £.\"~t..!:V")-.-
... - "_.H .,.,~. 'It.-'-\-.~... )(.,","--~':'I' )(" "'. :}. I . 'T

':(/0r..~r! ,. "'. ",<v'/"c \ \ .// 'r \,\"'t~~l-'.;~
~f:'''('..\,<1 './:{' 'i.\/ '.,\./ .;--'''f'r'-

-. '. "1..\t ,',1\\' "x \ V},\.' .'"'1'.. ... i\' II'\\. ,;" .. .. II...) "
'..;,"j.\~' /,1 ",~ . ./ '\\ ~'.'Xv:'
!!"I.'.~~ .~, ) ,,: .~. l~'.~\\!i! ""\ /' '\" \ I;~"\\\," ". .. ..,." \'\.-, ~ " """ 1'.._ '\.

{' ". ,. I ..(". \~.
. l/ .'.'. f "'" \ .

~.'.' 2nd Ia~H i 41h layer "',
J.' Si~m"idfuncli(ln~ i Sigmoidfunclions. ')-.-· i 'I

i
i

T

Inpul lesl poinls Oulput lest poinrs

l.inear funclions
Jrd la~'cr

Linear fu ncli"n~

Fig. 2. Structure of five-layer NN for nonlinear modeling.

represents data taken on 300 such devices with a 4x300
matrix X of device parameters; T = (A*X)/4. The data
was scaled by the factor four so that the average data is
about unity. The entries of A and the first two rows of X
were randomly sampled from a unifonn distribution on
the interval -1 to + 1. The third and fourth rows of X are
obtained from the first two rows by the nonlinear

relations X3j = (X/j/ and X4j = (J6)3. Each device j is
characterized by two parameters.

First, the five-layer NN was trained using the full
training data set T with 120 input nodes and 120 output
nodes to detennine the model performance under the best
of conditions. The training process used feed-forward,
supervised learning [5] (fig. 2) for the nonlinear principal
component analysis (NLPCA). The training iteration
process is sped up with the use of a second order
conjugate gradient learning algorithm based on nonlinear
unconstrained optimization techniques [6]. The number
of neurons in the nonlinear layers was chosen equal to
the number of linear independent principal components
in the training set, which can be computed from the SVD
of T, four in this case. The number of linear center layer
nodes estimates the number of nonlinear independent
components of the data set. The training of the NN will
not converge when the number of the linear center layer
nodes is less than twot which is the number of nonlinear
independent parameters in this case.

Figure 3 gives the comparison of the center layer output
y = T(3) and the original parameterst Xj, X2, after the
model has converged. It is seen that the first parameter is
reproduced quite well and that there is qualitative
agreement for the second parameter. In general one
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Fig. 3. Center layer output of the five-layer NN Y/,Y2
and the original parameters X/,Xl (first 100 of 300
shown).
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Fig. 5(a). The circuit of a bandpass filter with five
parameters RI, R2. R3. CI, C2.
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Fig. 5(b). Bandpass filter data set of 150 test points
and 110 filters (80 filters are chosen as a model set,
30 are chosen as a validation set).

would expect the parameter estimates from the model, YI
andY2, to be a linear combination of the original XI, and
X2.

Then the five-layer NN was modified to have only two
input test points and 120 output test points. The two test
points selected were the ones that most closely matched
the fitted parameters, YI and Y2. The model was trained
using the same techniques mentioned above. In this case,
for each device, its entire 120 test points were being
predicted by data from only two selected test points.
Figure 4(a) shows the difference between the predicted
and true results for an arbitrarily chosen test point for all
300 devices. The differences are quite small relative to
the size of the signal being unity. The convergence
behavior for this two input NN is shown in fig. 4(b).
That figure shows how the root mean squared error from
all 300 by 120 test points decreases during the training
iterations. It is seen that the error is reduced by a factor
of 20 during the first 2000 iteration steps. It then is

!I

halved in the next 5000 iterations and halved again in
another 10,000 steps.

IV. NONLINEAR CIRCUITS

Model of Bandpass Filter

The use of NN to empirically model a nonlinear circuit is
illustrated with a bandpass filter. The circuit schematic is
shown in fig. 5(a). The filter has five passive
components whose nominal values are 100 kQ, 503Q,
and 20 kQ for RI, R2, and R3, and 1 JlF for capacitors Cj,
and C2. The circuit response is a nonlinear function of
these parameters as shown by the filter transfer function
given as

T(s) - [ R1~, ]s .
2

[

CI + C2

] [

RI + R2

]s + C1C2R3 s+ CIC2RIR2R3

(3)

The data sets were calculated to represent measurements
on a number of such filters with random variations of the
nominal component values. No measurement error was.
considered. For each filter the test point data are
calculated as the deviation from the filter's nominal
response at 150 frequencies at equal log spacing from
10 Hz to 10 kHz. To explore the differences between
mildly nonlinear and strongly nonlinear data, two sets
were generated. The mildly nonlinear set was generated
by randomly varying the five parameters by 5percent,
and the strongly nonlinear set by varying them by
20 percent. For each case, a training set of measurement
data on 80 filters was calculated, and the resultant
models checked by an independent set of 30 filters.
Figure 5(b) shows the data for the strongly nonlinear
sets.

Both linear and nonlinear models were used to model the
data sets. In each case the number of parameters was set
to five. The linear model was used to select varying
numbers of test points used for both model types. The
five-layer NN structure shown in fig. 2 was used with the
input layer the selected reduced test pointsk.

: I
I

i

Ii

Figure 6 gives the root mean squared error of the NN
results compared with the linear modeling results for the
30 validation filters. The number of selected test points is
varied from 5 to 50 (Le. the number of the first layer
neurons for the NN). For the NN the number of the
second ahd fourth layer neurons is always 30. This
number was chosen to equal the number of principal
components determined from an SVD of the training set
data. The results in fig.6 show a clear difference

I
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Fig. 6. Root mean squared error of the nonlinear
NN modeling and linear modeling of the bandpass
filter.

between the linear and nonlinear models. Note that when
the data set contains more nonlinearity (parameters
change 20 percent) the difference between the linear and
nonlinear models is more significant.

Model of a Thennal Voltmeter

The five-layer NN nonlinear model has been applied to
the same commercial-thermal-voltmeter data set that was
modeled by the linear approach [8]. This data set appears
to contain a large number of small parameters. The
reason for the large number was thought to be the need
to approximate nonlinear functions with a number of
linear functions. Thus, it was hoped that applying a
nonlinear model to this data set would reduce the number

of parameters needed to describe the model. This in turn
could lead to the need for fewer test points for the same
prediction accuracy. The following describes some
preliminary results in applying NN to modeling this data
set.

Figure 7(a) shows both the NN and linear modeling
results with 45 parameters. The NN modeling shows
significantly better results when the number of test points
is below 62. Beyond 62 test points the NN and linear
modeling results are approximately equal.

The reason the NN modeling is slightly poorer than the
linear modeling, when the number of test points is higher
than 62, is that the NN modeling results here are not
optimized. The NN results depend on a number of
parameters, which require simultaneous optimization by
means we do not currently know how to accomplish
efficiently. These parameters include the number of third
layer neurons (i.e., the number of the nonlinear
parameters), the number of second and fourth layer
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Fig. 7(a). Root mean squared error of the nonlinear
NN modeling and linear modeling of a thermal
voltmeter.
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Fig. 7(b). Root mean squared error of the nonlinear NN
modeling of a thermal voltmeter with the second and
fourth layer changing from 25 to 220 (the number of

test points is 80, number of center layer neurons is 25).

neurons, the number of NN training iterations, and the
test point selection.

Effects of optimized parameters can be examined by
varying one parameter at a time. For example, fig. 7(b)
shows the change in the root mean squared errors with
the number of second and fourth layer neurons. The
number of input test points was held constant at 25.
Since this data set appears to contain many small
parameters, it requires a large number of second and
fourth layer neurons. However, an increase in the
number of these neurons makes the NN training process
more time consuming. The results show that the gain in
accuracy is only modest.
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In this approach, test points for NN modeling have been
selected with the same method as for linear modeling. A
selection method that is better suited to NN models is not
known.

V. CONCLUSIONS AND DISCUSSION

An approach for modeling nonlinear data sets has been
developed that uses a five-layer NN. The results for a
number of artificial and real circuit examples have been
compared. When the data contains a significant amount
of nonlinearity, the NN is able to develop a model that is
more efficient than a linear model. Although the NN

approach takes much more computer time to develop the
model, this process is normally done offline relative to
the testing process. Thus, if this process can produce a
more efficient test plan the extra cost of developing the
model may be worth while.

The process of selecting the number of parameters and
making good test points selections for the linear
modeling were previously developed. For the NN
approach additional parameters must be selected. These
include the number of nonlinear functions in the model,
the number of nonlinear principal components, the
number of training iterations, and the test points to
select. A method for making a good selection for some
of these parameters has been demonstrated. For example,
the use of SVD to determine the number of nonlinear
functions works very well. Also, the use of the same set
of test points selected for linear models works well. We
have not explored whether a better set can be
determined.

So far, the selection of the number of nonlinear principal
components has been determining by finding the

I,',
[.0

smallest number of third layer neurons for which the NN
still converges well. The optimum number of training
iterations can be less than the largest for some models.
That is, the overall error for a separate validation set
versus iteration count will first decrease, reach a

minimum, then start to climb. How to prevent this or to
find the optimum number of iterations is being explored.
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