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Abstract

In magnetic multilayers, the magnetizations of two ferromagnetic layers separated
by a non-magnetic spacer layer are coupled by the electrons in the spacer layer.
This coupling oscillates in sign as a function of the thickness of the spacer layer.
Extensive research done on these systems has led to a simple model for this coupling
and remarkable agreement between predictions of the model and measurements of
the coupling. The model predicts that the periods of the coupling are determined
by geometrical properties of the Fermi surface belonging to the spacer layer mate-
rial. The oscillatory coupling is an instance of oscillations in metals caused by the
existence of a Fermi surface.
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1 Introduction

Varying the thickness of a layer separating two magnetic layers can give rise
to dramatic oscillations in the magnetic coupling between them. A magnetic
multilayer consists of a sequence of thin films grown on top of each other, each
film ranging in thickness from tenths of nanometers to tens of nanometers.
Typically, two thin films of ferromagnetic material are separated from each
other by a thin film of a non-magnetic material, referred to as a spacer layer.
The magnetization directions of the ferromagnetic layers are coupled to each
other through an exchange interaction. The sign of this coupling oscillates as
the thickness of the spacer layer is varied, with the best multilayer samples
showing up to thirty periods of oscillation. This chapter gives a pedagogical
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Fig. 1. Typical magnetic multilayer. Here two Fe layers are separated by an Au
spacer layer. An Au capping is grown on top to protect the multilayer from corrosion.
The multilayer was grown on a GaAs substrate with a buffer layer of Ag to promote
better growth of the Fe and Au films.

description of the origin of the coupling and describes a few key measurements
and calculations.

In metals, the sharp cut-off in occupancy at the Fermi surface causes oscilla-
tory phenomena. The oscillation of the induced magnetization as a function of
applied magnetic field, called the de Haas-van Alphen effect [1], is a well known
example. Many other properties oscillate as well. These oscillation arise from
field induced oscillations in the density of states. The cross-sectional areas of
the Fermi surface, a geometrical property, determine the oscillation periods.

Spatially localized disturbances in metals lead to another type of oscillation.
The oscillation of the electron density near surfaces of metals, known as Friedel
oscillations, is an example. Another example is the oscillation in the interaction
between two localized magnetic impurities in a metallic host. As the separation
between the impurities is increased, the interaction between them oscillates
between favoring parallel alignment and antiparallel alignment of the magnetic
moments. This coupling of the moments is known as the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [2]. A different geometrical property of
the Fermi surface determines the spatial periods of the oscillations between the
localized disturbances, in this case, a vector spanning the Fermi surface from
one side to the other. Interlayer exchange coupling is a particularly dramatic
instance of this type of oscillation.

Observation of coupling in magnetic multilayers requires high quality thin
films. Early studies [3] were plagued by a number of extrinsic sources of cou-
pling due to defects. One source of such coupling is the presence of pinholes,
regions where the non-magnetic layer was not continuous. Pinholes give direct
contact between the ferromagnetic layers, leading to coupling favoring par-
allel alignment of the magnetization directions, referred to as ferromagnetic
coupling. In addition, correlated roughness of the films causes ferromagnetic
“orange peel” coupling [4]. In 1986, Grünberg [5] demonstrated antiferromag-
netic coupling between the magnetizations of two Fe layers separated by Cr
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and two groups demonstrated coupling in rare earth multilayers [6,7]. The
observation of antiparallel alignment of the magnetizations meant that the
magnetic layers had been grown well enough that the coupling due to any
extrinsic coupling was much smaller than the intrinsic coupling.

Once high quality multilayers could be grown, interest in them started to
explode. Two years later, Grünberg’s group and Fert’s group discovered the
Giant Magnetoresistance (GMR) effect [8,9]. Magnetoresistance refers to the
dependence of a sample’s resistivity on an applied magnetic field. The field
dependence may be indirect, for example the resistance can depend on the
magnetization direction, which can depend on the applied field. This is true
for giant magnetoresistance; the resistance depends on the relative orientation
of the magnetizations of the ferromagnetic layers. If the magnetizations of two
layers are antiparallel for zero applied field because the layers are antiferro-
magnetically coupled, an applied field can overcome the coupling and bring
the films into parallel alignment. This change in alignment leads to a change
in resistance – giant magnetoresistance.

It was immediately realized that the giant magnetoresistance effect could be
a sensitive magnetic field detector, particularly for read heads in magnetic
disk drives. In fact, read heads based on the giant magnetoresistance effect
are now used in essentially all disk drives. To optimize the performance of
the read heads, magnetic multilayers with different materials, layer thickness,
growth conditions, and other parameters were studied. In 1990 [10], Parkin
discovered oscillatory behavior of the dependence of the giant magnetoresis-
tance on the thickness of the non-magnetic spacer layer. These oscillations
were not due to variations in the transport properties, but rather variations
in the coupling between the ferromagnetic layers. For some thicknesses the
coupling was ferromagnetic, favoring parallel alignment of the magnetization
directions. For these thicknesses, there was no change in the relative align-
ment of the magnetizations when a magnetic field was applied and hence the
magnetoresistance was zero.

The oscillations in the coupling as a function of the separation between two
magnetic objects immediately brought to mind the RKKY interaction be-
tween magnetic impurities. There was one big puzzle however. The oscillation
period, approximately 1.0 nm, was much longer than was expected from esti-
mates based on the analogy with the RKKY interaction. The answer to the
puzzle, as is described in detail below, is that it is possible to make much
more quantitative comparisons between theory and experiment for magnetic
multilayers than has been done for magnetic impurities. The rest of this article
is devoted to describing what goes into this comparison.

In the following section, I describe a simple model for the physics of the inter-
layer exchange coupling. Despite its simplicity, this model allows quantitative
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comparison between theory and experiment. I give this comparison as well as
a comparison with more sophisticated models. Section 3 describes the experi-
mental techniques that are used to prepare magnetic multilayers, characterize
them, and measure the coupling. I discuss how the presence of defects affects
the comparison between theory and experiment. Not only do these defects
modify the interlayer exchange coupling, but they can also create effective
couplings with different forms. Section 4 describes the most common such
effective interaction – biquadratic coupling.

2 Quantum Well Model

2.1 Model for Transition Metal Ferromagnetism

Developing a simple model for interlayer exchange coupling requires starting
with a simple model for the electronic structure of ferromagnets. Unfortunately
the electronic structure of transition metal ferromagnets is quite complicated.
Ferromagnetism in transition metals is driven by atomic-like exchange and cor-
relation effects in the partially filled d-electron shells. The atomic-like effects
suggest a localized description of this part of the electronic structure. However,
the d orbitals are strongly hybridized with d orbitals on neighboring atoms
and also with the s-p orbitals on neighboring atoms. The strong hybridization
suggests an itinerant description of the electronic structure. Reconciling these
aspects of the physics is an ongoing area of research, and the resulting models
are not simple [11]. Simplifying the model requires approximations that favor
one aspect of the physics over the other. In this article, I adopt a descrip-
tion favoring the itinerant aspects because the interlayer exchange coupling
depends strongly on the properties of the electrons at the Fermi surface and a
realistic description of the Fermi surface requires treating the itinerant nature
of the d electrons.

The local-spin-density approximation (LSDA) [12] accurately describes the
itinerant aspects of the electronic structure while treating the atomic-like ex-
change and correlation effects in mean field theory. That is, all of the com-
plicated electron-electron interactions are lumped into a local potential that
depends on the local density and the local spin density. This approximation
was derived for computing the ground state properties of materials. For tran-
sition metal ferromagnets, it works quite accurately for properties like the
cohesive energy, equilibrium lattice constant, and the magnetic moment [13].
Formally, it is not justified for computing the electronic structure, but it is a
good combination of simplicity and accuracy even for this case.

A material becomes ferromagnetic when it is energetically favorable for a ma-
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Fig. 2. The band structure and Fermi surface of face-centered cubic Co. The red
(blue) curves give the majority (minority) bands along two high symmetry directions
through the Brillouin zone center, Γ. The dotted black curve shows the s-p band if
it were not hybridized with the d bands. The bars to the right of the bands show
the width of the d bands and the shift between the majority and minority bands.
The red and blue arrows in the band structure plots give the width of the gap due
to the hybridization between the s-p and d bands of the same symmetry along the
chosen directions. The Fermi surfaces are by permission from Choy et al., [14].

jority of electrons to align their spins parallel to one another. The electrons
then split into those with spins parallel to the majority of the other spins
(majority) and those antiparallel (minority). Spin-orbit coupling mixes these
states, but is weak enough to ignore to a first approximation. Ignoring the
spin-orbit coupling leads to a description of ferromagnets in terms of two sep-
arate sets of electrons, majority and minority, which have different properties.
This description also holds in the non-magnetic layers in magnetic multilay-
ers provided the magnetizations in the different ferromagnetic layers are all
collinear with each other. When the magnetizations are not collinear, spin cur-
rents flow in the non-magnetic layers and exert torques on the ferromagnetic
layers, as is described below.

Figure 2 shows a band structure for Co in a face-centered cubic (fcc) struc-
ture calculated using the LSDA, highlighting the importance of the itinerant
aspects of the electronic structure. The d-bands have a width in energy, ap-
proximately 5 eV, that is large compared to the exchange splitting between
the majority and minority bands, about 2 eV. In addition, The hybridization
between the d-bands and the s-p band is large enough to lead to a gap of
about 3 eV where the bands would cross if they were not hybridized. Finally,
Fig. 2 shows images of the Fermi surface for majority and minority electrons.
Clearly, these are quite different, and the two sets of electrons have very dif-
ferent properties.
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There are two simplified models for the electronic structure of ferromagnets
that have been used extensively in studies of magnetic multilayers. Each em-
phasizes different aspects. Both include free-electron-like bands. In the spin-
split free electron model, the free-electron-like bands for majority and minority
electrons are shifted in energy relative to each other by a constant exchange
shift. This model ignores the d electrons completely, but the Fermi surfaces for
majority and minority electrons are different. I use this model for pedagogical
purposes in much of the rest of this section.

The other model, called the s-d model, emphasizes the atomic like aspects of
the d-orbitals by ignoring the d-d hybridization and treating the orbitals as
completely localized. This model was originally used to treat isolated magnetic
impurities in a non-magnetic host. For ferromagnets and magnetic multilay-
ers, the model for isolated impurities is generalized to treat a dense set of
such impurities. In this model, the s-p electrons are weakly hybridized with
the d-electrons. In some limits it is possible to map the s-d model onto a lo-
cal moment model in which the d-electrons form a local moment with a fixed
total spin �Si, where i labels the site. The hybridization between the d and
s electrons becomes an exchange interaction between the local moment and
the s-p electron spin �σ with the form −J �Si · �σ. The s-d model and the local
moment model have been used both to study interlayer exchange coupling and
extensively to study transport in magnetic multilayers, i.e. the giant magne-
toresistance, see the chapter by Fert in this volume. As long as the scattering
rates for minority and majority electrons are different, these models capture
much of the essential physics. However, care must be taken when the details
of the band structure are important.

2.2 Spin Polarized Quantum Well States

In this section, I describe the properties of a magnetic multilayer using a spin-
split free electron model as described above [15]. In this model, interfaces are
simply potential steps. Below, I generalize the results to more realistic models
of the electronic structure.

An interface between two materials acts on the electrons like a potential step;
electrons that strike it have a transmission probability reduced from one. For
a free electron going down a simple potential step of height V the transmission
probability is

Tstep =
q

k

(
2k

k + q

)2
. (1)

Here, the incident wave vector is k =
√
2mE/�2 and the transmitted wave
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Fig. 3. Electron transmission probabilities for a step and a quantum well.

vector is q =
√
2m(E + V )/�2. The first factor accounts for the change in

velocity on going over the step. The transmission probability is plotted in
Fig. 3(a).

If another step is introduced, the electron undergoes multiple reflection inside
the quantum well that is formed (see Fig. 3(b)). If the steps are separated by
a distance D, the transmission probability is

Twell=

∣∣∣∣∣ 4eiqDkq

(k + q)2 − ei2qD(k − q)2

∣∣∣∣∣
2

. (2)

Note that the transmission probability goes to one whenever 2qD = 2nπ,
where n is an integer. At a fixed thickness, there is a series of transmission
resonances at the energies En = 2m�

2(nπ/D)2 − V , for integer n. At a fixed

energy, there are resonances for D = 2n/(π2q) with q =
√
2m(E − V )/�2);

these resonances are separated by a fixed increment in thickness. At the trans-
mission resonances, the electrons have an increased probability to be in the
quantum well, in other words, there is a peak in the density of states in the
quantum well at the energy of the resonance.

These peaks in the density of states are seen in magnetic multilayers using pho-
toemission and inverse photoemission, for reviews see [16–19]. Photoemission
is a technique in which photons of a particular energy, generally ultraviolet
light or x-rays, are incident on a surface. When the photons are absorbed by
the material, they excite electrons which can leave the surface and be mea-
sured. The energy of the electron in the solid can be inferred from the photon
energy and the energy of the photoemitted electron. Peaks are observed in
the photoemission spectrum where there is a large density of states in the
material.

Photoemission probes the near surface region because the escape depth of the
photoemitted electrons is on the order of a nanometer. In order to see the den-
sity of states peaks in the non-magnetic spacer layer, the top magnetic layer
needs to be stripped off (or never deposited in the first place). In other words
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Fig. 4. Photoemission from a Cu overlayer on Co. Yellow indicates high photoe-
mission intensity and red low intensity. Reproduced with permission from Z. Qiu
[19]

the quantum well states studied in photoemission are not exactly the same
quantum well states that are present in the complete magnetic multilayer.
None the less, there is very good correspondence between these states and
the related states in magnetic multilayers. Figure 4 shows the photoemission
intensity as a function of energy and spacer layer thickness. This figure shows
the fixed spacing between peaks as a function of thickness and the quadratic
variation of the peaks as a function of energy. There are some differences be-
tween what would be expected for a free electron model and what is observed.

To understand how the free electron model generalizes to real materials it is
instructive to rewrite the transmission probability in terms of the transmis-
sion probability for a step and the reflection amplitude at an isolated step
R = (k − q)/(k + q). This substitution emphasizes the contribution made by
multiple reflection inside the quantum well. One round trip through the well
has the amplitude ei2qDR2 from reflecting from each step and propagating
both directions through the well. The transmission probability is

Twell=

∣∣∣∣TstepeiqD 1

1− ei2qDR2

∣∣∣∣
2

=

∣∣∣∣∣TstepeiqD
∞∑
n=0

(ei2qDR2)n
∣∣∣∣∣
2

. (3)

The second form shows explicitly the coherent multiple scattering in the well.
The basic physics of quantum well states in real materials is captured by
replacing the wavevector for propagating through the spacer layer, q, by the
appropriate value from the real band structure and by replacing the reflection
amplitude and transmission probability by the values calculated for a realistic
interface.

If one of the materials is ferromagnetic, the potential step for the majority and
minority electrons is different. In a multilayer with two magnetic layers there
are four possible quantum wells formed depending on the relative alignment
of the magnetizations, see Fig. 5. The quantum well states for each of these
are different because the potential steps, and hence reflection probability, is
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Fig. 5. Quantum wells used to compute interlayer exchange coupling. On the left,
the two panels give typical band structures for free electron models of interlayer
exchange coupling. On the right, the four panels give the quantum wells for spin up
and spin down electrons for parallel and antiparallel alignment of the magnetization.
The shaded regions designate the occupied states.

different for each quantum well. However, at a particular energy, like the Fermi
energy, the quantum well states in all of the wells have the same periodicity
as a function of the thickness of the spacer layer, because the periodicity only
depends on the wave length of the electron in the spacer layer at that energy.

2.3 Interlayer Exchange Coupling

The interlayer exchange coupling can be described in terms of an energy that
depends on the magnetization directions of the two layers, m̂i

E = −JAm̂1 · m̂2 , (4)

where A is the area of the two films, and J < 0 gives antiferromagnetic
coupling favoring antiparallel alignment. The form of the coupling is called
bilinear in contrast the biquadratic coupling described in Sec. 4. For interlayer
exchange coupling of the form given in Eq. (4) the strength of the exchange
interaction is determined by the difference in energy between the quantum
well with parallel magnetizations and that with antiparallel magnetizations.
Computing the exchange interaction simply requires computing the energies
of the quantum wells given in Fig. 5. For large spacer layer thicknesses, the
result is

J =
�vF
2πD

Re
[
(R↑R↑ +R↓R↓ − R↑R↓ − R↓R↑)e

i2kFD
]
+O(D−2)

≈
�vF

2πD
|R↑ −R↓|

2 cos(2kFD + φ) . (5)
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Here, kF is the Fermi wave vector in the spacer layer, vF = �kF/me is the
Fermi velocity, me is the is the electron mass, and R↑ and R↓ are the reflection
amplitudes for a majority and minority electron to reflect from the interface.
Expanding the square of the reflection amplitudes gives four terms, one for
each of the quantum wells in Fig. 5. The exchange coupling oscillates in sign
with a period π/kF, the oscillation decays like D

−1, and the amplitude of the
oscillation is determined by the spin dependence of the reflection amplitudes.

Physically these oscillations arise because the quantum well resonances cross
through the Fermi level as the thickness of the spacer layer is increased, see
Fig. 4. Each time the thickness increases by π/kF another resonance crosses
through the Fermi level. The resonances for each of the quantum wells in
Fig. 5 are all different, but they all have the same period because the period
is determined by the Fermi wavevector in the spacer layer, and is independent
of the properties of the magnetic material.

2.3.1 Critical spanning vectors

The expression for the interlayer exchange coupling, Eq. (5), is based on a
one dimensional model. Generalizing to realistic three-dimensional systems
is straightforward if the growth of the multilayer is coherent. For coherent
growth, the in-plane lattice of all of the layers is the same, so the in-plane
momentum (wave vector) is conserved when the electrons scatter from the
interfaces. In this case, electrons with different values of in-plane wave vector
do not couple, so the quantum well states for different in-plane wave vectors are
independent of each other. Including the full three dimensions of the multilayer
then simply requires integrating the one-dimensional result over the in-plane
wave vector

J

A
=
�

2πD

∫
d2K

(2π)2
vF( �K)Re

[
(R↑( �K)−R↓( �K))

2ei2kz(
�K)D
]
+O(D−3) . (6)

This integral is simple in the limit of large D; there is a contribution whenever
the spacer layer spanning vector, 2kz( �K), is constant as a function of �K. The
vector connecting one sheet of the Fermi surface to another at this in-plane
wave vector is called a critical spanning vector. In general, the oscillating
contributions from different parts of the Fermi surface are out of phase and
tend to cancel each other. However, when the spacer layer spanning vector is
constant as a function of �K, the contributions from finite region of the Fermi
surface near the critical point are in phase. This region gives a contribution
to the integral that oscillates in thickness with a period determined by the
critical spanning vector. As the thickness D becomes larger, the region of the
Fermi surface that contributes in phase gets smaller so that the amplitude of
the oscillation decreases with an additional power of D.
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Fig. 6. Slices through a free electron and the Cu Fermi surfaces. For the spherical
free electron Fermi surface, there is one critical spanning vector qc = 2kF. For the
Cu Fermi surface, there are two inequivalent critical spanning vectors, qL which is
closely related to the free electron critical spanning vector, and qS which occurs in
the necks of the Fermi surface. The Cu Fermi surface is shown within the Brillouin
zone appropriate for Cu(001) multilayers. Indicated in gray are parts of the Fermi
surface in the extended zone scheme. The critical spanning vector q′L is equivalent
to qL because of the discrete nature of the lattice.

For free electrons, the critical spanning vector is qcrit = 2kF, the vector that
goes from one side of the sphere to the other, see Fig. 6. For a free electron
model, the interlayer exchange coupling is

J

A
=−

�vFkF

16π2D2

[
R↑(�0)− R↓(�0)

]2
sin(2kFD) +O(D

−3) . (7)

The in-plane wave vector dependence of the Fermi velocity and the reflection
amplitudes is ignored to lowest order. The oscillation period only depends
on the geometry of the spacer layer Fermi surface, but the strength of the
oscillation depends on the Fermi surface through vF and kF and also the details
of the electronic structure of the ferromagnet through R↑ and R↓.

The generalization to realistic materials is illustrated for Cu in Fig. 6. For
a free electron model, the only critical spanning vector is one of length 2kF
connecting one side of the Fermi sphere to the other. However, for realistic
materials, the Fermi surface is more complicated than a sphere; in general
there are several critical spanning vectors and there is a contribution to the
coupling from each. For thick spacer layers, the coupling is

J(D)=
∑
α

�vα⊥κ
α

16π2D2
Re
[
(Rα↑ − R

α
↓ )
2eiq

α
⊥Deiχ

α
]
+O(D−3) . (8)

For each critical point, qα⊥ is the critical spanning vector, v
α
⊥ is the Fermi

velocity, κα is the average radius of curvature of the Fermi surface, and eiχ
α
is

a phase that depends on whether the stationary point is a minimum, maximum
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Table 1
Comparison of oscillation periods measured in magnetic multilayers with those ex-
pected from the critical spanning extracted from Fermi surfaces measured in de
Haas-van Alphen measurements (dHvA).

Interface Period (ML) Period (ML) Technique Reference

Ag/Fe(100) 5.58 2.38 dHvA [21]

5.73 ± 0.05 2.37 ± 0.07 SEMPA [22]

Au/Fe(100) 8.60 2.51 dHvA [21]

8.6 ± 0.3 2.48 ± 0.05 SEMPA [23]

Cu/Co(100) 5.88 2.56 dHvA [21]

8.0 ± 0.5 2.60 ± 0.05 MOKE [24]

6.0 to 6.17 2.58 to 2.77 SEMPA [25]

Cr/Fe(100) 11.1 dHvA [26,27]

12 ± 1 SEMPA [28]

12.5 MOKE [29]

Cr/Fe(112) 14.4 dHvA [26]

15.4 MOKE [29]

or saddle point. Eq. (8) is known as the asymptotic formula. It is valid for thick
spacer layers; for thinner spacer layers, the O(D−3) represents preasymptotic
corrections.

Equation (8) shows that the oscillation periods observed in interlayer exchange
coupling are determined by geometrical properties of the spacer layer Fermi
surface. The first paragraph of this chapter mentioned that the de Haas-van
Alphen effect measures the geometry of the Fermi surface. In 1991, Edwards
et al. [20] pointed out the analogy between the oscillations in the interlayer
exchange coupling and the oscillations seen in the de Haas-van Alphen effect.
Also in 1991, Bruno and Chappert [21] showed that it was possible to use the
Fermi surfaces determined in de Haas-van Alphen measurements to predict
the periods that would be observed in measurements of magnetic multilayers.
Table 1 shows the resulting comparison. The agreement between the two sets
of periods is quite remarkable. I describe the experimental techniques used
to measure the interlayer exchange coupling periods in the next section and
discuss some of the possible reasons for the disagreement seen for Cu/Co(100).

It is interesting to note that the oscillations in the interlayer exchange coupling
and in the de Haas-van Alphen effect come from different critical features of
the Fermi surface. In both cases, the oscillations are due to the abrupt change
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in occupancy at the Fermi energy. In the case of interlayer exchange coupling,
there are oscillatory contributions to the coupling at all the energies and in-
plane wave vectors of the occupied states. However, all of these oscillations
tend to cancel out, except where the occupancy changes at the Fermi surface.
Further, the oscillations at the Fermi surface all cancel except at points where
two sheets of the Fermi surface become parallel to each other. There are similar
oscillations in the de Haas-van Alphen effect. These also all cancel except at the
Fermi energy and where the area of the orbit in reciprocal space is stationary
as a function of the wave vector along the magnetic field direction.

In this respect, these oscillatory phenomena are physical examples of a simple
mathematical effect. In a Fourier transform, a function is described as a su-
perposition of oscillating functions with different frequencies. An approximate
description results when the range of frequencies is finite, i.e. when there is an
upper cut-off frequency. Whenever the function being described has a sharp
feature, a kink or a step for example, approximate descriptions with a finite
cut-off oscillate close to the location of the sharp feature. These oscillations
are known as Gibbs oscillations. For the interlayer exchange coupling and the
de Haas van Alphen effect, the sharp cut-off is the Fermi surface where the
occupancy changes from one to zero.

Another interesting comparison of the two sets of oscillations is found in the
different conditions that are required to observe both. The de Haas-van Alphen
oscillations come about when electrons in a magnetic field complete a circular
orbit before they scatter. For typical fields, these orbits are large, requiring
long mean free paths, that is, low temperatures and very high quality crys-
tals. As shown above, interlayer exchange coupling requires that electrons
complete a round trip within the spacer layer before scattering. This path is
much shorter than that required for de Haas-van Alphen oscillations, consis-
tent with the fact that oscillatory interlayer exchange coupling is observed at
temperatures even higher than room temperature. Even though the interlayer
exchange coupling is less sensitive to the mean free path, it was discovered
much later because growing sufficiently good multilayers requires deposition
techniques that has only recently been developed.

Figure 6 illustrates the resolution to the early doubts that interlayer exchange
coupling was related to the RKKY interaction. These doubts were driven by
the fact that the period expected from the free electron critical spanning vector
is close to 0.3 nm, which is much shorter than the observed period of about
1.0 nm. Taking the actual Fermi surface into account does not immediately
help. The Cu Fermi surface is a distorted sphere and the critical spanning
vector qL is close to the free electron 2kF. The resolution of this discrepancy
derives from the fact that Cu has a periodic lattice and in multilayers has
layers of thickness d. Hence, the coupling can only be sampled at discrete
values of the thickness nd for integer n. Since the oscillation corresponding
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to the free electron Fermi surface has a period shorter than d, the oscillation
with wave vector qL is indistinguishable from an oscillation with wave vector
q′L = (2π/d)− qL. The period associated with q

′
L is very close to what is seen

experimentally. The equivalence of a discretely sampled rapid oscillation to a
slower oscillation is referred to as aliasing.

Aliasing is the reason that the Cu(100) critical spanning vectors are labeled
the way they are in Fig. 6. The longer critical spanning vector qL gives a longer
period oscillation than the shorter critical spanning vector qS gives. Without
aliasing, it would be the other way around.

2.3.2 Coupling Strength

While the critical spanning vectors and other properties of the Fermi surface
in Eq. (8) can be extracted from experiment, the reflection amplitudes can-
not. For real multilayers, these can be calculated, but the resulting coupling
strengths do not agree nearly as well with measured values as the periods
do. Some of the disagreement is due to experimental difficulties, which are
discussed in the next section, but some disagreement is due to theoretical
difficulties.

The asymptotic form is an approximation to the difference in energy between
the total energies of multilayers with parallel magnetizations and antiparallel
magnetizations. Unfortunately, due to the complexities of the electron-electron
interaction, it is currently impossible to compute these total energies without
approximation. The best available approximation, as described in the begin-
ning of this section, is the local spin density approximation (LSDA). This
approximation works quite well for magnetic multilayers but with one caveat.
The band structure is only approximate, so the Fermi surface deviates from its
actual shape. Since the oscillation periods of the interlayer exchange coupling
depend on the critical spanning vectors of the spacer layer Fermi surface, the
periods computed using the LSDA will be wrong. This means that after a
few oscillations, the calculated coupling is out of phase with the experimental
coupling. The sign of the coupling may even be wrong. A direct comparison
is then misleading because even if the physics is essentially correct, the agree-
ment might be quite poor, see Fig. 7. There, the agreement is made even worse
by the effect of disorder on the measured results.

In Fig. 7, the calculated and measured periods of the oscillations disagree;
the periods extracted from the experiment are 2.48 ± 0.05 monolayers and
8.6 ± 0.3 monolayers and the critical spanning vectors of the theoretical Fermi
surface would give periods of 2.65 monolayers and 8.03 monolayers. One way
to compensate for the errors in the periods is to fit both theory and experi-
ment to the asymptotic form, and compare the envelopes. The results of fits
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Fig. 7. Calculated [30] and measured [31] coupling strengths for Fe/Au/Fe(100) mul-
tilayers. The red (blue) symbols are the measured (calculated) coupling strengths.
The red curve is the best fit to the experimental data when the measured thickness
fluctuations are taken into account. The blue curve is a linear interpolation between
the coupling strengths calculated for complete layers.

Table 2
Comparison of coupling strengths.

JS/(1 nm)2 JL/(1 nm)2

Fit to experiment [31] 1.29 ± 0.16 mJ/m2 0.18 ± 0.02 mJ/m2

Asymptotic Calculation [34] 2.0 mJ/m2 1.1 mJ/m2

Fit to Full Calculation [30] 3.4 mJ/m2 1.1 mJ/m2

to the calculations and measurements in Fig. 7 are given in Table 2. The fits
to experiment take into account measured thickness fluctuations, as discussed
in the next section. Taking into account the thickness fluctuations leads to
much better agreement between the strengths in Table 2 than in the raw com-
parison in Fig. 7. An additional source of disagreement that has not been
accounted for is temperature. The calculations are done at zero temperature
and the measurements at room temperature. While it is clear that account-
ing for the temperature will improve the comparison, the temperature scale
for the correction [32,33] in this system is not known so it cannot be made
quantitative. Measuring the coupling at low temperature would be the ideal
solution. Possible reasons for any remaining disagreement are discussed in the
next section. Also given in Table 2 are calculations done using the asymptotic
form. Possible reasons for the imperfect agreement between calculations are
discussed below.

A difficulty with total energy calculations is that the total energies are typi-
cally many orders of magnitude larger than the difference in energy between
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parallel and antiparallel alignment of the magnetizations. In the LSDA, the
density and the potential depend on each other and need to be determined
self-consistently. Accurately computing energy differences makes the calcula-
tions quite time consuming. One way to simplify the process is to use the force
theorem. The force theorem states that if the densities (or potentials) of two
configurations are close to each other, the difference in total energies can be
approximated by the difference in eigenvalue sums. The eigenvalue sum is the
sum of the energies of all of the occupied states. The eigenvalue sum is more
easily calculated, is much smaller than the total energy, and the calculation
need not be self-consistent. The calculation shown in Fig. 7 used the force
theorem.

In a real sense, the “derivation” of the asymptotic form for the interlayer
exchange coupling is based on the force theorem. The energy was assumed to
be given as a sum of the energies of all of the occupied electronic states. It
turns out that even for realistic systems such an approach can be a reasonable
approximation.

Having reduced the interlayer exchange coupling to eigenvalue sums, it is pos-
sible to derive the asymptotic formula, Eq. (8) for realistic multilayers [35,36].
This form is derived by ignoring the energy and wave vector dependence of the
reflection amplitudes. In the thick limit, including the energy and wave vector
dependence leads to contributions higher order in 1/D called preasymptotic
corrections [37,38]. For Co/Cu(100), where these corrections have been studied
in detail, they turn out to be quite important. Asymptotically, the strength
of the long period coupling is weak, but for thinner layers, the corrections
lead to substantial coupling. For the long period coupling, the wave vector
dependence of the majority electron reflection amplitude gives the most im-
portant correction. On the other hand, the short period coupling is strong for
thick layers, but the energy dependence of the phase of the majority reflection
amplitude make it weaker for thin layers.

While Fe/Au(100) multilayers have not been analyzed for preasymptotic cor-
rections, there are indications that they might be important. First, the cou-
pling strengths for the short period coupling calculated using the asymptotic
formula disagree with the coupling strength extracted from the full calcu-
lation. Second, there are differences between the periods expected from the
critical spanning vectors of the Fermi surface and those extracted from Fourier
transforms of the calculated coupling [30].

2.3.3 Torques and Spin Currents

When the magnetizations of two adjacent layers are not collinear, the inter-
layer exchange coupling exerts a torque on both, given by the negative deriva-
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tive of the energy, Eq. (4), with respect to the relative angle. Some of the first
calculations of the interlayer exchange coupling [39,40] proceeded by directly
computing the torque between the magnetization directions. Such calculations
proceed analogously to the calculation sketched above, but it is necessary to
match non-collinear spin states at the interfaces and to take great care in per-
forming the energy integrals. It is interesting that the torque, which like the
energy has contributions from all of the occupied states, can be cast in a form
that depends only on the properties of the electrons at the Fermi energy.

Since the interlayer exchange coupling is mediated by the electrons in the
spacer layer, the torque is as well. The torque is associated with a spin cur-
rent flowing in the spacer layer carrying angular momentum from one layer to
the other. Angular momentum is extracted from one layer, effectively exerting
a torque on the magnetization of that layer, and is deposited in the other
layer, effectively exerting an opposite torque on the magnetization of second
layer. This spin current differs from the spin current of interest in spintronics
[41] because it is carried by all of the electrons in the spacer, not the elec-
trons close to the Fermi level. It also exists independent of an applied voltage.
Distinguishing spin currents due to quasi-equilibrium interactions and those
related to transport [42] is important to understand possible spintronic devices
and also current-induced torques [43,44].

3 Measurement of Interlayer Exchange Coupling

3.1 Growth and Disorder

Growing magnetic multilayers to compare measurements with calculations is
quite difficult. Calculations are only tractable for systems that are close to
ideal, requiring growth of systems equivalently close to ideal. The first re-
quirement is that the lattices of the different materials need to be compatible.
For example, when Co grows on Cu it grows psuedomorphically, that is, it
adopts the fcc structure of Cu, with a lattice constant that is very close to
that of Cu. For a review of growth in this system see [45]. Another pair of
metals with identical crystal structures and close lattice constants is Fe and
Cr. Both of these pairs of materials can be grown with several different in-
terface orientations. Some of these are shown in Table 1. Unfortunately, these
are the only two pairs of materials with such similar crystal structures. The
only other pairs that can be grown sufficiently well are Au or Ag and Fe, but
only in the (001) interface orientation. It is somewhat surprising that these
systems can be grown well because Fe has a body-centered cubic (bcc) struc-
ture while Au and Ag have an fcc structure. In addition, the lattice constants
are very different. However, it turns out that if the Fe lattice is rotated by
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45◦ around the interface normal, there is very good in-plane lattice match for
each of these pairs [46]. If the starting substrates are sufficiently flat, very good
growth can be achieved. However, the presence of steps leads to extended de-
fects through the layer because the Au/Fe growth is not pseudomorphic and
the layer thicknesses are quite different.

Interpretation of coupling through Cr spacer layers is complicated by the pres-
ence of spin density wave antiferromagnetism [47–49]. In bulk Cr, the tran-
sition temperature is close to room temperature, the temperature at which
most measurements of the coupling are made. In very high quality multilay-
ers, the antiferromagnetism leads to a short period coupling, which is not
well described by the model presented in this paper. However, in addition to
the short period coupling associated with the antiferromagnetism, there is a
long period oscillatory coupling, which appears to be well described by the
model presented here. The properties of this long period coupling are given in
Table 1.

Unfortunately, the pairs of materials in Table 1 exhausts the systems that
are well enough lattice matched to make high quality comparisons between
calculations and measurements. When a material is grown on a substrate
that is not so well lattice matched, it assumes the in-plane lattice constant
of the substrate on which it is deposited for a couple of monolayers. Then,
as the thickness of the deposited layers increases, the strain energy associated
with its modified lattice structure becomes too large and the film relaxes by
introducing dislocations at the interface. Systems that have been studied in
addition to those in Table 1 are reviewed in [50,51]. The same quality of growth
has not been achieved in these systems as in the systems with much smaller
lattice mismatch.

Even when the lattice mismatch is close to zero, real multilayers are still not
perfect. The starting substrate is never perfectly flat and the growth is never
perfectly layer by layer, so there are always variations in the thickness of the
layers, typically called thickness fluctuations. Frequently, the lateral length
scales of the thickness fluctuations are in an intermediate regime. The flat ter-
races are large enough that the ideal coupling is reasonably well defined over
each terrace. On the other hand, the terraces are small enough that the mag-
netizations do not vary significantly on that length scale. In this intermediate
regime, the comparison between calculated and measured coupling strengths is
improved by averaging over measured variations of the spacer layer thickness.
If the coupling for an ideal thickness of n layers of is J(n) and the probability
of having a thickness nd for a nominal deposited thickness of D is P (n,D),
the effective coupling strength is

J(D) =
∑
n

P (n,D)J(n) . (9)
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If the width of the growth front is measured by scanning tunneling microscopy,
x-ray diffraction or some other technique, theoretical coupling strengths can
be averaged to compare with measured strengths. The curve in Fig. 7 that is a
fit to the experimental data includes the effect of the measured thickness fluc-
tuations through Eq. (9). The coupling strengths with the effect of thickness
fluctuations removed are given in Table 2.

When the interlayer exchange coupling has rapid oscillations, the measured
coupling is rapidly reduced by the thickness fluctuations. When the coupling
strength is reduced by orders of magnitude, it is hard to extract meaningful
coupling strengths, even if the growth front has been measured. For this rea-
son, it is desirable to grow the sample in a layer-by-layer mode to keep the
growth front as narrow as possible. Since layer-by-layer growth is determined
by the competition between nucleation of islands and diffusion of deposited
adatoms, it tends to require higher substrate temperatures during growth.
Unfortunately, higher growth temperatures tend to promote interdiffusion at
the interfaces. Interdiffusion, which gives rise to scattering centers, is more
difficult to treat theoretically than thickness fluctuations. It also can be more
difficult to measure.

Interdiffusion can have an important and counterintuitive effect on the cou-
pling. In the Fe/Cr(100) system, the measured interdiffusion [52–54], is be-
lieved [55] to cause the sign reversal in the measured short period coupling
[28,56,57]. Extensions of the calculations discussed above for Fe/Au(100) [30],
indicate that interdiffusion may be responsible for the difference between the
calculated and measured coupling strengths in Table 2. Those values have al-
ready been corrected for the measured thickness fluctuations. It is peculiar that
the short period coupling strengths agree much better than the long period
strengths. Calculations that include interdiffused atoms at the interface indi-
cate that interdiffusion reduces the long period coupling more than the short
period. Since the interdiffusion is not measured for this case, it is possible that
it explains the remaining discrepancy between theory and experiment.

The choice of substrate plays a large role in the quality of the growth. The best
measurements are made on substrates of one of the materials in the multilayer.
Iron whiskers, which can be extremely flat [58], and copper single crystals give
the best results. However, insulating substrates are necessary if the samples are
also to be used for transport measurements. For these substrates, great care
is required to get really high quality growth. See [59] and [60] for descriptions
of the complexity of growing a Fe/Au multilayer on a GaAs substrate.

One of the key advances that allowed accurate determination of the oscilla-
tion periods was the use of wedge-shaped spacer layers, see Fig. 8. Growing
wedge samples simply involves moving a shutter between the sample and the
evaporator during growth to expose different parts of the sample to differ-
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Fig. 8. Interlayer exchange coupling in a wedge shaped Fe/Au/Fe trilayer measured
by SEMPA and RHEED [22]. A schematic view of the wedge-shaped sample is
shown at the top of the figure. The approximate dimensions give an indication
of the very small slope of the wedge. Immediately below is a SEMPA image of the
magnetization of the Fe overlayer. White and black indicate parallel and antiparallel
alignment to the substrate, and hence ferromagnetic and antiferromagnetic coupling.
Below that is a line scan (cyan) through the image and then a measurement of the
RHEED intensity (green) along the wedge. The oscillations are used to determine
the thickness of the spacer layer along the wedge. The wedge is slightly curved. The
RHEED and the magnetization curves have been corrected for this curvature, but
the image has not, hence the variation of the lines connecting the image with the
line scan.

ent total fluxes. Such samples ensure that all thicknesses are grown under the
same conditions because they are grown simultaneously on the same substrate.
Wedge samples also make it easier to accurately determine the thickness of
the samples.
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3.2 Measurement techniques

Measurement of interlayer exchange coupling relies on two broad categories
of measurements. One set determines the structure of the multilayer in as
much detail as possible. The second determines the magnetic coupling. Com-
mon techniques for determining the structure of multilayers are Reflection
High Energy Electron Diffraction (RHEED), scanning tunneling microscopy
(STM), x-ray scattering, and neutron scattering. Common techniques for de-
termining the coupling are magneto-optical Kerr effect (MOKE), scanning
electron microscopy with polarization analysis (SEMPA), Brillouin light scat-
tering (BLS), and ferromagnetic resonance (FMR).

The technique RHEED [61] is commonly used determine the quality of a
surface during growth. A high energy electron beam is reflected from the
surface at glancing angles. The resulting diffraction pattern is sensitive to the
details of the surface, in particular the presence of steps. If the growth is layer
by layer, there are fewer steps when layers are close to complete and more
when the layer is half filled. In this case, the intensity of different spots in the
RHEED pattern oscillate with a period of one layer. Since the oscillations have
a period of a single layer, RHEED oscillations can be used to determine the
total thickness of the film. For samples of uniform thickness, RHEED is used
to monitor the thickness film during growth. For wedge samples, it is typically
used after growth, when the RHEED beam is scanned along the wedge and
the RHEED oscillations are monitored as a function of position to give the
thickness at that position, see Fig. 8.

Techniques used to measure the coupling fall into two broad classes. In the
first class, the magnetic configuration is measured, frequently as a function
of applied magnetic field. For example, Parkin et al. first observed oscillatory
interlayer exchange coupling [10] using the giant magnetoresistance. Here the
resistance of the film in zero field was compared with the resistance in large
field. If the coupling is ferromagnetic, there is no change, and if the coupling
is antiferromagnetic the change can be substantial.

A commonly used technique to determine the magnetic configuration is MOKE
[62]. The magneto-optic Kerr effect is the dependence of reflected light on the
polarization of the light and the magnetization of the surface. Typically, the
polarization of the light rotates through a small angle on reflection. Variations
in the rotation can be measured to give the variations in the magnetization
that cause them. For wedge samples, MOKE can be used in an imaging mode
by scanning the focused spot of a laser across the surface or by imaging a
wide area of illumination. It is not particularly surface sensitive and has the
advantage that it is sensitive to the magnetic state of both layers. Using the
sensitivity to both layers, MOKE images [63] have directly identified perpen-
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dicular alignment of two layers, see Section 4. MOKE was used to measure
the coupling strengths in Fig 7.

An imaging technique that has been used to determine coupling periods is
SEMPA [64]. When a high energy electron beam scatters from a surface, it
excites low energy electrons, which leave the surface. These secondary elec-
trons tend to maintain the polarization they had when in the surface. SEMPA
measures the magnetization of a region of the sample’s surface by determining
the polarization of the secondary electrons. Since this technique is based on
measuring secondary electrons, which have low energy, it is generally not used
with an applied field, limiting it to studies of the remnant state. On the other
hand, it has greater spatial resolution than optical techniques like MOKE, and
can be used on smaller wedges, requiring smaller areas of sample perfection.
Since it can only measure the remnant state, SEMPA has not been used to
measure coupling strengths, but it has been used to determine the sign of the
coupling for enough oscillations of the coupling to allow high precision mea-
surements of the periods, see Fig. 8. In addition, the electron beam serves as a
very high resolution source for measuring RHEED so that both measurements
can be done in situ.

When the magnetic state is measured, the interlayer exchange coupling is
inferred from the state rather than directly measured. SEMPA images are
analyzed with the assumption that the interlayer exchange coupling dominates
other energies so that the magnetization points in the direction of the coupling.
The MOKE measurements in Fig. 7 are based on images like those shown for
SEMPA in Fig. 8, but in the presence of an external applied field. In this case
it is assumed that the direction of the coupling is determined by the balance
of the interlayer exchange coupling and the interaction with the external field.
In both cases, magnetic hysteresis is ignored. Both of the analyses are simple
examples of a more general approach. Usually, some magnetic property of
a sample, like its hysteresis loop, is measured and the exchange coupling is
inferred by comparing the measured property with a model. Some or all of
the parameters of the model, including the interlayer layer coupling constant,
are varied until the predictions of the model agree with the measurement. The
reliability of the results depend on the accuracy of the model, in particular
whether it includes all of the physics necessary to describe the experiment.

The second class of measurements used to determine the coupling is based
on determining the curvature of the free energy of the magnetization with
respect to small variations in the magnetization direction. Two such techniques
are FMR and BLS [65]. FMR is based on finding peaks in the microwave
absorption of multilayers. The peaks identify resonance frequencies, in other
words the frequencies of the uniform modes of a layer. The coupling between
the magnetizations of different layers gives rise to coupled oscillations. The
different in-phase and out-of-phase resonance frequencies then give the size of
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the coupling. BLS is closely related. When light is scattered from the sample,
there is a small amount of scattered light that has gained or lost energy by
absorbing or exciting a mode of the system. Peaks in the absorption spectrum
identify the modes of the system. The mode frequencies can then be analyzed
to give the interlayer exchange coupling.

4 Biquadratic Coupling

In almost all multilayers, there is a contribution to the coupling that favors
perpendicular alignment of the magnetizations. In many multilayers, this con-
tribution dominates, leading to actual perpendicular alignment of the mag-
netizations [63,66]. Phenomenologically, this alignment can be explained by a
coupling of the form

E

A
= −J2(m̂1 · m̂2)

2 , (10)

called biquadratic in contrast to the bilinear coupling discussed above. It is
called biquadratic because it is quadratic in both of the magnetization direc-
tions. The fact that all measured values of J2 are negative, favoring perpendic-
ular orientation of the two magnetizations, shows that biquadratic coupling
does not have an intrinsic origin similar to the bilinear coupling, but, as Slon-
czewski showed [67,68], has an extrinsic origin due to disorder.

Thickness fluctuations lead to variations of the coupling strength on different
terraces. To lowest order, the intralayer exchange coupling forces the magneti-
zations in each layer to be uniform so that the bilinear coupling gets averaged
over the growth front as described in Eq. (9). To next order, the magnetization
can fluctuate around its average direction. Over each terrace, the magnetiza-
tion fluctuates in the direction that lowers the energy. The fluctuations lower
the energy the most when the two magnetizations are perpendicular to each
other. This is the origin of the effective interaction favoring perpendicular
alignment between the magnetizations.

Consider the simple model shown in Fig. 9, in which the spacer layer con-
sists of parallel strips of width L with alternating thicknesses and hence
coupling strengths Jn and Jn+1. The relative angle of the magnetizations
is θ = θ0 + δθ sin(πx/L), where δθ is the size of the fluctuations. Over the
region from 0 to L, where the coupling is Jn, the energy change due to the
fluctuations is proportional to Jn sin(θ0)δθ. Over the region from L to 2L, the
sine function changes sign and the energy change due to the fluctuations is
proportional to −Jn+1 sin(θ0)δθ. The net coupling energy per area due to the
fluctuations is proportional to −∆J sin(θ0) δθ, where ∆J = Jn − Jn+1. Fluc-
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Fig. 9. Thickness variations and biquadratic coupling. The thickness of the spacer
layer varies periodically between n and n+1 layers, with ferromagnetic coupling for
thicknesses n + 1 and antiferromagnetic for thicknesses n. The heavy arrows show
the local rotation in the magnetization direction into the direction that minimizes
the coupling for each terrace.

tuations in the correct direction lower the energy of the system. The energy
gain is balanced by the cost in intralayer exchange energy because the magne-
tization now varies spatially. Since the intralayer exchange coupling depends
on the square of the gradient of the magnetization, for this simple model,
it is proportional to (Aex/L) δθ

2, where Aex is the strength of the exchange
interaction. Combining the changes due to the fluctuations for the interlayer
exchange coupling and the intralayer exchange and finding the minimum with
respect to the amplitude of the fluctuations gives δθ ∝ − sin(θ0)∆J/(Aex/L).
For this fluctuation amplitude, the change in the energy per area due to the
fluctuations gives the strength of the biquadratic coupling

J2 ∼ −
(∆J)2L

Aex
. (11)

While Eq. (11) is quite simple, it qualitatively describes the features of more
realistic situations. In real systems, a characteristic length scale L of the
arbitrary-shaped terraces replaces the width of the stripes. As this length
scale increases, the biquadratic coupling strength increases because the fluc-
tuations can get larger. Also, realistic growth fronts generally consist of more
than two thicknesses, which introduces an effective ∆J . The coupling increases
as the difference in the coupling for the different terraces get larger. The differ-
ences tend to be largest when the coupling is oscillating rapidly, that is when
there is short period coupling. The coupling gets weaker as the intralayer ex-
change interaction increases because exchange suppresses the fluctuations in
magnetization direction that lower the energy.
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5 Summary

I have attempted to pedagogically describe interlayer exchange coupling using
a simple physical picture that has evolved over the last decade. Spin dependent
reflection from the interfaces in multilayers communicates the magnetic state
of one ferromagnetic layer through a non-magnetic layer to a neighboring ferro-
magnetic layer. This communication leads to an exchange interaction between
the layers. The exchange interaction has oscillatory contributions with periods
determined by the critical spanning vectors of the spacer layer Fermi surface
and strengths determined by the spin-dependent reflection at the interfaces.

The oscillations in the exchange interaction arise from the spin-dependent
quantum well states set up by the reflection. These quantum well states evolve
in energy as the thickness of the spacer layer is varied. As these states pass
through the Fermi energy, they fill or empty, changing the energy of the mul-
tilayer. These changes are periodic because the quantum well states cross the
Fermi energy with a period determined by the Fermi surface of the spacer
layer material. At critical points of this Fermi surface, many quantum well
states have the same period giving a net oscillatory contribution to the en-
ergy. The energy difference between the parallel and antiparallel alignment of
the magnetizations gives the interlayer exchange coupling.

The oscillations in the interlayer exchange coupling are analogous to the oscil-
lations in the de Haas-van Alphen effect. The periods of both are determined
by critical geometrical properties of the Fermi surface. In fact, the Fermi sur-
face geometries extracted from de Haas-van Alphen experiments can be used
to predict the periods of the coupling. The agreement between these periods
and the coupling periods, which have been measured to 3 % accuracy in the
best cases, provides strong support for our understanding of the coupling.

The periods of the oscillatory interlayer exchange coupling are relatively in-
sensitive to the presence of defects in the multilayer but the coupling strengths
are not. The measurements that have been done on defects and the calcula-
tions of their effect on the coupling give indications that our understanding of
interlayer exchange coupling is correct. Improving our understanding will re-
quire measuring the coupling in systems that are as close to perfect as possible
and then quantitatively measuring all the defects that remain. The necessary
structural characterization will require multiple techniques to measure all of
the defects. Then, calculations will need to explicitly treat the measured de-
fects.

The biquadratic coupling that is ubiquitous in magnetic multilayers is an ex-
ample of an effective interaction that arises because of defects and frustration.
Interfacial roughness gives rise to fluctuations in the strength of the bilinear
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coupling. The system can lower its energy by allowing the magnetization of
the layers to fluctuate in response to the roughness induced variations. The
system can lower its energy the most when the two magnetizations are perpen-
dicular to each other, giving an effective coupling that favors perpendicular
alignment of the magnetizations.

For more information on interlayer exchange coupling, there are a number
of review articles. The series Ultrathin Magnetic Structures I-IV consists of
review articles on the general topic of magnetic multilayers. Chapter 2 of Ul-
trathin Magnetic Structures II contains four review articles written around
1993 covering various aspects of interlayer exchange coupling [69]. Volume
III contains yet another review article, written in 2002. Volume 200 of the
Journal of Magnetism and Magnetic Materials consists of a series of review
articles covering much of magnetism and includes many related to magnetic
multilayers. The article on interlayer exchange coupling [50] focuses on the
comparison between theory and experiment. Other general review articles on
interlayer exchange coupling include [68,70–73]. For a compendium of theoret-
ical and experimental results for specific systems, see [51]. The system Fe/Cr is
sufficiently rich that it has generated three review articles on its own [47–49].
Most of the articles above focus on transition metal multilayers, for reviews of
rare earth multilayers, see [74,75]. As mentioned above, photoemission stud-
ies of quantum well states in magnetic multilayers are reviewed in [16–19].
Biquadratic coupling is reviewed in [76].
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[33] J. Lindner, C. Rüdt, E. Kosubek, P. Poulopoulos, K. Baberschke, P. Blomquist,
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